topsis-anshul-102303930 1.0.0__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- topsis_anshul/__init__.py +0 -0
- topsis_anshul/topsis.py +78 -0
- topsis_anshul_102303930-1.0.0.dist-info/LICENSE +15 -0
- topsis_anshul_102303930-1.0.0.dist-info/METADATA +45 -0
- topsis_anshul_102303930-1.0.0.dist-info/RECORD +8 -0
- topsis_anshul_102303930-1.0.0.dist-info/WHEEL +5 -0
- topsis_anshul_102303930-1.0.0.dist-info/entry_points.txt +2 -0
- topsis_anshul_102303930-1.0.0.dist-info/top_level.txt +1 -0
|
File without changes
|
topsis_anshul/topsis.py
ADDED
|
@@ -0,0 +1,78 @@
|
|
|
1
|
+
import sys
|
|
2
|
+
import pandas as pd
|
|
3
|
+
import numpy as np
|
|
4
|
+
|
|
5
|
+
def main():
|
|
6
|
+
if len(sys.argv) != 5:
|
|
7
|
+
print("Usage: python topsis.py <InputDataFile> <Weights> <Impacts> <OutputResultFileName>")
|
|
8
|
+
sys.exit(1)
|
|
9
|
+
|
|
10
|
+
input_file = sys.argv[1]
|
|
11
|
+
weights = sys.argv[2]
|
|
12
|
+
impacts = sys.argv[3]
|
|
13
|
+
output_file = sys.argv[4]
|
|
14
|
+
|
|
15
|
+
try:
|
|
16
|
+
data = pd.read_csv(input_file)
|
|
17
|
+
except FileNotFoundError:
|
|
18
|
+
print("Error: Input file not found")
|
|
19
|
+
sys.exit(1)
|
|
20
|
+
|
|
21
|
+
if data.shape[1] < 3:
|
|
22
|
+
print("Error: Input file must contain at least three columns")
|
|
23
|
+
sys.exit(1)
|
|
24
|
+
|
|
25
|
+
weights = weights.split(",")
|
|
26
|
+
impacts = impacts.split(",")
|
|
27
|
+
|
|
28
|
+
num_criteria = data.shape[1] - 1
|
|
29
|
+
|
|
30
|
+
if len(weights) != num_criteria or len(impacts) != num_criteria:# Yahan per hum no. columns ko match kar rhe hain with no. of weights and impacts provided
|
|
31
|
+
print("Error: Number of weights and impacts must match number of criteria")
|
|
32
|
+
sys.exit(1)
|
|
33
|
+
|
|
34
|
+
for impact in impacts:
|
|
35
|
+
if impact not in ['+', '-']:
|
|
36
|
+
print("Error: Impacts must be either '+' or '-'")
|
|
37
|
+
sys.exit(1)
|
|
38
|
+
try:
|
|
39
|
+
data.iloc[:, 1:] = data.iloc[:, 1:].astype(float)
|
|
40
|
+
except ValueError:
|
|
41
|
+
print("Error: Criteria columns must contain numeric values only")
|
|
42
|
+
sys.exit(1)
|
|
43
|
+
### Validations end here
|
|
44
|
+
weights = np.array(weights, dtype=float)
|
|
45
|
+
weights = weights / np.sum(weights) # Normazing the Weights
|
|
46
|
+
criteria = data.iloc[:, 1:].values
|
|
47
|
+
norm = np.sqrt((criteria ** 2).sum(axis=0))# normalizing the Values in the matrix
|
|
48
|
+
normalized_matrix = criteria / norm
|
|
49
|
+
weighted_matrix = normalized_matrix * weights
|
|
50
|
+
|
|
51
|
+
ideal_best = []
|
|
52
|
+
ideal_worst = []
|
|
53
|
+
|
|
54
|
+
for i in range(len(impacts)):
|
|
55
|
+
if impacts[i] == '+':
|
|
56
|
+
ideal_best.append(weighted_matrix[:, i].max())
|
|
57
|
+
ideal_worst.append(weighted_matrix[:, i].min())
|
|
58
|
+
else:
|
|
59
|
+
ideal_best.append(weighted_matrix[:, i].min())
|
|
60
|
+
ideal_worst.append(weighted_matrix[:, i].max())
|
|
61
|
+
|
|
62
|
+
ideal_best = np.array(ideal_best)
|
|
63
|
+
ideal_worst = np.array(ideal_worst)
|
|
64
|
+
|
|
65
|
+
dist_best = np.sqrt(((weighted_matrix - ideal_best) ** 2).sum(axis=1))
|
|
66
|
+
dist_worst = np.sqrt(((weighted_matrix - ideal_worst) ** 2).sum(axis=1))
|
|
67
|
+
|
|
68
|
+
|
|
69
|
+
topsis_score = dist_worst / (dist_best + dist_worst)
|
|
70
|
+
data["Topsis Score"] = topsis_score.round(6)
|
|
71
|
+
data["Rank"] = data["Topsis Score"].rank(ascending=False, method='dense').astype(int)
|
|
72
|
+
|
|
73
|
+
data.to_csv(output_file, index=False)
|
|
74
|
+
print("TOPSIS analysis completed successfully.")
|
|
75
|
+
|
|
76
|
+
|
|
77
|
+
if __name__ == "__main__":
|
|
78
|
+
main()
|
|
@@ -0,0 +1,15 @@
|
|
|
1
|
+
MIT License
|
|
2
|
+
|
|
3
|
+
Copyright (c) 2026 Anshul Kaushal
|
|
4
|
+
|
|
5
|
+
Permission is hereby granted, free of charge, to any person obtaining a copy
|
|
6
|
+
of this software and associated documentation files (the "Software"), to deal
|
|
7
|
+
in the Software without restriction, including without limitation the rights
|
|
8
|
+
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
|
9
|
+
copies of the Software, and to permit persons to whom the Software is
|
|
10
|
+
furnished to do so, subject to the following conditions:
|
|
11
|
+
|
|
12
|
+
The above copyright notice and this permission notice shall be included in all
|
|
13
|
+
copies or substantial portions of the Software.
|
|
14
|
+
|
|
15
|
+
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND.
|
|
@@ -0,0 +1,45 @@
|
|
|
1
|
+
Metadata-Version: 2.1
|
|
2
|
+
Name: topsis-anshul-102303930
|
|
3
|
+
Version: 1.0.0
|
|
4
|
+
Summary: A Python package for TOPSIS multi-criteria decision making
|
|
5
|
+
Author: Anshul Kaushal
|
|
6
|
+
Author-email: anshulkaushal27@gmail.com
|
|
7
|
+
Classifier: Programming Language :: Python :: 3
|
|
8
|
+
Classifier: License :: OSI Approved :: MIT License
|
|
9
|
+
Classifier: Operating System :: OS Independent
|
|
10
|
+
Requires-Python: >=3.6
|
|
11
|
+
Description-Content-Type: text/markdown
|
|
12
|
+
License-File: LICENSE
|
|
13
|
+
Requires-Dist: pandas
|
|
14
|
+
Requires-Dist: numpy
|
|
15
|
+
|
|
16
|
+
\# Topsis-Anshul-102303930
|
|
17
|
+
|
|
18
|
+
|
|
19
|
+
|
|
20
|
+
\## 📌 Description
|
|
21
|
+
|
|
22
|
+
This package implements the TOPSIS (Technique for Order Preference by Similarity to Ideal Solution) method.
|
|
23
|
+
|
|
24
|
+
TOPSIS is a multi-criteria decision-making approach used to rank alternatives based on their distance from
|
|
25
|
+
|
|
26
|
+
an ideal best and an ideal worst solution.
|
|
27
|
+
|
|
28
|
+
|
|
29
|
+
|
|
30
|
+
---
|
|
31
|
+
|
|
32
|
+
|
|
33
|
+
|
|
34
|
+
\## ⚙️ Installation
|
|
35
|
+
|
|
36
|
+
Install the package using pip:
|
|
37
|
+
|
|
38
|
+
|
|
39
|
+
|
|
40
|
+
```bash
|
|
41
|
+
|
|
42
|
+
pip install Topsis-Anshul-102303930
|
|
43
|
+
|
|
44
|
+
|
|
45
|
+
|
|
@@ -0,0 +1,8 @@
|
|
|
1
|
+
topsis_anshul/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
2
|
+
topsis_anshul/topsis.py,sha256=nxT4WXz7Z2KU17EOpviNfBPE4XdB794wSyT0seMzd_k,2556
|
|
3
|
+
topsis_anshul_102303930-1.0.0.dist-info/LICENSE,sha256=XFA2fzQCLy41yBxlaoLoMFCr_mFFPsUqtx58outGwfo,689
|
|
4
|
+
topsis_anshul_102303930-1.0.0.dist-info/METADATA,sha256=isv0Uix1WPRzgMmWhywtwRx1fVy2grhXMtwba39LbbA,947
|
|
5
|
+
topsis_anshul_102303930-1.0.0.dist-info/WHEEL,sha256=GV9aMThwP_4oNCtvEC2ec3qUYutgWeAzklro_0m4WJQ,91
|
|
6
|
+
topsis_anshul_102303930-1.0.0.dist-info/entry_points.txt,sha256=fM1Se7TB5H5DyOFpENDatsDEMD1odgCE4QXiT38xW_g,53
|
|
7
|
+
topsis_anshul_102303930-1.0.0.dist-info/top_level.txt,sha256=xnQI0g8RBd7KKV__q4kvGFvD4LUGWRp_EQ3TWz5BV_w,14
|
|
8
|
+
topsis_anshul_102303930-1.0.0.dist-info/RECORD,,
|
|
@@ -0,0 +1 @@
|
|
|
1
|
+
topsis_anshul
|