topologicpy 0.8.12__py3-none-any.whl → 0.8.13__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
topologicpy/Graph.py CHANGED
@@ -1358,7 +1358,7 @@ class Graph:
1358
1358
  return bot_graph.serialize(format=format)
1359
1359
 
1360
1360
  @staticmethod
1361
- def BetweennessCentrality(graph, method: str = "vertex", weightKey="length", normalize: bool = False, nx: bool = False, key: str = "betweenness_centrality", colorKey="bc_color", colorScale="viridis", mantissa: int = 6, tolerance: float = 0.001, silent: bool = False):
1361
+ def BetweennessCentrality(graph, method: str = "vertex", weightKey="length", normalize: bool = False, nxCompatible: bool = False, key: str = "betweenness_centrality", colorKey="bc_color", colorScale="viridis", mantissa: int = 6, tolerance: float = 0.001, silent: bool = False):
1362
1362
  """
1363
1363
  Returns the betweenness centrality of the input graph. The order of the returned list is the same as the order of vertices/edges. See https://en.wikipedia.org/wiki/Betweenness_centrality.
1364
1364
 
@@ -1374,7 +1374,7 @@ class Graph:
1374
1374
  This is used in weighted graphs. if weightKey is set to "Length" or "Distance", the length of the edge will be used as its weight.
1375
1375
  normalize : bool , optional
1376
1376
  If set to True, the values are normalized to be in the range 0 to 1. Otherwise they are not. The default is False.
1377
- nx : bool , optional
1377
+ nxCompatible : bool , optional
1378
1378
  If set to True, and normalize input parameter is also set to True, the values are set to be identical to NetworkX values. Otherwise, they are normalized between 0 and 1. The default is False.
1379
1379
  key : str , optional
1380
1380
  The desired dictionary key under which to store the betweenness centrality score. The default is "betweenness_centrality".
@@ -1423,12 +1423,12 @@ class Graph:
1423
1423
  if "vert" in method.lower():
1424
1424
  elements = Graph.Vertices(graph)
1425
1425
  elements_dict = nx.betweenness_centrality(nx_graph, normalized=normalize, weight=weightKey)
1426
- values = list(elements_dict.values())
1426
+ values = [round(value, mantissa) for value in list(elements_dict.values())]
1427
1427
  else:
1428
1428
  elements = Graph.Edges(graph)
1429
1429
  elements_dict = nx.edge_betweenness_centrality(nx_graph, normalized=normalize, weight=weightKey)
1430
1430
  values = [round(value, mantissa) for value in list(elements_dict.values())]
1431
- if nx == False:
1431
+ if nxCompatible == False:
1432
1432
  if mantissa > 0: # We cannot have values in the range 0 to 1 with a mantissa < 1
1433
1433
  values = [round(v, mantissa) for v in Helper.Normalize(values)]
1434
1434
  else:
@@ -4686,7 +4686,7 @@ class Graph:
4686
4686
  return graph
4687
4687
 
4688
4688
  @staticmethod
4689
- def ClosenessCentrality(graph, weightKey="length", normalize: bool = False, nx: bool = True, key: str = "closeness_centrality", colorKey="cc_color", colorScale="viridis", mantissa: int = 6, tolerance: float = 0.001, silent: bool = False):
4689
+ def ClosenessCentrality(graph, weightKey="length", normalize: bool = False, nxCompatible: bool = True, key: str = "closeness_centrality", colorKey="cc_color", colorScale="viridis", mantissa: int = 6, tolerance: float = 0.001, silent: bool = False):
4690
4690
  """
4691
4691
  Returns the closeness centrality of the input graph. The order of the returned list is the same as the order of vertices/edges. See https://en.wikipedia.org/wiki/Betweenness_centrality.
4692
4692
 
@@ -4700,7 +4700,7 @@ class Graph:
4700
4700
  This is used in weighted graphs. if weightKey is set to "Length" or "Distance", the length of the edge will be used as its weight.
4701
4701
  normalize : bool , optional
4702
4702
  If set to True, the values are normalized to be in the range 0 to 1. Otherwise they are not. The default is False.
4703
- nx : bool , optional
4703
+ nxCompatible : bool , optional
4704
4704
  If set to True, use networkX to scale by the fraction of nodes reachable. This gives the Wasserman and Faust improved formula.
4705
4705
  For single component graphs it is the same as the original formula.
4706
4706
  key : str , optional
@@ -4753,7 +4753,7 @@ class Graph:
4753
4753
  weightKey = "length"
4754
4754
  nx_graph = Graph.NetworkXGraph(graph)
4755
4755
  elements = Graph.Vertices(graph)
4756
- elements_dict = nx.closeness_centrality(nx_graph, distance=weightKey, wf_improved=nx)
4756
+ elements_dict = nx.closeness_centrality(nx_graph, distance=weightKey, wf_improved=nxCompatible)
4757
4757
  values = [round(v, mantissa) for v in list(elements_dict.values())]
4758
4758
  if normalize == True:
4759
4759
  if mantissa > 0: # We cannot round numbers from 0 to 1 with a mantissa = 0.
topologicpy/version.py CHANGED
@@ -1 +1 @@
1
- __version__ = '0.8.12'
1
+ __version__ = '0.8.13'
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.2
2
2
  Name: topologicpy
3
- Version: 0.8.12
3
+ Version: 0.8.13
4
4
  Summary: An AI-Powered Spatial Modelling and Analysis Software Library for Architecture, Engineering, and Construction.
5
5
  Author-email: Wassim Jabi <wassim.jabi@gmail.com>
6
6
  License: AGPL v3 License
@@ -11,7 +11,7 @@ topologicpy/Dictionary.py,sha256=t0O7Du-iPq46FyKqZfcjHfsUK1E8GS_e67R2V5cpkbw,331
11
11
  topologicpy/Edge.py,sha256=yxkCVDYBflJNEYxnjMmlyvbkpg8TNy7y5bSH3yQ4jzs,71418
12
12
  topologicpy/EnergyModel.py,sha256=UoQ9Jm-hYsN383CbcLKw-y6BKitRHj0uyh84yQ-8ACg,53856
13
13
  topologicpy/Face.py,sha256=tn3PI-t9rXikgI1QMclw0PFwQ5vvyLi-wJKqZZZ9xmw,182755
14
- topologicpy/Graph.py,sha256=4zO0ntmRFz4k1WtsLmsbzjlor1tuQGLBIkpFk2Y_4hI,498848
14
+ topologicpy/Graph.py,sha256=FBmiMObzztPwZFJ2T846Ivz0Y1kpzMF0sF-PDUMPk4o,498946
15
15
  topologicpy/Grid.py,sha256=2s9cSlWldivn1i9EUz4OOokJyANveqmRe_vR93CAndI,18245
16
16
  topologicpy/Helper.py,sha256=4H5KPiv_eiEs489UOOyGLe9RaeoZIfmMh3mk_YCHmXg,29100
17
17
  topologicpy/Honeybee.py,sha256=Y_El6M8x3ixvvIe_VcRiwj_4C89ZZg5_WlT7adbCkpw,21849
@@ -28,9 +28,9 @@ topologicpy/Vector.py,sha256=GkGt-aJ591IJ2IPffMAudvITLDPi2qZibZc4UAav6m8,42407
28
28
  topologicpy/Vertex.py,sha256=xr8KSgKnx-hgVp-eIvMPAKRv04R-wk-_4zc57xVyEqE,80793
29
29
  topologicpy/Wire.py,sha256=x7tOeR1o5qi5cXp_d9JrQrSXfYztCWiBC1OnVl6Yp7A,228463
30
30
  topologicpy/__init__.py,sha256=vlPCanUbxe5NifC4pHcnhSzkmmYcs_UrZrTlVMsxcFs,928
31
- topologicpy/version.py,sha256=VV54c1MEFjYlfKiA8ImJRkIYgUTfdMJOJs5zzf-BKgE,23
32
- topologicpy-0.8.12.dist-info/LICENSE,sha256=FK0vJ73LuE8PYJAn7LutsReWR47-Ooovw2dnRe5yV6Q,681
33
- topologicpy-0.8.12.dist-info/METADATA,sha256=owpJTXYjSfnJDFWPqrGOm1DoEVeWTghesziE4T-nt2I,10513
34
- topologicpy-0.8.12.dist-info/WHEEL,sha256=In9FTNxeP60KnTkGw7wk6mJPYd_dQSjEZmXdBdMCI-8,91
35
- topologicpy-0.8.12.dist-info/top_level.txt,sha256=J30bDzW92Ob7hw3zA8V34Jlp-vvsfIkGzkr8sqvb4Uw,12
36
- topologicpy-0.8.12.dist-info/RECORD,,
31
+ topologicpy/version.py,sha256=XjaqL6H5ZzfJyu62UXI4UhwezcxfWWIh4nGQ9YuybtM,23
32
+ topologicpy-0.8.13.dist-info/LICENSE,sha256=FK0vJ73LuE8PYJAn7LutsReWR47-Ooovw2dnRe5yV6Q,681
33
+ topologicpy-0.8.13.dist-info/METADATA,sha256=5SZpCgIN0s9DGq8P0heNOhibtizlRvUZIb2fP0gJAtE,10513
34
+ topologicpy-0.8.13.dist-info/WHEEL,sha256=In9FTNxeP60KnTkGw7wk6mJPYd_dQSjEZmXdBdMCI-8,91
35
+ topologicpy-0.8.13.dist-info/top_level.txt,sha256=J30bDzW92Ob7hw3zA8V34Jlp-vvsfIkGzkr8sqvb4Uw,12
36
+ topologicpy-0.8.13.dist-info/RECORD,,