tooluniverse 0.2.0__py3-none-any.whl → 1.0.1__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of tooluniverse might be problematic. Click here for more details.
- tooluniverse/__init__.py +340 -4
- tooluniverse/admetai_tool.py +84 -0
- tooluniverse/agentic_tool.py +563 -0
- tooluniverse/alphafold_tool.py +96 -0
- tooluniverse/base_tool.py +129 -6
- tooluniverse/boltz_tool.py +207 -0
- tooluniverse/chem_tool.py +192 -0
- tooluniverse/compose_scripts/__init__.py +1 -0
- tooluniverse/compose_scripts/biomarker_discovery.py +293 -0
- tooluniverse/compose_scripts/comprehensive_drug_discovery.py +186 -0
- tooluniverse/compose_scripts/drug_safety_analyzer.py +89 -0
- tooluniverse/compose_scripts/literature_tool.py +34 -0
- tooluniverse/compose_scripts/output_summarizer.py +279 -0
- tooluniverse/compose_scripts/tool_description_optimizer.py +681 -0
- tooluniverse/compose_scripts/tool_discover.py +705 -0
- tooluniverse/compose_scripts/tool_graph_composer.py +448 -0
- tooluniverse/compose_tool.py +371 -0
- tooluniverse/ctg_tool.py +1002 -0
- tooluniverse/custom_tool.py +81 -0
- tooluniverse/dailymed_tool.py +108 -0
- tooluniverse/data/admetai_tools.json +155 -0
- tooluniverse/data/adverse_event_tools.json +108 -0
- tooluniverse/data/agentic_tools.json +1156 -0
- tooluniverse/data/alphafold_tools.json +87 -0
- tooluniverse/data/boltz_tools.json +9 -0
- tooluniverse/data/chembl_tools.json +16 -0
- tooluniverse/data/clinicaltrials_gov_tools.json +326 -0
- tooluniverse/data/compose_tools.json +202 -0
- tooluniverse/data/dailymed_tools.json +70 -0
- tooluniverse/data/dataset_tools.json +646 -0
- tooluniverse/data/disease_target_score_tools.json +712 -0
- tooluniverse/data/efo_tools.json +17 -0
- tooluniverse/data/embedding_tools.json +319 -0
- tooluniverse/data/enrichr_tools.json +31 -0
- tooluniverse/data/europe_pmc_tools.json +22 -0
- tooluniverse/data/expert_feedback_tools.json +10 -0
- tooluniverse/data/fda_drug_adverse_event_tools.json +491 -0
- tooluniverse/data/fda_drug_labeling_tools.json +1 -1
- tooluniverse/data/fda_drugs_with_brand_generic_names_for_tool.py +76929 -148860
- tooluniverse/data/finder_tools.json +209 -0
- tooluniverse/data/gene_ontology_tools.json +113 -0
- tooluniverse/data/gwas_tools.json +1082 -0
- tooluniverse/data/hpa_tools.json +333 -0
- tooluniverse/data/humanbase_tools.json +47 -0
- tooluniverse/data/idmap_tools.json +74 -0
- tooluniverse/data/mcp_client_tools_example.json +113 -0
- tooluniverse/data/mcpautoloadertool_defaults.json +28 -0
- tooluniverse/data/medlineplus_tools.json +141 -0
- tooluniverse/data/monarch_tools.json +1 -1
- tooluniverse/data/openalex_tools.json +36 -0
- tooluniverse/data/opentarget_tools.json +1 -1
- tooluniverse/data/output_summarization_tools.json +101 -0
- tooluniverse/data/packages/bioinformatics_core_tools.json +1756 -0
- tooluniverse/data/packages/categorized_tools.txt +206 -0
- tooluniverse/data/packages/cheminformatics_tools.json +347 -0
- tooluniverse/data/packages/earth_sciences_tools.json +74 -0
- tooluniverse/data/packages/genomics_tools.json +776 -0
- tooluniverse/data/packages/image_processing_tools.json +38 -0
- tooluniverse/data/packages/machine_learning_tools.json +789 -0
- tooluniverse/data/packages/neuroscience_tools.json +62 -0
- tooluniverse/data/packages/original_tools.txt +0 -0
- tooluniverse/data/packages/physics_astronomy_tools.json +62 -0
- tooluniverse/data/packages/scientific_computing_tools.json +560 -0
- tooluniverse/data/packages/single_cell_tools.json +453 -0
- tooluniverse/data/packages/structural_biology_tools.json +396 -0
- tooluniverse/data/packages/visualization_tools.json +399 -0
- tooluniverse/data/pubchem_tools.json +215 -0
- tooluniverse/data/pubtator_tools.json +68 -0
- tooluniverse/data/rcsb_pdb_tools.json +1332 -0
- tooluniverse/data/reactome_tools.json +19 -0
- tooluniverse/data/semantic_scholar_tools.json +26 -0
- tooluniverse/data/special_tools.json +2 -25
- tooluniverse/data/tool_composition_tools.json +88 -0
- tooluniverse/data/toolfinderkeyword_defaults.json +34 -0
- tooluniverse/data/txagent_client_tools.json +9 -0
- tooluniverse/data/uniprot_tools.json +211 -0
- tooluniverse/data/url_fetch_tools.json +94 -0
- tooluniverse/data/uspto_downloader_tools.json +9 -0
- tooluniverse/data/uspto_tools.json +811 -0
- tooluniverse/data/xml_tools.json +3275 -0
- tooluniverse/dataset_tool.py +296 -0
- tooluniverse/default_config.py +165 -0
- tooluniverse/efo_tool.py +42 -0
- tooluniverse/embedding_database.py +630 -0
- tooluniverse/embedding_sync.py +396 -0
- tooluniverse/enrichr_tool.py +266 -0
- tooluniverse/europe_pmc_tool.py +52 -0
- tooluniverse/execute_function.py +1775 -95
- tooluniverse/extended_hooks.py +444 -0
- tooluniverse/gene_ontology_tool.py +194 -0
- tooluniverse/graphql_tool.py +158 -36
- tooluniverse/gwas_tool.py +358 -0
- tooluniverse/hpa_tool.py +1645 -0
- tooluniverse/humanbase_tool.py +389 -0
- tooluniverse/logging_config.py +254 -0
- tooluniverse/mcp_client_tool.py +764 -0
- tooluniverse/mcp_integration.py +413 -0
- tooluniverse/mcp_tool_registry.py +925 -0
- tooluniverse/medlineplus_tool.py +337 -0
- tooluniverse/openalex_tool.py +228 -0
- tooluniverse/openfda_adv_tool.py +283 -0
- tooluniverse/openfda_tool.py +393 -160
- tooluniverse/output_hook.py +1122 -0
- tooluniverse/package_tool.py +195 -0
- tooluniverse/pubchem_tool.py +158 -0
- tooluniverse/pubtator_tool.py +168 -0
- tooluniverse/rcsb_pdb_tool.py +38 -0
- tooluniverse/reactome_tool.py +108 -0
- tooluniverse/remote/boltz/boltz_mcp_server.py +50 -0
- tooluniverse/remote/depmap_24q2/depmap_24q2_mcp_tool.py +442 -0
- tooluniverse/remote/expert_feedback/human_expert_mcp_tools.py +2013 -0
- tooluniverse/remote/expert_feedback/simple_test.py +23 -0
- tooluniverse/remote/expert_feedback/start_web_interface.py +188 -0
- tooluniverse/remote/expert_feedback/web_only_interface.py +0 -0
- tooluniverse/remote/immune_compass/compass_tool.py +327 -0
- tooluniverse/remote/pinnacle/pinnacle_tool.py +328 -0
- tooluniverse/remote/transcriptformer/transcriptformer_tool.py +586 -0
- tooluniverse/remote/uspto_downloader/uspto_downloader_mcp_server.py +61 -0
- tooluniverse/remote/uspto_downloader/uspto_downloader_tool.py +120 -0
- tooluniverse/remote_tool.py +99 -0
- tooluniverse/restful_tool.py +53 -30
- tooluniverse/scripts/generate_tool_graph.py +408 -0
- tooluniverse/scripts/visualize_tool_graph.py +829 -0
- tooluniverse/semantic_scholar_tool.py +62 -0
- tooluniverse/smcp.py +2452 -0
- tooluniverse/smcp_server.py +975 -0
- tooluniverse/test/mcp_server_test.py +0 -0
- tooluniverse/test/test_admetai_tool.py +370 -0
- tooluniverse/test/test_agentic_tool.py +129 -0
- tooluniverse/test/test_alphafold_tool.py +71 -0
- tooluniverse/test/test_chem_tool.py +37 -0
- tooluniverse/test/test_compose_lieraturereview.py +63 -0
- tooluniverse/test/test_compose_tool.py +448 -0
- tooluniverse/test/test_dailymed.py +69 -0
- tooluniverse/test/test_dataset_tool.py +200 -0
- tooluniverse/test/test_disease_target_score.py +56 -0
- tooluniverse/test/test_drugbank_filter_examples.py +179 -0
- tooluniverse/test/test_efo.py +31 -0
- tooluniverse/test/test_enrichr_tool.py +21 -0
- tooluniverse/test/test_europe_pmc_tool.py +20 -0
- tooluniverse/test/test_fda_adv.py +95 -0
- tooluniverse/test/test_fda_drug_labeling.py +91 -0
- tooluniverse/test/test_gene_ontology_tools.py +66 -0
- tooluniverse/test/test_gwas_tool.py +139 -0
- tooluniverse/test/test_hpa.py +625 -0
- tooluniverse/test/test_humanbase_tool.py +20 -0
- tooluniverse/test/test_idmap_tools.py +61 -0
- tooluniverse/test/test_mcp_server.py +211 -0
- tooluniverse/test/test_mcp_tool.py +247 -0
- tooluniverse/test/test_medlineplus.py +220 -0
- tooluniverse/test/test_openalex_tool.py +32 -0
- tooluniverse/test/test_opentargets.py +28 -0
- tooluniverse/test/test_pubchem_tool.py +116 -0
- tooluniverse/test/test_pubtator_tool.py +37 -0
- tooluniverse/test/test_rcsb_pdb_tool.py +86 -0
- tooluniverse/test/test_reactome.py +54 -0
- tooluniverse/test/test_semantic_scholar_tool.py +24 -0
- tooluniverse/test/test_software_tools.py +147 -0
- tooluniverse/test/test_tool_description_optimizer.py +49 -0
- tooluniverse/test/test_tool_finder.py +26 -0
- tooluniverse/test/test_tool_finder_llm.py +252 -0
- tooluniverse/test/test_tools_find.py +195 -0
- tooluniverse/test/test_uniprot_tools.py +74 -0
- tooluniverse/test/test_uspto_tool.py +72 -0
- tooluniverse/test/test_xml_tool.py +113 -0
- tooluniverse/tool_finder_embedding.py +267 -0
- tooluniverse/tool_finder_keyword.py +693 -0
- tooluniverse/tool_finder_llm.py +699 -0
- tooluniverse/tool_graph_web_ui.py +955 -0
- tooluniverse/tool_registry.py +416 -0
- tooluniverse/uniprot_tool.py +155 -0
- tooluniverse/url_tool.py +253 -0
- tooluniverse/uspto_tool.py +240 -0
- tooluniverse/utils.py +369 -41
- tooluniverse/xml_tool.py +369 -0
- tooluniverse-1.0.1.dist-info/METADATA +387 -0
- tooluniverse-1.0.1.dist-info/RECORD +182 -0
- tooluniverse-1.0.1.dist-info/entry_points.txt +9 -0
- tooluniverse/generate_mcp_tools.py +0 -113
- tooluniverse/mcp_server.py +0 -3340
- tooluniverse-0.2.0.dist-info/METADATA +0 -139
- tooluniverse-0.2.0.dist-info/RECORD +0 -21
- tooluniverse-0.2.0.dist-info/entry_points.txt +0 -4
- {tooluniverse-0.2.0.dist-info → tooluniverse-1.0.1.dist-info}/WHEEL +0 -0
- {tooluniverse-0.2.0.dist-info → tooluniverse-1.0.1.dist-info}/licenses/LICENSE +0 -0
- {tooluniverse-0.2.0.dist-info → tooluniverse-1.0.1.dist-info}/top_level.txt +0 -0
|
@@ -0,0 +1,74 @@
|
|
|
1
|
+
from tooluniverse import ToolUniverse
|
|
2
|
+
from typing import Any, Dict, List
|
|
3
|
+
|
|
4
|
+
tooluni = ToolUniverse()
|
|
5
|
+
tooluni.load_tools()
|
|
6
|
+
|
|
7
|
+
TEST_ACC = "P05067" # A4_HUMAN
|
|
8
|
+
|
|
9
|
+
test_queries: List[Dict[str, Any]] = [
|
|
10
|
+
{"name": "UniProt_get_entry_by_accession", "arguments": {"accession": TEST_ACC}},
|
|
11
|
+
{"name": "UniProt_get_function_by_accession", "arguments": {"accession": TEST_ACC}},
|
|
12
|
+
{
|
|
13
|
+
"name": "UniProt_get_recommended_name_by_accession",
|
|
14
|
+
"arguments": {"accession": TEST_ACC},
|
|
15
|
+
},
|
|
16
|
+
{
|
|
17
|
+
"name": "UniProt_get_alternative_names_by_accession",
|
|
18
|
+
"arguments": {"accession": TEST_ACC},
|
|
19
|
+
},
|
|
20
|
+
{"name": "UniProt_get_organism_by_accession", "arguments": {"accession": TEST_ACC}},
|
|
21
|
+
{
|
|
22
|
+
"name": "UniProt_get_subcellular_location_by_accession",
|
|
23
|
+
"arguments": {"accession": TEST_ACC},
|
|
24
|
+
},
|
|
25
|
+
{
|
|
26
|
+
"name": "UniProt_get_disease_variants_by_accession",
|
|
27
|
+
"arguments": {"accession": TEST_ACC},
|
|
28
|
+
},
|
|
29
|
+
{
|
|
30
|
+
"name": "UniProt_get_ptm_processing_by_accession",
|
|
31
|
+
"arguments": {"accession": TEST_ACC},
|
|
32
|
+
},
|
|
33
|
+
{"name": "UniProt_get_sequence_by_accession", "arguments": {"accession": TEST_ACC}},
|
|
34
|
+
{
|
|
35
|
+
"name": "UniProt_get_isoform_ids_by_accession",
|
|
36
|
+
"arguments": {"accession": TEST_ACC},
|
|
37
|
+
},
|
|
38
|
+
]
|
|
39
|
+
|
|
40
|
+
|
|
41
|
+
def format_value(value, max_items=5, max_length=200):
|
|
42
|
+
"""Helper function to format output values with more detail"""
|
|
43
|
+
if isinstance(value, dict):
|
|
44
|
+
dict_str = str(value)
|
|
45
|
+
return f"Dict ({len(dict_str)} chars): {dict_str[:500]}{'...' if len(dict_str) > 500 else ''}"
|
|
46
|
+
elif isinstance(value, list):
|
|
47
|
+
if not value:
|
|
48
|
+
return "Empty list"
|
|
49
|
+
items_to_show = value[:max_items]
|
|
50
|
+
items_str = "\n - ".join(
|
|
51
|
+
[
|
|
52
|
+
str(item)[:max_length] + ("..." if len(str(item)) > max_length else "")
|
|
53
|
+
for item in items_to_show
|
|
54
|
+
]
|
|
55
|
+
)
|
|
56
|
+
remaining = len(value) - max_items
|
|
57
|
+
return f"List with {len(value)} items:\n - {items_str}" + (
|
|
58
|
+
f"\n ... and {remaining} more items" if remaining > 0 else ""
|
|
59
|
+
)
|
|
60
|
+
elif isinstance(value, str):
|
|
61
|
+
return f"String ({len(value)} chars): {value[:max_length]}{'...' if len(value) > max_length else ''}"
|
|
62
|
+
else:
|
|
63
|
+
return f"Type: {type(value)}, Value: {value}"
|
|
64
|
+
|
|
65
|
+
|
|
66
|
+
for idx, q in enumerate(test_queries, 1):
|
|
67
|
+
print(f"\n{'='*80}\n[{idx}] {q['name']}({q['arguments']['accession']})")
|
|
68
|
+
res = tooluni.run(q)
|
|
69
|
+
|
|
70
|
+
if isinstance(res, dict) and "error" in res:
|
|
71
|
+
print(f"ERROR: {res['error']}")
|
|
72
|
+
else:
|
|
73
|
+
print(format_value(res))
|
|
74
|
+
print()
|
|
@@ -0,0 +1,72 @@
|
|
|
1
|
+
from tooluniverse import ToolUniverse
|
|
2
|
+
|
|
3
|
+
tooluni = ToolUniverse()
|
|
4
|
+
tooluni.load_tools()
|
|
5
|
+
|
|
6
|
+
# All test cases compiled into the specified list format
|
|
7
|
+
test_queries = [
|
|
8
|
+
# Test Case: get_patent_overview_by_text_query example
|
|
9
|
+
{
|
|
10
|
+
"name": "get_patent_overview_by_text_query",
|
|
11
|
+
"arguments": {
|
|
12
|
+
"query": "iron oxide",
|
|
13
|
+
"exact_match": True,
|
|
14
|
+
"sort": "filingDate desc",
|
|
15
|
+
"limit": 5,
|
|
16
|
+
"rangeFilters": "filingDate 2021-01-01:2024-02-01",
|
|
17
|
+
},
|
|
18
|
+
},
|
|
19
|
+
# Test Case: get_patent_overview_by_text_query example
|
|
20
|
+
{
|
|
21
|
+
"name": "get_patent_overview_by_text_query",
|
|
22
|
+
"arguments": {
|
|
23
|
+
"query": "machine learning",
|
|
24
|
+
"exact_match": False,
|
|
25
|
+
"sort": "filingDate desc",
|
|
26
|
+
"limit": 1,
|
|
27
|
+
"offset": 53,
|
|
28
|
+
"rangeFilters": "filingDate 2021-01-01:2024-02-01",
|
|
29
|
+
},
|
|
30
|
+
},
|
|
31
|
+
# Test Case: get_patent_application_metadata
|
|
32
|
+
{
|
|
33
|
+
"name": "get_patent_application_metadata",
|
|
34
|
+
"arguments": {"applicationNumberText": "19053071"},
|
|
35
|
+
},
|
|
36
|
+
# Test Case: get_patent_term_adjustment_data
|
|
37
|
+
{
|
|
38
|
+
"name": "get_patent_term_adjustment_data",
|
|
39
|
+
"arguments": {"applicationNumberText": "16232347"},
|
|
40
|
+
},
|
|
41
|
+
# Test Case: get_patent_term_adjustment_data
|
|
42
|
+
{
|
|
43
|
+
"name": "get_patent_term_adjustment_data",
|
|
44
|
+
"arguments": {"applicationNumberText": "17783167"},
|
|
45
|
+
},
|
|
46
|
+
# Test Case: get_patent_continuity_data
|
|
47
|
+
{
|
|
48
|
+
"name": "get_patent_continuity_data",
|
|
49
|
+
"arguments": {"applicationNumberText": "19053071"},
|
|
50
|
+
},
|
|
51
|
+
# Test Case: get_patient_foreign_priority_data example
|
|
52
|
+
{
|
|
53
|
+
"name": "get_patent_foreign_priority_data",
|
|
54
|
+
"arguments": {"applicationNumberText": "19053071"},
|
|
55
|
+
},
|
|
56
|
+
# Test Case: get_associated_documents_metadata
|
|
57
|
+
{
|
|
58
|
+
"name": "get_associated_documents_metadata",
|
|
59
|
+
"arguments": {"applicationNumberText": "16232347"},
|
|
60
|
+
},
|
|
61
|
+
]
|
|
62
|
+
|
|
63
|
+
test_queries = test_queries # Repeat the test cases three times for thorough testing
|
|
64
|
+
|
|
65
|
+
for idx, query in enumerate(test_queries):
|
|
66
|
+
print(
|
|
67
|
+
f"\n[{idx+1}] Running tool: {query['name']} with arguments: {query['arguments']}"
|
|
68
|
+
)
|
|
69
|
+
result = tooluni.run(query)
|
|
70
|
+
print("✅ Success.")
|
|
71
|
+
result_str = str(result)
|
|
72
|
+
print(f"📊 Result: {result_str}")
|
|
@@ -0,0 +1,113 @@
|
|
|
1
|
+
from tooluniverse import ToolUniverse
|
|
2
|
+
import json
|
|
3
|
+
|
|
4
|
+
# Step 1: Initialize tool universe
|
|
5
|
+
tooluni = ToolUniverse()
|
|
6
|
+
tooluni.load_tools()
|
|
7
|
+
|
|
8
|
+
# Test queries for XML tools using MedlinePlus health topics data
|
|
9
|
+
test_queries = [
|
|
10
|
+
{
|
|
11
|
+
"name": "mesh_get_subjects_by_pharmacological_action",
|
|
12
|
+
"arguments": {"query": "calcium", "limit": 10},
|
|
13
|
+
},
|
|
14
|
+
{
|
|
15
|
+
"name": "mesh_get_subjects_by_subject_scope_or_definition",
|
|
16
|
+
"arguments": {"query": "glycan", "limit": 2},
|
|
17
|
+
},
|
|
18
|
+
{
|
|
19
|
+
"name": "mesh_get_subjects_by_subject_name",
|
|
20
|
+
"arguments": {
|
|
21
|
+
"query": "antibody",
|
|
22
|
+
"limit": 10,
|
|
23
|
+
},
|
|
24
|
+
},
|
|
25
|
+
{
|
|
26
|
+
"name": "mesh_get_subjects_by_subject_id",
|
|
27
|
+
"arguments": {
|
|
28
|
+
"query": "D007306",
|
|
29
|
+
"limit": 5,
|
|
30
|
+
},
|
|
31
|
+
},
|
|
32
|
+
{
|
|
33
|
+
"name": "drugbank_get_drug_basic_info_by_drug_name_or_drugbank_id",
|
|
34
|
+
"arguments": {"query": "lovastatin", "limit": 2},
|
|
35
|
+
},
|
|
36
|
+
{
|
|
37
|
+
"name": "drugbank_get_indications_by_drug_name_or_drugbank_id",
|
|
38
|
+
"arguments": {"query": "DB00945", "limit": 5},
|
|
39
|
+
},
|
|
40
|
+
{
|
|
41
|
+
"name": "drugbank_get_drug_name_and_description_by_indication",
|
|
42
|
+
"arguments": {"query": "hypertension", "limit": 1},
|
|
43
|
+
},
|
|
44
|
+
{
|
|
45
|
+
"name": "drugbank_get_pharmacology_by_drug_name_or_drugbank_id",
|
|
46
|
+
"arguments": {"query": "lovastatin", "limit": 1},
|
|
47
|
+
},
|
|
48
|
+
{
|
|
49
|
+
"name": "drugbank_get_pharmacology_by_drug_name_or_drugbank_id",
|
|
50
|
+
"arguments": {"query": "simvastatin", "limit": 1},
|
|
51
|
+
},
|
|
52
|
+
{
|
|
53
|
+
"name": "drugbank_get_drug_name_description_pharmacology_by_mechanism_of_action",
|
|
54
|
+
"arguments": {"query": "receptor antagonist", "limit": 1},
|
|
55
|
+
},
|
|
56
|
+
{
|
|
57
|
+
"name": "drugbank_get_drug_interactions_by_drug_name_or_drugbank_id",
|
|
58
|
+
"arguments": {"query": "carbidopa", "limit": 1},
|
|
59
|
+
},
|
|
60
|
+
{
|
|
61
|
+
"name": "drugbank_get_targets_by_drug_name_or_drugbank_id",
|
|
62
|
+
"arguments": {"query": "aspirin", "limit": 1},
|
|
63
|
+
},
|
|
64
|
+
{
|
|
65
|
+
"name": "drugbank_get_drug_name_and_description_by_target_name",
|
|
66
|
+
"arguments": {"query": "dopamine receptor", "limit": 1},
|
|
67
|
+
},
|
|
68
|
+
{
|
|
69
|
+
"name": "drugbank_get_drug_products_by_name_or_drugbank_id",
|
|
70
|
+
"arguments": {"query": "ibuprofen", "limit": 1},
|
|
71
|
+
},
|
|
72
|
+
{
|
|
73
|
+
"name": "drugbank_get_safety_by_drug_name_or_drugbank_id",
|
|
74
|
+
"arguments": {"query": "lovastatin", "limit": 2},
|
|
75
|
+
},
|
|
76
|
+
{
|
|
77
|
+
"name": "drugbank_get_drug_chemistry_by_drug_name_or_drugbank_id",
|
|
78
|
+
"arguments": {"query": "caffeine", "limit": 1},
|
|
79
|
+
},
|
|
80
|
+
{
|
|
81
|
+
"name": "drugbank_get_drug_references_by_drug_name_or_drugbank_id",
|
|
82
|
+
"arguments": {"query": "aspirin", "limit": 1},
|
|
83
|
+
},
|
|
84
|
+
{
|
|
85
|
+
"name": "drugbank_get_drug_pathways_and_reactions_by_drug_name_or_drugbank_id",
|
|
86
|
+
"arguments": {"query": "glucose", "limit": 1},
|
|
87
|
+
},
|
|
88
|
+
{
|
|
89
|
+
"name": "drugbank_get_drug_name_and_description_by_pathway_name",
|
|
90
|
+
"arguments": {"query": "glycolysis", "limit": 1},
|
|
91
|
+
},
|
|
92
|
+
{
|
|
93
|
+
"name": "drugbank_filter_drugs_by_name",
|
|
94
|
+
"arguments": {
|
|
95
|
+
"condition": "ends_with",
|
|
96
|
+
"value": "cillin", # Example: find drugs whose names end with 'cillin', pencillin antibiotics
|
|
97
|
+
"limit": 1,
|
|
98
|
+
},
|
|
99
|
+
},
|
|
100
|
+
]
|
|
101
|
+
|
|
102
|
+
test_queries = test_queries
|
|
103
|
+
|
|
104
|
+
# Run all test queries
|
|
105
|
+
for idx, query in enumerate(test_queries):
|
|
106
|
+
print(f"\n[{idx+1}] Running tool: {query['name']}")
|
|
107
|
+
print(f"Arguments: {query['arguments']}")
|
|
108
|
+
print("-" * 60)
|
|
109
|
+
|
|
110
|
+
# try:
|
|
111
|
+
result = tooluni.run(query)
|
|
112
|
+
print("✅ Success!")
|
|
113
|
+
print(json.dumps(result, indent=2, ensure_ascii=False))
|
|
@@ -0,0 +1,267 @@
|
|
|
1
|
+
from sentence_transformers import SentenceTransformer
|
|
2
|
+
import torch
|
|
3
|
+
import json
|
|
4
|
+
import gc
|
|
5
|
+
from .utils import get_md5
|
|
6
|
+
from .base_tool import BaseTool
|
|
7
|
+
from .tool_registry import register_tool
|
|
8
|
+
|
|
9
|
+
|
|
10
|
+
@register_tool("ToolFinderEmbedding")
|
|
11
|
+
class ToolFinderEmbedding(BaseTool):
|
|
12
|
+
"""
|
|
13
|
+
A tool finder model that uses RAG (Retrieval-Augmented Generation) to find relevant tools
|
|
14
|
+
based on user queries using semantic similarity search.
|
|
15
|
+
|
|
16
|
+
This class leverages sentence transformers to encode tool descriptions and find the most
|
|
17
|
+
relevant tools for a given query through embedding-based similarity matching.
|
|
18
|
+
|
|
19
|
+
Attributes:
|
|
20
|
+
rag_model_name (str): Name of the sentence transformer model for embeddings
|
|
21
|
+
rag_model (SentenceTransformer): The loaded sentence transformer model
|
|
22
|
+
tool_desc_embedding (torch.Tensor): Cached embeddings of tool descriptions
|
|
23
|
+
tool_name (list): List of available tool names
|
|
24
|
+
tool_embedding_path (str): Path to cached tool embeddings file
|
|
25
|
+
special_tools_name (list): List of special tools to exclude from results
|
|
26
|
+
tooluniverse: Reference to the tool universe containing all tools
|
|
27
|
+
"""
|
|
28
|
+
|
|
29
|
+
def __init__(self, tool_config, tooluniverse):
|
|
30
|
+
"""
|
|
31
|
+
Initialize the ToolFinderEmbedding with configuration and RAG model.
|
|
32
|
+
|
|
33
|
+
Args:
|
|
34
|
+
tool_config (dict): Configuration dictionary for the tool
|
|
35
|
+
"""
|
|
36
|
+
super().__init__(tool_config)
|
|
37
|
+
self.rag_model = None
|
|
38
|
+
self.tool_desc_embedding = None
|
|
39
|
+
self.tool_name = None
|
|
40
|
+
self.tool_embedding_path = None
|
|
41
|
+
toolfinder_model = tool_config["configs"].get("tool_finder_model")
|
|
42
|
+
self.toolfinder_model = toolfinder_model
|
|
43
|
+
# Get exclude tools from config, with fallback to default list
|
|
44
|
+
self.exclude_tools = tool_config.get(
|
|
45
|
+
"exclude_tools",
|
|
46
|
+
tool_config.get("configs", {}).get(
|
|
47
|
+
"exclude_tools", ["Tool_RAG", "Tool_Finder", "Finish", "CallAgent"]
|
|
48
|
+
),
|
|
49
|
+
)
|
|
50
|
+
self.load_rag_model()
|
|
51
|
+
print(
|
|
52
|
+
f"Using toolfinder model: {toolfinder_model}, GPU is required for this model for fast speed..."
|
|
53
|
+
)
|
|
54
|
+
self.load_tool_desc_embedding(tooluniverse, exclude_names=self.exclude_tools)
|
|
55
|
+
|
|
56
|
+
def load_rag_model(self):
|
|
57
|
+
"""
|
|
58
|
+
Load the sentence transformer model for RAG-based tool retrieval.
|
|
59
|
+
|
|
60
|
+
Configures the model with appropriate sequence length and tokenizer settings
|
|
61
|
+
for optimal performance in tool description encoding.
|
|
62
|
+
"""
|
|
63
|
+
self.rag_model = SentenceTransformer(self.toolfinder_model)
|
|
64
|
+
self.rag_model.max_seq_length = 4096
|
|
65
|
+
self.rag_model.tokenizer.padding_side = "right"
|
|
66
|
+
|
|
67
|
+
def load_tool_desc_embedding(
|
|
68
|
+
self,
|
|
69
|
+
tooluniverse,
|
|
70
|
+
include_names=None,
|
|
71
|
+
exclude_names=None,
|
|
72
|
+
include_categories=None,
|
|
73
|
+
exclude_categories=None,
|
|
74
|
+
):
|
|
75
|
+
"""
|
|
76
|
+
Load or generate embeddings for tool descriptions from the tool universe.
|
|
77
|
+
|
|
78
|
+
This method either loads cached embeddings from disk or generates new ones by encoding
|
|
79
|
+
all tool descriptions. Embeddings are cached to disk for faster subsequent loads.
|
|
80
|
+
Memory is properly cleaned up after embedding generation to avoid OOM issues.
|
|
81
|
+
|
|
82
|
+
Args:
|
|
83
|
+
tooluniverse: ToolUniverse instance containing all available tools
|
|
84
|
+
include_names (list, optional): Specific tool names to include
|
|
85
|
+
exclude_names (list, optional): Tool names to exclude
|
|
86
|
+
include_categories (list, optional): Tool categories to include
|
|
87
|
+
exclude_categories (list, optional): Tool categories to exclude
|
|
88
|
+
"""
|
|
89
|
+
self.tooluniverse = tooluniverse
|
|
90
|
+
print("Loading tool descriptions and embeddings...")
|
|
91
|
+
self.tool_name, _ = tooluniverse.refresh_tool_name_desc(
|
|
92
|
+
enable_full_desc=True,
|
|
93
|
+
include_names=include_names,
|
|
94
|
+
exclude_names=exclude_names,
|
|
95
|
+
include_categories=include_categories,
|
|
96
|
+
exclude_categories=exclude_categories,
|
|
97
|
+
)
|
|
98
|
+
|
|
99
|
+
# Get filtered tools that match the tool_name list
|
|
100
|
+
filtered_tools = []
|
|
101
|
+
tool_name_set = set(self.tool_name)
|
|
102
|
+
for tool in tooluniverse.all_tools:
|
|
103
|
+
if tool["name"] in tool_name_set:
|
|
104
|
+
filtered_tools.append(tool)
|
|
105
|
+
|
|
106
|
+
all_tools_str = [
|
|
107
|
+
json.dumps(each)
|
|
108
|
+
for each in tooluniverse.prepare_tool_prompts(filtered_tools)
|
|
109
|
+
]
|
|
110
|
+
md5_value = get_md5(str(all_tools_str))
|
|
111
|
+
print("get the md value of tools:", md5_value)
|
|
112
|
+
self.tool_embedding_path = (
|
|
113
|
+
self.toolfinder_model.split("/")[-1] + "tool_embedding_" + md5_value + ".pt"
|
|
114
|
+
)
|
|
115
|
+
try:
|
|
116
|
+
self.tool_desc_embedding = torch.load(
|
|
117
|
+
self.tool_embedding_path, weights_only=False
|
|
118
|
+
)
|
|
119
|
+
assert len(self.tool_desc_embedding) == len(
|
|
120
|
+
self.tool_name
|
|
121
|
+
), "The number of tools in the tool_name list is not equal to the number of tool_desc_embedding."
|
|
122
|
+
print("\033[92mSuccessfully loaded cached embeddings.\033[0m")
|
|
123
|
+
except (RuntimeError, AssertionError, OSError):
|
|
124
|
+
self.tool_desc_embedding = None
|
|
125
|
+
print("\033[92mInferring the tool_desc_embedding.\033[0m")
|
|
126
|
+
|
|
127
|
+
# Generate embeddings
|
|
128
|
+
self.tool_desc_embedding = self.rag_model.encode(
|
|
129
|
+
all_tools_str, prompt="", normalize_embeddings=True
|
|
130
|
+
)
|
|
131
|
+
|
|
132
|
+
# Save embeddings to disk
|
|
133
|
+
torch.save(self.tool_desc_embedding, self.tool_embedding_path)
|
|
134
|
+
print(
|
|
135
|
+
"\033[92mFinished inferring and saving the tool_desc_embedding.\033[0m"
|
|
136
|
+
)
|
|
137
|
+
|
|
138
|
+
# Clean up intermediate variables
|
|
139
|
+
del all_tools_str
|
|
140
|
+
|
|
141
|
+
# Force GPU memory cleanup
|
|
142
|
+
if torch.cuda.is_available():
|
|
143
|
+
torch.cuda.empty_cache()
|
|
144
|
+
torch.cuda.synchronize()
|
|
145
|
+
|
|
146
|
+
# Force CPU memory cleanup
|
|
147
|
+
gc.collect()
|
|
148
|
+
|
|
149
|
+
print(
|
|
150
|
+
"\033[92mMemory cleanup completed. Embeddings are ready for use.\033[0m"
|
|
151
|
+
)
|
|
152
|
+
|
|
153
|
+
def rag_infer(self, query, top_k=5):
|
|
154
|
+
"""
|
|
155
|
+
Perform RAG inference to find the most relevant tools for a given query.
|
|
156
|
+
|
|
157
|
+
Uses semantic similarity between the query embedding and pre-computed tool embeddings
|
|
158
|
+
to identify the most relevant tools.
|
|
159
|
+
|
|
160
|
+
Args:
|
|
161
|
+
query (str): User query or description of desired functionality
|
|
162
|
+
top_k (int, optional): Number of top tools to return. Defaults to 5.
|
|
163
|
+
|
|
164
|
+
Returns:
|
|
165
|
+
list: List of top-k tool names ranked by relevance to the query
|
|
166
|
+
|
|
167
|
+
Raises:
|
|
168
|
+
SystemExit: If tool_desc_embedding is not loaded
|
|
169
|
+
"""
|
|
170
|
+
torch.cuda.empty_cache()
|
|
171
|
+
queries = [query]
|
|
172
|
+
query_embeddings = self.rag_model.encode(
|
|
173
|
+
queries, prompt="", normalize_embeddings=True
|
|
174
|
+
)
|
|
175
|
+
if self.tool_desc_embedding is None:
|
|
176
|
+
print("No tool_desc_embedding")
|
|
177
|
+
exit()
|
|
178
|
+
scores = self.rag_model.similarity(query_embeddings, self.tool_desc_embedding)
|
|
179
|
+
top_k = min(top_k, len(self.tool_name))
|
|
180
|
+
top_k_indices = torch.topk(scores, top_k).indices.tolist()[0]
|
|
181
|
+
top_k_tool_names = [self.tool_name[i] for i in top_k_indices]
|
|
182
|
+
return top_k_tool_names
|
|
183
|
+
|
|
184
|
+
def find_tools(
|
|
185
|
+
self,
|
|
186
|
+
message=None,
|
|
187
|
+
picked_tool_names=None,
|
|
188
|
+
rag_num=5,
|
|
189
|
+
return_call_result=False,
|
|
190
|
+
categories=None,
|
|
191
|
+
):
|
|
192
|
+
"""
|
|
193
|
+
Find relevant tools based on a message or pre-selected tool names.
|
|
194
|
+
|
|
195
|
+
This method either uses RAG inference to find tools based on a message or processes
|
|
196
|
+
a list of pre-selected tool names. It filters out special tools and returns tool
|
|
197
|
+
prompts suitable for use in agent workflows.
|
|
198
|
+
|
|
199
|
+
Args:
|
|
200
|
+
message (str, optional): Query message to find tools for. Required if picked_tool_names is None.
|
|
201
|
+
picked_tool_names (list, optional): Pre-selected tool names to process. Required if message is None.
|
|
202
|
+
rag_num (int, optional): Number of tools to return after filtering. Defaults to 5.
|
|
203
|
+
return_call_result (bool, optional): If True, returns both prompts and tool names. Defaults to False.
|
|
204
|
+
categories (list, optional): List of tool categories to filter by. Currently not implemented for embedding-based search.
|
|
205
|
+
|
|
206
|
+
Returns:
|
|
207
|
+
str or tuple:
|
|
208
|
+
- If return_call_result is False: Tool prompts as a formatted string
|
|
209
|
+
- If return_call_result is True: Tuple of (tool_prompts, tool_names)
|
|
210
|
+
|
|
211
|
+
Raises:
|
|
212
|
+
AssertionError: If both message and picked_tool_names are None
|
|
213
|
+
"""
|
|
214
|
+
extra_factor = 1.5 # Factor to retrieve more than rag_num
|
|
215
|
+
if picked_tool_names is None:
|
|
216
|
+
assert picked_tool_names is not None or message is not None
|
|
217
|
+
picked_tool_names = self.rag_infer(
|
|
218
|
+
message, top_k=int(rag_num * extra_factor)
|
|
219
|
+
)
|
|
220
|
+
|
|
221
|
+
picked_tool_names_no_special = []
|
|
222
|
+
for tool in picked_tool_names:
|
|
223
|
+
if tool not in self.exclude_tools:
|
|
224
|
+
picked_tool_names_no_special.append(tool)
|
|
225
|
+
picked_tool_names_no_special = picked_tool_names_no_special[:rag_num]
|
|
226
|
+
picked_tool_names = picked_tool_names_no_special[:rag_num]
|
|
227
|
+
|
|
228
|
+
picked_tools = self.tooluniverse.get_tool_by_name(picked_tool_names)
|
|
229
|
+
picked_tools_prompt = self.tooluniverse.prepare_tool_prompts(picked_tools)
|
|
230
|
+
if return_call_result:
|
|
231
|
+
return picked_tools_prompt, picked_tool_names
|
|
232
|
+
return picked_tools_prompt
|
|
233
|
+
|
|
234
|
+
def run(self, arguments):
|
|
235
|
+
"""
|
|
236
|
+
Run the tool finder with given arguments following the standard tool interface.
|
|
237
|
+
|
|
238
|
+
This is the main entry point for using ToolFinderEmbedding as a standard tool.
|
|
239
|
+
It extracts parameters from the arguments dictionary and delegates to find_tools().
|
|
240
|
+
|
|
241
|
+
Args:
|
|
242
|
+
arguments (dict): Dictionary containing:
|
|
243
|
+
- description (str, optional): Query message to find tools for (maps to 'message')
|
|
244
|
+
- limit (int, optional): Number of tools to return (maps to 'rag_num'). Defaults to 5.
|
|
245
|
+
- picked_tool_names (list, optional): Pre-selected tool names to process
|
|
246
|
+
- return_call_result (bool, optional): Whether to return both prompts and names. Defaults to False.
|
|
247
|
+
- categories (list, optional): List of tool categories to filter by
|
|
248
|
+
"""
|
|
249
|
+
import copy
|
|
250
|
+
|
|
251
|
+
arguments = copy.deepcopy(arguments)
|
|
252
|
+
|
|
253
|
+
# Extract parameters from arguments with defaults
|
|
254
|
+
message = arguments.get("description", None)
|
|
255
|
+
rag_num = arguments.get("limit", 5)
|
|
256
|
+
picked_tool_names = arguments.get("picked_tool_names", None)
|
|
257
|
+
return_call_result = arguments.get("return_call_result", False)
|
|
258
|
+
categories = arguments.get("categories", None)
|
|
259
|
+
|
|
260
|
+
# Call the existing find_tools method
|
|
261
|
+
return self.find_tools(
|
|
262
|
+
message=message,
|
|
263
|
+
picked_tool_names=picked_tool_names,
|
|
264
|
+
rag_num=rag_num,
|
|
265
|
+
return_call_result=return_call_result,
|
|
266
|
+
categories=categories,
|
|
267
|
+
)
|