tooluniverse 0.1.4__py3-none-any.whl → 1.0.0__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of tooluniverse might be problematic. Click here for more details.
- tooluniverse/__init__.py +340 -4
- tooluniverse/admetai_tool.py +84 -0
- tooluniverse/agentic_tool.py +563 -0
- tooluniverse/alphafold_tool.py +96 -0
- tooluniverse/base_tool.py +129 -6
- tooluniverse/boltz_tool.py +207 -0
- tooluniverse/chem_tool.py +192 -0
- tooluniverse/compose_scripts/__init__.py +1 -0
- tooluniverse/compose_scripts/biomarker_discovery.py +293 -0
- tooluniverse/compose_scripts/comprehensive_drug_discovery.py +186 -0
- tooluniverse/compose_scripts/drug_safety_analyzer.py +89 -0
- tooluniverse/compose_scripts/literature_tool.py +34 -0
- tooluniverse/compose_scripts/output_summarizer.py +279 -0
- tooluniverse/compose_scripts/tool_description_optimizer.py +681 -0
- tooluniverse/compose_scripts/tool_discover.py +705 -0
- tooluniverse/compose_scripts/tool_graph_composer.py +448 -0
- tooluniverse/compose_tool.py +371 -0
- tooluniverse/ctg_tool.py +1002 -0
- tooluniverse/custom_tool.py +81 -0
- tooluniverse/dailymed_tool.py +108 -0
- tooluniverse/data/admetai_tools.json +155 -0
- tooluniverse/data/agentic_tools.json +1156 -0
- tooluniverse/data/alphafold_tools.json +87 -0
- tooluniverse/data/boltz_tools.json +9 -0
- tooluniverse/data/chembl_tools.json +16 -0
- tooluniverse/data/clait_tools.json +108 -0
- tooluniverse/data/clinicaltrials_gov_tools.json +326 -0
- tooluniverse/data/compose_tools.json +202 -0
- tooluniverse/data/dailymed_tools.json +70 -0
- tooluniverse/data/dataset_tools.json +646 -0
- tooluniverse/data/disease_target_score_tools.json +712 -0
- tooluniverse/data/efo_tools.json +17 -0
- tooluniverse/data/embedding_tools.json +319 -0
- tooluniverse/data/enrichr_tools.json +31 -0
- tooluniverse/data/europe_pmc_tools.json +22 -0
- tooluniverse/data/expert_feedback_tools.json +10 -0
- tooluniverse/data/fda_drug_adverse_event_tools.json +491 -0
- tooluniverse/data/fda_drug_labeling_tools.json +544 -168
- tooluniverse/data/fda_drugs_with_brand_generic_names_for_tool.py +76929 -148860
- tooluniverse/data/finder_tools.json +209 -0
- tooluniverse/data/gene_ontology_tools.json +113 -0
- tooluniverse/data/gwas_tools.json +1082 -0
- tooluniverse/data/hpa_tools.json +333 -0
- tooluniverse/data/humanbase_tools.json +47 -0
- tooluniverse/data/idmap_tools.json +74 -0
- tooluniverse/data/mcp_client_tools_example.json +113 -0
- tooluniverse/data/mcpautoloadertool_defaults.json +28 -0
- tooluniverse/data/medlineplus_tools.json +141 -0
- tooluniverse/data/monarch_tools.json +1 -1
- tooluniverse/data/openalex_tools.json +36 -0
- tooluniverse/data/opentarget_tools.json +82 -58
- tooluniverse/data/output_summarization_tools.json +101 -0
- tooluniverse/data/packages/bioinformatics_core_tools.json +1756 -0
- tooluniverse/data/packages/categorized_tools.txt +206 -0
- tooluniverse/data/packages/cheminformatics_tools.json +347 -0
- tooluniverse/data/packages/earth_sciences_tools.json +74 -0
- tooluniverse/data/packages/genomics_tools.json +776 -0
- tooluniverse/data/packages/image_processing_tools.json +38 -0
- tooluniverse/data/packages/machine_learning_tools.json +789 -0
- tooluniverse/data/packages/neuroscience_tools.json +62 -0
- tooluniverse/data/packages/original_tools.txt +0 -0
- tooluniverse/data/packages/physics_astronomy_tools.json +62 -0
- tooluniverse/data/packages/scientific_computing_tools.json +560 -0
- tooluniverse/data/packages/single_cell_tools.json +453 -0
- tooluniverse/data/packages/software_tools.json +4954 -0
- tooluniverse/data/packages/structural_biology_tools.json +396 -0
- tooluniverse/data/packages/visualization_tools.json +399 -0
- tooluniverse/data/pubchem_tools.json +215 -0
- tooluniverse/data/pubtator_tools.json +68 -0
- tooluniverse/data/rcsb_pdb_tools.json +1332 -0
- tooluniverse/data/reactome_tools.json +19 -0
- tooluniverse/data/semantic_scholar_tools.json +26 -0
- tooluniverse/data/special_tools.json +2 -25
- tooluniverse/data/tool_composition_tools.json +88 -0
- tooluniverse/data/toolfinderkeyword_defaults.json +34 -0
- tooluniverse/data/txagent_client_tools.json +9 -0
- tooluniverse/data/uniprot_tools.json +211 -0
- tooluniverse/data/url_fetch_tools.json +94 -0
- tooluniverse/data/uspto_downloader_tools.json +9 -0
- tooluniverse/data/uspto_tools.json +811 -0
- tooluniverse/data/xml_tools.json +3275 -0
- tooluniverse/dataset_tool.py +296 -0
- tooluniverse/default_config.py +165 -0
- tooluniverse/efo_tool.py +42 -0
- tooluniverse/embedding_database.py +630 -0
- tooluniverse/embedding_sync.py +396 -0
- tooluniverse/enrichr_tool.py +266 -0
- tooluniverse/europe_pmc_tool.py +52 -0
- tooluniverse/execute_function.py +1775 -95
- tooluniverse/extended_hooks.py +444 -0
- tooluniverse/gene_ontology_tool.py +194 -0
- tooluniverse/graphql_tool.py +158 -36
- tooluniverse/gwas_tool.py +358 -0
- tooluniverse/hpa_tool.py +1645 -0
- tooluniverse/humanbase_tool.py +389 -0
- tooluniverse/logging_config.py +254 -0
- tooluniverse/mcp_client_tool.py +764 -0
- tooluniverse/mcp_integration.py +413 -0
- tooluniverse/mcp_tool_registry.py +925 -0
- tooluniverse/medlineplus_tool.py +337 -0
- tooluniverse/openalex_tool.py +228 -0
- tooluniverse/openfda_adv_tool.py +283 -0
- tooluniverse/openfda_tool.py +393 -160
- tooluniverse/output_hook.py +1122 -0
- tooluniverse/package_tool.py +195 -0
- tooluniverse/pubchem_tool.py +158 -0
- tooluniverse/pubtator_tool.py +168 -0
- tooluniverse/rcsb_pdb_tool.py +38 -0
- tooluniverse/reactome_tool.py +108 -0
- tooluniverse/remote/boltz/boltz_mcp_server.py +50 -0
- tooluniverse/remote/depmap_24q2/depmap_24q2_mcp_tool.py +442 -0
- tooluniverse/remote/expert_feedback/human_expert_mcp_tools.py +2013 -0
- tooluniverse/remote/expert_feedback/simple_test.py +23 -0
- tooluniverse/remote/expert_feedback/start_web_interface.py +188 -0
- tooluniverse/remote/expert_feedback/web_only_interface.py +0 -0
- tooluniverse/remote/expert_feedback_mcp/human_expert_mcp_server.py +1611 -0
- tooluniverse/remote/expert_feedback_mcp/simple_test.py +34 -0
- tooluniverse/remote/expert_feedback_mcp/start_web_interface.py +91 -0
- tooluniverse/remote/immune_compass/compass_tool.py +327 -0
- tooluniverse/remote/pinnacle/pinnacle_tool.py +328 -0
- tooluniverse/remote/transcriptformer/transcriptformer_tool.py +586 -0
- tooluniverse/remote/uspto_downloader/uspto_downloader_mcp_server.py +61 -0
- tooluniverse/remote/uspto_downloader/uspto_downloader_tool.py +120 -0
- tooluniverse/remote_tool.py +99 -0
- tooluniverse/restful_tool.py +53 -30
- tooluniverse/scripts/generate_tool_graph.py +408 -0
- tooluniverse/scripts/visualize_tool_graph.py +829 -0
- tooluniverse/semantic_scholar_tool.py +62 -0
- tooluniverse/smcp.py +2452 -0
- tooluniverse/smcp_server.py +975 -0
- tooluniverse/test/mcp_server_test.py +0 -0
- tooluniverse/test/test_admetai_tool.py +370 -0
- tooluniverse/test/test_agentic_tool.py +129 -0
- tooluniverse/test/test_alphafold_tool.py +71 -0
- tooluniverse/test/test_chem_tool.py +37 -0
- tooluniverse/test/test_compose_lieraturereview.py +63 -0
- tooluniverse/test/test_compose_tool.py +448 -0
- tooluniverse/test/test_dailymed.py +69 -0
- tooluniverse/test/test_dataset_tool.py +200 -0
- tooluniverse/test/test_disease_target_score.py +56 -0
- tooluniverse/test/test_drugbank_filter_examples.py +179 -0
- tooluniverse/test/test_efo.py +31 -0
- tooluniverse/test/test_enrichr_tool.py +21 -0
- tooluniverse/test/test_europe_pmc_tool.py +20 -0
- tooluniverse/test/test_fda_adv.py +95 -0
- tooluniverse/test/test_fda_drug_labeling.py +91 -0
- tooluniverse/test/test_gene_ontology_tools.py +66 -0
- tooluniverse/test/test_gwas_tool.py +139 -0
- tooluniverse/test/test_hpa.py +625 -0
- tooluniverse/test/test_humanbase_tool.py +20 -0
- tooluniverse/test/test_idmap_tools.py +61 -0
- tooluniverse/test/test_mcp_server.py +211 -0
- tooluniverse/test/test_mcp_tool.py +247 -0
- tooluniverse/test/test_medlineplus.py +220 -0
- tooluniverse/test/test_openalex_tool.py +32 -0
- tooluniverse/test/test_opentargets.py +28 -0
- tooluniverse/test/test_pubchem_tool.py +116 -0
- tooluniverse/test/test_pubtator_tool.py +37 -0
- tooluniverse/test/test_rcsb_pdb_tool.py +86 -0
- tooluniverse/test/test_reactome.py +54 -0
- tooluniverse/test/test_semantic_scholar_tool.py +24 -0
- tooluniverse/test/test_software_tools.py +147 -0
- tooluniverse/test/test_tool_description_optimizer.py +49 -0
- tooluniverse/test/test_tool_finder.py +26 -0
- tooluniverse/test/test_tool_finder_llm.py +252 -0
- tooluniverse/test/test_tools_find.py +195 -0
- tooluniverse/test/test_uniprot_tools.py +74 -0
- tooluniverse/test/test_uspto_tool.py +72 -0
- tooluniverse/test/test_xml_tool.py +113 -0
- tooluniverse/tool_finder_embedding.py +267 -0
- tooluniverse/tool_finder_keyword.py +693 -0
- tooluniverse/tool_finder_llm.py +699 -0
- tooluniverse/tool_graph_web_ui.py +955 -0
- tooluniverse/tool_registry.py +416 -0
- tooluniverse/uniprot_tool.py +155 -0
- tooluniverse/url_tool.py +253 -0
- tooluniverse/uspto_tool.py +240 -0
- tooluniverse/utils.py +369 -41
- tooluniverse/xml_tool.py +369 -0
- tooluniverse-1.0.0.dist-info/METADATA +377 -0
- tooluniverse-1.0.0.dist-info/RECORD +186 -0
- {tooluniverse-0.1.4.dist-info → tooluniverse-1.0.0.dist-info}/WHEEL +1 -1
- tooluniverse-1.0.0.dist-info/entry_points.txt +9 -0
- tooluniverse-0.1.4.dist-info/METADATA +0 -141
- tooluniverse-0.1.4.dist-info/RECORD +0 -18
- {tooluniverse-0.1.4.dist-info → tooluniverse-1.0.0.dist-info}/licenses/LICENSE +0 -0
- {tooluniverse-0.1.4.dist-info → tooluniverse-1.0.0.dist-info}/top_level.txt +0 -0
|
@@ -0,0 +1,560 @@
|
|
|
1
|
+
[
|
|
2
|
+
{
|
|
3
|
+
"type": "PackageTool",
|
|
4
|
+
"name": "get_numpy_info",
|
|
5
|
+
"description": "Get comprehensive information about NumPy - the fundamental package for scientific computing with Python",
|
|
6
|
+
"parameter": {
|
|
7
|
+
"type": "object",
|
|
8
|
+
"properties": {
|
|
9
|
+
"include_examples": {
|
|
10
|
+
"type": "boolean",
|
|
11
|
+
"description": "Whether to include usage examples and quick start guide",
|
|
12
|
+
"default": true
|
|
13
|
+
}
|
|
14
|
+
}
|
|
15
|
+
},
|
|
16
|
+
"package_name": "numpy",
|
|
17
|
+
"local_info": {
|
|
18
|
+
"name": "NumPy",
|
|
19
|
+
"description": "The fundamental package for scientific computing with Python. It provides a powerful N-dimensional array object, sophisticated (broadcasting) functions, tools for integrating C/C++ and Fortran code, useful linear algebra, Fourier transform, and random number capabilities.",
|
|
20
|
+
"category": "Scientific Computing",
|
|
21
|
+
"import_name": "numpy",
|
|
22
|
+
"popularity": 95,
|
|
23
|
+
"keywords": [
|
|
24
|
+
"arrays",
|
|
25
|
+
"numerical computing",
|
|
26
|
+
"linear algebra",
|
|
27
|
+
"mathematical functions",
|
|
28
|
+
"broadcasting"
|
|
29
|
+
],
|
|
30
|
+
"documentation": "https://numpy.org/doc/stable/",
|
|
31
|
+
"repository": "https://github.com/numpy/numpy",
|
|
32
|
+
"installation": {
|
|
33
|
+
"pip": "pip install numpy",
|
|
34
|
+
"conda": "conda install numpy"
|
|
35
|
+
},
|
|
36
|
+
"usage_example": "import numpy as np\n\n# Create arrays\narr = np.array([1, 2, 3, 4, 5])\nmatrix = np.array([[1, 2], [3, 4]])\n\n# Basic operations\nprint(arr.mean()) # Calculate mean\nprint(matrix.dot(matrix)) # Matrix multiplication",
|
|
37
|
+
"quick_start": [
|
|
38
|
+
"Install: pip install numpy",
|
|
39
|
+
"Import: import numpy as np",
|
|
40
|
+
"Create arrays: np.array([1, 2, 3])",
|
|
41
|
+
"Operations: arr.mean(), arr.sum(), np.dot()",
|
|
42
|
+
"Generate: np.zeros(), np.ones(), np.random.randn()"
|
|
43
|
+
]
|
|
44
|
+
}
|
|
45
|
+
},
|
|
46
|
+
{
|
|
47
|
+
"type": "PackageTool",
|
|
48
|
+
"name": "get_scipy_info",
|
|
49
|
+
"description": "Get comprehensive information about SciPy – fundamental algorithms for scientific computing",
|
|
50
|
+
"parameter": {
|
|
51
|
+
"type": "object",
|
|
52
|
+
"properties": {
|
|
53
|
+
"info_type": {
|
|
54
|
+
"type": "string",
|
|
55
|
+
"enum": [
|
|
56
|
+
"overview",
|
|
57
|
+
"installation",
|
|
58
|
+
"usage",
|
|
59
|
+
"documentation"
|
|
60
|
+
],
|
|
61
|
+
"description": "Type of information to retrieve about SciPy"
|
|
62
|
+
}
|
|
63
|
+
},
|
|
64
|
+
"required": [
|
|
65
|
+
"info_type"
|
|
66
|
+
]
|
|
67
|
+
},
|
|
68
|
+
"package_name": "scipy",
|
|
69
|
+
"local_info": {
|
|
70
|
+
"name": "SciPy",
|
|
71
|
+
"description": "Fundamental algorithms for scientific computing in Python. Built on NumPy, provides additional functionality for optimization, linear algebra, integration, interpolation, special functions, FFT, signal and image processing, and statistical methods.",
|
|
72
|
+
"category": "Scientific Computing",
|
|
73
|
+
"import_name": "scipy",
|
|
74
|
+
"popularity": 92,
|
|
75
|
+
"keywords": [
|
|
76
|
+
"scientific computing",
|
|
77
|
+
"optimization",
|
|
78
|
+
"signal processing",
|
|
79
|
+
"statistics",
|
|
80
|
+
"linear algebra"
|
|
81
|
+
],
|
|
82
|
+
"documentation": "https://docs.scipy.org/doc/scipy/",
|
|
83
|
+
"repository": "https://github.com/scipy/scipy",
|
|
84
|
+
"installation": {
|
|
85
|
+
"pip": "pip install scipy",
|
|
86
|
+
"conda": "conda install scipy"
|
|
87
|
+
},
|
|
88
|
+
"usage_example": "import scipy\nfrom scipy import optimize, linalg, stats\nimport numpy as np\n\n# Optimization\nresult = optimize.minimize(lambda x: x**2, x0=2)\nprint(f'Minimum: {result.x}')\n\n# Linear algebra\nA = np.array([[1, 2], [3, 4]])\neigenvals = linalg.eigvals(A)\nprint(f'Eigenvalues: {eigenvals}')\n\n# Statistics\ndata = np.random.normal(0, 1, 100)\nstatistic, p_value = stats.shapiro(data)\nprint(f'Shapiro test p-value: {p_value}')",
|
|
89
|
+
"quick_start": [
|
|
90
|
+
"Install: pip install scipy",
|
|
91
|
+
"Import submodules: from scipy import optimize, linalg",
|
|
92
|
+
"Optimize: scipy.optimize.minimize(func, x0)",
|
|
93
|
+
"Linear algebra: scipy.linalg.solve(A, b)",
|
|
94
|
+
"Use scipy.linalg for linear algebra operations",
|
|
95
|
+
"Explore scipy.stats for statistical functions"
|
|
96
|
+
]
|
|
97
|
+
}
|
|
98
|
+
},
|
|
99
|
+
{
|
|
100
|
+
"type": "PackageTool",
|
|
101
|
+
"name": "get_pandas_info",
|
|
102
|
+
"description": "Get comprehensive information about pandas - powerful data structures and data analysis tools for Python",
|
|
103
|
+
"parameter": {
|
|
104
|
+
"type": "object",
|
|
105
|
+
"properties": {
|
|
106
|
+
"include_examples": {
|
|
107
|
+
"type": "boolean",
|
|
108
|
+
"description": "Whether to include usage examples and quick start guide",
|
|
109
|
+
"default": true
|
|
110
|
+
}
|
|
111
|
+
}
|
|
112
|
+
},
|
|
113
|
+
"package_name": "pandas",
|
|
114
|
+
"local_info": {
|
|
115
|
+
"name": "pandas",
|
|
116
|
+
"description": "Powerful data structures and data analysis tools for Python. Provides fast, flexible, and expressive data structures designed to make working with structured and time series data both easy and intuitive.",
|
|
117
|
+
"category": "Data Analysis",
|
|
118
|
+
"import_name": "pandas",
|
|
119
|
+
"popularity": 92,
|
|
120
|
+
"keywords": [
|
|
121
|
+
"data analysis",
|
|
122
|
+
"dataframes",
|
|
123
|
+
"data manipulation",
|
|
124
|
+
"time series",
|
|
125
|
+
"CSV"
|
|
126
|
+
],
|
|
127
|
+
"documentation": "https://pandas.pydata.org/docs/",
|
|
128
|
+
"repository": "https://github.com/pandas-dev/pandas",
|
|
129
|
+
"installation": {
|
|
130
|
+
"pip": "pip install pandas",
|
|
131
|
+
"conda": "conda install pandas"
|
|
132
|
+
},
|
|
133
|
+
"usage_example": "import pandas as pd\n\n# Create a DataFrame\ndf = pd.DataFrame({\n 'name': ['Alice', 'Bob', 'Charlie'],\n 'age': [25, 30, 35],\n 'city': ['New York', 'London', 'Tokyo']\n})\n\n# Basic operations\nprint(df.head()) # Display first 5 rows\nprint(df.describe()) # Summary statistics\nfiltered = df[df['age'] > 25] # Filter data",
|
|
134
|
+
"quick_start": [
|
|
135
|
+
"Install: pip install pandas",
|
|
136
|
+
"Import: import pandas as pd",
|
|
137
|
+
"Create: pd.DataFrame(data), pd.Series(data)",
|
|
138
|
+
"Read files: pd.read_csv(), pd.read_excel()",
|
|
139
|
+
"Analyze: df.describe(), df.groupby(), df.merge()"
|
|
140
|
+
]
|
|
141
|
+
}
|
|
142
|
+
},
|
|
143
|
+
{
|
|
144
|
+
"type": "PackageTool",
|
|
145
|
+
"name": "get_h5py_info",
|
|
146
|
+
"description": "Get comprehensive information about h5py – HDF5 for Python",
|
|
147
|
+
"parameter": {
|
|
148
|
+
"type": "object",
|
|
149
|
+
"properties": {
|
|
150
|
+
"include_examples": {
|
|
151
|
+
"type": "boolean",
|
|
152
|
+
"description": "Whether to include usage examples and quick start guide",
|
|
153
|
+
"default": true
|
|
154
|
+
}
|
|
155
|
+
}
|
|
156
|
+
},
|
|
157
|
+
"package_name": "h5py",
|
|
158
|
+
"local_info": {
|
|
159
|
+
"name": "h5py",
|
|
160
|
+
"description": "Python interface to the HDF5 binary data format. Provides a Pythonic interface to HDF5 for storing and retrieving large datasets efficiently.",
|
|
161
|
+
"category": "Data Storage",
|
|
162
|
+
"import_name": "h5py",
|
|
163
|
+
"popularity": 80,
|
|
164
|
+
"keywords": [
|
|
165
|
+
"HDF5",
|
|
166
|
+
"binary data",
|
|
167
|
+
"large datasets",
|
|
168
|
+
"hierarchical data",
|
|
169
|
+
"scientific data"
|
|
170
|
+
],
|
|
171
|
+
"documentation": "https://docs.h5py.org/",
|
|
172
|
+
"repository": "https://github.com/h5py/h5py",
|
|
173
|
+
"installation": {
|
|
174
|
+
"pip": "pip install h5py",
|
|
175
|
+
"conda": "conda install h5py"
|
|
176
|
+
},
|
|
177
|
+
"usage_example": "import h5py\nimport numpy as np\n\n# Create HDF5 file and write data\nwith h5py.File('data.h5', 'w') as f:\n # Create dataset\n data = np.random.randn(1000, 100)\n f.create_dataset('my_data', data=data)\n \n # Add attributes\n f.attrs['description'] = 'Random data'\n f['my_data'].attrs['units'] = 'meters'\n\n# Read data back\nwith h5py.File('data.h5', 'r') as f:\n loaded_data = f['my_data'][:]\n print(f'Data shape: {loaded_data.shape}')\n print(f'Description: {f.attrs[\"description\"]}')",
|
|
178
|
+
"quick_start": [
|
|
179
|
+
"Install: pip install h5py",
|
|
180
|
+
"Import: import h5py",
|
|
181
|
+
"Create file: with h5py.File('data.h5', 'w') as f:",
|
|
182
|
+
"Write: f.create_dataset('name', data=array)",
|
|
183
|
+
"Read: with h5py.File('data.h5', 'r') as f: data = f['name'][:]"
|
|
184
|
+
]
|
|
185
|
+
}
|
|
186
|
+
},
|
|
187
|
+
{
|
|
188
|
+
"type": "PackageTool",
|
|
189
|
+
"name": "get_tqdm_info",
|
|
190
|
+
"description": "Get comprehensive information about tqdm – fast progress bars for Python",
|
|
191
|
+
"parameter": {
|
|
192
|
+
"type": "object",
|
|
193
|
+
"properties": {
|
|
194
|
+
"include_examples": {
|
|
195
|
+
"type": "boolean",
|
|
196
|
+
"description": "Whether to include usage examples and quick start guide",
|
|
197
|
+
"default": true
|
|
198
|
+
}
|
|
199
|
+
}
|
|
200
|
+
},
|
|
201
|
+
"package_name": "tqdm",
|
|
202
|
+
"local_info": {
|
|
203
|
+
"name": "tqdm",
|
|
204
|
+
"description": "Fast, extensible progress bars for Python. Instantly makes your loops show a smart progress meter with very minimal overhead.",
|
|
205
|
+
"category": "Progress Monitoring",
|
|
206
|
+
"import_name": "tqdm",
|
|
207
|
+
"popularity": 88,
|
|
208
|
+
"keywords": [
|
|
209
|
+
"progress bar",
|
|
210
|
+
"progress monitoring",
|
|
211
|
+
"loops",
|
|
212
|
+
"iteration tracking",
|
|
213
|
+
"CLI"
|
|
214
|
+
],
|
|
215
|
+
"documentation": "https://tqdm.github.io/",
|
|
216
|
+
"repository": "https://github.com/tqdm/tqdm",
|
|
217
|
+
"installation": {
|
|
218
|
+
"pip": "pip install tqdm",
|
|
219
|
+
"conda": "conda install tqdm"
|
|
220
|
+
},
|
|
221
|
+
"usage_example": "from tqdm import tqdm, trange\nimport time\n\n# Basic usage with loops\nfor i in tqdm(range(100)):\n time.sleep(0.01) # Simulate work\n\n# With description\nfor i in tqdm(range(50), desc='Processing'):\n time.sleep(0.02)\n\n# Manual control\npbar = tqdm(total=100)\nfor i in range(100):\n # Do work\n time.sleep(0.01)\n pbar.update(1)\npbar.close()",
|
|
222
|
+
"quick_start": [
|
|
223
|
+
"Install: pip install tqdm",
|
|
224
|
+
"Basic: for i in tqdm(range(100)):",
|
|
225
|
+
"Description: tqdm(iterable, desc='Processing')",
|
|
226
|
+
"Manual: pbar = tqdm(total=100)",
|
|
227
|
+
"Manual control: pbar.update(increment)"
|
|
228
|
+
]
|
|
229
|
+
}
|
|
230
|
+
},
|
|
231
|
+
{
|
|
232
|
+
"type": "PackageTool",
|
|
233
|
+
"name": "get_flowutils_info",
|
|
234
|
+
"description": "Get comprehensive information about FlowUtils – flow cytometry utilities and algorithms",
|
|
235
|
+
"parameter": {
|
|
236
|
+
"type": "object",
|
|
237
|
+
"properties": {
|
|
238
|
+
"info_type": {
|
|
239
|
+
"type": "string",
|
|
240
|
+
"enum": [
|
|
241
|
+
"overview",
|
|
242
|
+
"installation",
|
|
243
|
+
"usage",
|
|
244
|
+
"documentation"
|
|
245
|
+
],
|
|
246
|
+
"description": "Type of information to retrieve about FlowUtils"
|
|
247
|
+
}
|
|
248
|
+
},
|
|
249
|
+
"required": [
|
|
250
|
+
"info_type"
|
|
251
|
+
]
|
|
252
|
+
},
|
|
253
|
+
"package_name": "FlowUtils",
|
|
254
|
+
"local_info": {
|
|
255
|
+
"name": "FlowUtils",
|
|
256
|
+
"description": "Collection of utilities and algorithms for flow cytometry data analysis. Provides implementations of compensation, transformation, and gating algorithms commonly used in flow cytometry workflows.",
|
|
257
|
+
"category": "Flow Cytometry Utilities",
|
|
258
|
+
"import_name": "flowutils",
|
|
259
|
+
"popularity": 55,
|
|
260
|
+
"keywords": [
|
|
261
|
+
"flow cytometry",
|
|
262
|
+
"compensation",
|
|
263
|
+
"transformation",
|
|
264
|
+
"gating algorithms",
|
|
265
|
+
"logicle"
|
|
266
|
+
],
|
|
267
|
+
"documentation": "https://github.com/whitews/FlowUtils",
|
|
268
|
+
"repository": "https://github.com/whitews/FlowUtils",
|
|
269
|
+
"installation": {
|
|
270
|
+
"pip": "pip install FlowUtils",
|
|
271
|
+
"conda": "conda install -c conda-forge flowutils"
|
|
272
|
+
},
|
|
273
|
+
"usage_example": "import flowutils\nimport numpy as np\nimport matplotlib.pyplot as plt\n\n# Example data (typically would come from FCS file)\nevents = np.random.lognormal(3, 1, (10000, 4)) # Mock flow data\n\n# Apply logicle transformation\nfrom flowutils import transforms\n\nlogicle_transform = transforms.LogicleTransform(\n t=262144, # Top of scale\n w=0.5, # Width of linearization\n m=4.5, # Number of decades\n a=0 # Additional decades of negative data\n)\n\n# Transform one channel\ntransformed_channel = logicle_transform.apply(events[:, 0])\n\n# Plot comparison\nfig, (ax1, ax2) = plt.subplots(1, 2, figsize=(12, 5))\n\nax1.hist(events[:, 0], bins=50, alpha=0.7)\nax1.set_title('Original Data')\nax1.set_xlabel('Raw Values')\nax1.set_ylabel('Frequency')\nax1.set_yscale('log')\n\nax2.hist(transformed_channel, bins=50, alpha=0.7)\nax2.set_title('Logicle Transformed')\nax2.set_xlabel('Transformed Values')\nax2.set_ylabel('Frequency')\n\nplt.tight_layout()\nplt.show()\n\nprint(f'Original range: {events[:, 0].min():.1f} - {events[:, 0].max():.1f}')\nprint(f'Transformed range: {transformed_channel.min():.1f} - {transformed_channel.max():.1f}')",
|
|
274
|
+
"quick_start": [
|
|
275
|
+
"Install: pip install FlowUtils",
|
|
276
|
+
"Import transforms: from flowutils import transforms",
|
|
277
|
+
"Create transform: LogicleTransform(t, w, m, a)",
|
|
278
|
+
"Apply to data: transform.apply(data)",
|
|
279
|
+
"Use with compensation matrices",
|
|
280
|
+
"Integrate with other flow cytometry tools"
|
|
281
|
+
]
|
|
282
|
+
}
|
|
283
|
+
},
|
|
284
|
+
{
|
|
285
|
+
"type": "PackageTool",
|
|
286
|
+
"name": "get_cooler_info",
|
|
287
|
+
"description": "Get comprehensive information about Cooler – sparse Hi-C contact matrix storage",
|
|
288
|
+
"parameter": {
|
|
289
|
+
"type": "object",
|
|
290
|
+
"properties": {
|
|
291
|
+
"include_examples": {
|
|
292
|
+
"type": "boolean",
|
|
293
|
+
"description": "Whether to include usage examples and quick start guide",
|
|
294
|
+
"default": true
|
|
295
|
+
}
|
|
296
|
+
}
|
|
297
|
+
},
|
|
298
|
+
"package_name": "cooler",
|
|
299
|
+
"local_info": {
|
|
300
|
+
"name": "Cooler",
|
|
301
|
+
"description": "Support for flexible, efficient storage and manipulation of genomic interaction data. Implements sparse Hi-C contact matrix format with compression and indexing.",
|
|
302
|
+
"category": "3D Genomics",
|
|
303
|
+
"import_name": "cooler",
|
|
304
|
+
"popularity": 70,
|
|
305
|
+
"keywords": [
|
|
306
|
+
"Hi-C",
|
|
307
|
+
"contact matrices",
|
|
308
|
+
"3D genomics",
|
|
309
|
+
"chromosome conformation",
|
|
310
|
+
"genomic interactions"
|
|
311
|
+
],
|
|
312
|
+
"documentation": "https://cooler.readthedocs.io/",
|
|
313
|
+
"repository": "https://github.com/open2c/cooler",
|
|
314
|
+
"installation": {
|
|
315
|
+
"pip": "pip install cooler",
|
|
316
|
+
"conda": "conda install -c conda-forge cooler"
|
|
317
|
+
},
|
|
318
|
+
"usage_example": "import cooler\nimport numpy as np\n\n# Load cooler file\nc = cooler.Cooler('example.cool')\n\n# Basic information\nprint(f'Resolution: {c.binsize}')\nprint(f'Chromosomes: {list(c.chromnames)}')\nprint(f'Number of bins: {c.info[\"nbins\"]}')\n\n# Extract contact matrix for chromosome\nmatrix = c.matrix(balance=True).fetch('chr1')\nprint(f'Chr1 matrix shape: {matrix.shape}')\n\n# Get specific genomic region\nregion_matrix = c.matrix(balance=True).fetch('chr1:1000000-2000000')\nprint(f'Region matrix shape: {region_matrix.shape}')",
|
|
319
|
+
"quick_start": [
|
|
320
|
+
"1. Install Cooler: pip install cooler",
|
|
321
|
+
"2. Import: import cooler",
|
|
322
|
+
"3. Load: c = cooler.Cooler('file.cool')",
|
|
323
|
+
"4. Extract: matrix = c.matrix().fetch('chr1')",
|
|
324
|
+
"5. Analyze: matrix statistics, visualize"
|
|
325
|
+
]
|
|
326
|
+
}
|
|
327
|
+
},
|
|
328
|
+
{
|
|
329
|
+
"type": "PackageTool",
|
|
330
|
+
"name": "get_tiledb_info",
|
|
331
|
+
"description": "Get comprehensive information about TileDB – modern database for array data",
|
|
332
|
+
"parameter": {
|
|
333
|
+
"type": "object",
|
|
334
|
+
"properties": {
|
|
335
|
+
"info_type": {
|
|
336
|
+
"type": "string",
|
|
337
|
+
"enum": [
|
|
338
|
+
"overview",
|
|
339
|
+
"installation",
|
|
340
|
+
"usage",
|
|
341
|
+
"documentation"
|
|
342
|
+
],
|
|
343
|
+
"description": "Type of information to retrieve about TileDB"
|
|
344
|
+
}
|
|
345
|
+
},
|
|
346
|
+
"required": [
|
|
347
|
+
"info_type"
|
|
348
|
+
]
|
|
349
|
+
},
|
|
350
|
+
"package_name": "tiledb",
|
|
351
|
+
"local_info": {
|
|
352
|
+
"name": "TileDB",
|
|
353
|
+
"description": "Modern database for array data providing efficient storage and retrieval of multi-dimensional arrays. Optimized for genomics, geospatial, and time-series data with cloud-native architecture.",
|
|
354
|
+
"category": "Array Database / Big Data",
|
|
355
|
+
"import_name": "tiledb",
|
|
356
|
+
"popularity": 65,
|
|
357
|
+
"keywords": [
|
|
358
|
+
"array database",
|
|
359
|
+
"multi-dimensional arrays",
|
|
360
|
+
"genomics",
|
|
361
|
+
"cloud storage",
|
|
362
|
+
"sparse arrays"
|
|
363
|
+
],
|
|
364
|
+
"documentation": "https://docs.tiledb.com/",
|
|
365
|
+
"repository": "https://github.com/TileDB-Inc/TileDB-Py",
|
|
366
|
+
"installation": {
|
|
367
|
+
"pip": "pip install tiledb",
|
|
368
|
+
"conda": "conda install -c conda-forge tiledb-py"
|
|
369
|
+
},
|
|
370
|
+
"usage_example": "import tiledb\nimport numpy as np\nimport tempfile\nimport os\n\n# Create temporary directory for demo\ntemp_dir = tempfile.mkdtemp()\narray_uri = os.path.join(temp_dir, 'demo_array')\n\nprint(f'Creating TileDB array at: {array_uri}')\n\n# Create array schema\ndim1 = tiledb.Dim(name='rows', domain=(0, 99), tile=10, dtype=np.int32)\ndim2 = tiledb.Dim(name='cols', domain=(0, 99), tile=10, dtype=np.int32)\ndomain = tiledb.Domain(dim1, dim2)\n\nattr = tiledb.Attr(name='values', dtype=np.float64)\nschema = tiledb.ArraySchema(domain=domain, sparse=False, attrs=[attr])\n\n# Create the array\ntiledb.Array.create(array_uri, schema)\n\n# Write data\ndata = np.random.randn(100, 100)\nwith tiledb.open(array_uri, 'w') as A:\n A[:] = data\n\nprint(f'Written array with shape: {data.shape}')\n\n# Read data\nwith tiledb.open(array_uri, 'r') as A:\n # Read entire array\n result = A[:]\n print(f'Read array with shape: {result.shape}')\n \n # Read slice\n slice_result = A[10:20, 30:40]\n print(f'Read slice with shape: {slice_result.shape}')\n \n # Array metadata\n print(f'Array schema: {A.schema}')\n print(f'Array URI: {A.uri}')\n\n# Example with sparse array\nsparse_uri = os.path.join(temp_dir, 'sparse_array')\n\n# Create sparse array schema\nsparse_schema = tiledb.ArraySchema(\n domain=domain,\n sparse=True, # Sparse array\n attrs=[attr]\n)\n\ntiledb.Array.create(sparse_uri, sparse_schema)\n\n# Write sparse data\nrows = np.array([10, 20, 30, 40, 50])\ncols = np.array([15, 25, 35, 45, 55])\nvalues = np.array([1.1, 2.2, 3.3, 4.4, 5.5])\n\nwith tiledb.open(sparse_uri, 'w') as A:\n A[rows, cols] = values\n\nprint(f'\\nWritten sparse array with {len(values)} non-zero elements')\n\n# Read sparse data\nwith tiledb.open(sparse_uri, 'r') as A:\n result = A[:]\n print(f'Sparse array coordinates shape: {result[\"rows\"].shape}')\n print(f'Sparse array values: {result[\"values\"]}')\n\n# Cleanup\nimport shutil\nshutil.rmtree(temp_dir)\nprint('\\nDemo complete - temporary files cleaned up')",
|
|
371
|
+
"quick_start": [
|
|
372
|
+
"Install: pip install tiledb",
|
|
373
|
+
"Create schema: tiledb.ArraySchema(domain, attrs)",
|
|
374
|
+
"Create array: tiledb.Array.create(uri, schema)",
|
|
375
|
+
"Write data: with tiledb.open(uri, 'w') as A: A[:] = data",
|
|
376
|
+
"Read data: with tiledb.open(uri, 'r') as A: result = A[:]",
|
|
377
|
+
"Supports both dense and sparse arrays"
|
|
378
|
+
]
|
|
379
|
+
}
|
|
380
|
+
},
|
|
381
|
+
{
|
|
382
|
+
"type": "PackageTool",
|
|
383
|
+
"name": "get_sympy_info",
|
|
384
|
+
"description": "Get comprehensive information about SymPy – symbolic mathematics library",
|
|
385
|
+
"parameter": {
|
|
386
|
+
"type": "object",
|
|
387
|
+
"properties": {
|
|
388
|
+
"info_type": {
|
|
389
|
+
"type": "string",
|
|
390
|
+
"enum": [
|
|
391
|
+
"overview",
|
|
392
|
+
"installation",
|
|
393
|
+
"usage",
|
|
394
|
+
"documentation"
|
|
395
|
+
],
|
|
396
|
+
"description": "Type of information to retrieve about SymPy"
|
|
397
|
+
}
|
|
398
|
+
},
|
|
399
|
+
"required": [
|
|
400
|
+
"info_type"
|
|
401
|
+
]
|
|
402
|
+
},
|
|
403
|
+
"package_name": "sympy",
|
|
404
|
+
"local_info": {
|
|
405
|
+
"name": "SymPy",
|
|
406
|
+
"description": "Python library for symbolic mathematics. It aims to become a full-featured computer algebra system while keeping the code as simple as possible to be comprehensible and easily extensible.",
|
|
407
|
+
"category": "Mathematical Computing / Symbolic Math",
|
|
408
|
+
"import_name": "sympy",
|
|
409
|
+
"popularity": 88,
|
|
410
|
+
"keywords": [
|
|
411
|
+
"symbolic math",
|
|
412
|
+
"algebra",
|
|
413
|
+
"calculus",
|
|
414
|
+
"equations",
|
|
415
|
+
"mathematical expressions"
|
|
416
|
+
],
|
|
417
|
+
"documentation": "https://docs.sympy.org/latest/",
|
|
418
|
+
"repository": "https://github.com/sympy/sympy",
|
|
419
|
+
"installation": {
|
|
420
|
+
"pip": "pip install sympy",
|
|
421
|
+
"conda": "conda install sympy"
|
|
422
|
+
},
|
|
423
|
+
"usage_example": "import sympy as sp\nfrom sympy import symbols, diff, integrate, solve, expand, factor\n\n# Define symbols\nx, y, z = symbols('x y z')\na, b, c = symbols('a b c')\n\nprint('SymPy - Symbolic Mathematics in Python')\nprint('=' * 40)\n\n# Basic symbolic operations\nprint('\\n=== Basic Symbolic Operations ===')\nexpr = x**2 + 2*x + 1\nprint(f'Expression: {expr}')\nprint(f'Expanded: {expand(expr)}')\nprint(f'Factored: {factor(expr)}')\nprint(f'Simplified: {sp.simplify(expr)}')\n\n# Calculus operations\nprint('\\n=== Calculus ===')\nf = x**3 + 2*x**2 + x + 1\nprint(f'Function: f(x) = {f}')\nprint(f'Derivative: f\\'(x) = {diff(f, x)}')\nprint(f'Second derivative: f\\'\\'(x) = {diff(f, x, 2)}')\nprint(f'Integral: ∫f(x)dx = {integrate(f, x)}')\nprint(f'Definite integral [0,1]: {integrate(f, (x, 0, 1))}')\n\n# Equation solving\nprint('\\n=== Equation Solving ===')\neq1 = sp.Eq(x**2 - 4, 0)\neq2 = sp.Eq(x**2 + y**2, 1)\nprint(f'Solve x² - 4 = 0: {solve(eq1, x)}')\nprint(f'Solve x² + y² = 1 for y: {solve(eq2, y)}')\n\n# System of equations\nsystem = [x + y - 2, 2*x - y + 1]\nsolution = solve(system, [x, y])\nprint(f'System solution: {solution}')\n\n# Matrix operations\nprint('\\n=== Matrix Operations ===')\nM = sp.Matrix([[1, 2], [3, 4]])\nprint(f'Matrix M:\\n{M}')\nprint(f'Determinant: {M.det()}')\nprint(f'Inverse:\\n{M.inv()}')\nprint(f'Eigenvalues: {M.eigenvals()}')\n\n# Series and limits\nprint('\\n=== Series and Limits ===')\nexpr_limit = sp.sin(x)/x\nprint(f'lim(sin(x)/x, x->0) = {sp.limit(expr_limit, x, 0)}')\nseries_expr = sp.exp(x)\nprint(f'Taylor series of e^x around x=0:')\nprint(sp.series(series_expr, x, 0, 6))\n\n# Special functions\nprint('\\n=== Special Functions ===')\nprint(f'Factorial of 5: {sp.factorial(5)}')\nprint(f'Gamma function Γ(4): {sp.gamma(4)}')\nprint(f'Beta function B(2,3): {sp.beta(2, 3)}')\nprint(f'Binomial coefficient C(10,3): {sp.binomial(10, 3)}')\n\n# Number theory\nprint('\\n=== Number Theory ===')\nprint(f'Prime factorization of 60: {sp.factorint(60)}')\nprint(f'Is 17 prime? {sp.isprime(17)}')\nprint(f'Next prime after 17: {sp.nextprime(17)}')\nprint(f'GCD of 48 and 18: {sp.gcd(48, 18)}')\n\n# Symbolic plotting preparation\nprint('\\n=== Symbolic Function Analysis ===')\nf_analysis = x**3 - 6*x**2 + 9*x + 1\nprint(f'Function: f(x) = {f_analysis}')\nprint(f'Critical points (f\\'(x) = 0): {solve(diff(f_analysis, x), x)}')\nprint(f'Inflection points (f\\'\\'(x) = 0): {solve(diff(f_analysis, x, 2), x)}')\n\n# LaTeX representation\nprint('\\n=== LaTeX Output ===')\ncomplex_expr = sp.sqrt(x**2 + y**2) + sp.sin(x*y)\nprint(f'Expression: {complex_expr}')\nprint(f'LaTeX: {sp.latex(complex_expr)}')\n\nprint('\\nSymPy provides:')\nprint('• Symbolic computation and algebra')\nprint('• Calculus: derivatives, integrals, limits')\nprint('• Equation solving and simplification')\nprint('• Matrix operations and linear algebra')\nprint('• Number theory and combinatorics')\nprint('• Special functions and series')\nprint('• LaTeX output for mathematical expressions')\nprint('• Integration with NumPy and matplotlib')",
|
|
424
|
+
"quick_start": [
|
|
425
|
+
"Install: pip install sympy",
|
|
426
|
+
"Import: import sympy as sp",
|
|
427
|
+
"Symbols: x, y = sp.symbols('x y')",
|
|
428
|
+
"Operations: diff(), integrate(), solve(), simplify()",
|
|
429
|
+
"Equations: sp.Eq() and solve()",
|
|
430
|
+
"Use for symbolic math and equation solving"
|
|
431
|
+
]
|
|
432
|
+
}
|
|
433
|
+
},
|
|
434
|
+
{
|
|
435
|
+
"type": "PackageTool",
|
|
436
|
+
"name": "get_optlang_info",
|
|
437
|
+
"description": "Get comprehensive information about optlang – optimization language for mathematical programming",
|
|
438
|
+
"parameter": {
|
|
439
|
+
"type": "object",
|
|
440
|
+
"properties": {
|
|
441
|
+
"info_type": {
|
|
442
|
+
"type": "string",
|
|
443
|
+
"enum": [
|
|
444
|
+
"overview",
|
|
445
|
+
"installation",
|
|
446
|
+
"usage",
|
|
447
|
+
"documentation"
|
|
448
|
+
],
|
|
449
|
+
"description": "Type of information to retrieve about optlang"
|
|
450
|
+
}
|
|
451
|
+
},
|
|
452
|
+
"required": [
|
|
453
|
+
"info_type"
|
|
454
|
+
]
|
|
455
|
+
},
|
|
456
|
+
"package_name": "optlang",
|
|
457
|
+
"local_info": {
|
|
458
|
+
"name": "optlang",
|
|
459
|
+
"description": "Sympy-based optimization language for mathematical programming. Provides common interface to multiple optimization solvers (GLPK, CPLEX, Gurobi) with symbolic optimization problem formulation.",
|
|
460
|
+
"category": "Mathematical Optimization",
|
|
461
|
+
"import_name": "optlang",
|
|
462
|
+
"popularity": 60,
|
|
463
|
+
"keywords": [
|
|
464
|
+
"linear programming",
|
|
465
|
+
"optimization",
|
|
466
|
+
"mathematical modeling",
|
|
467
|
+
"GLPK",
|
|
468
|
+
"CPLEX",
|
|
469
|
+
"symbolic"
|
|
470
|
+
],
|
|
471
|
+
"documentation": "https://optlang.readthedocs.io/",
|
|
472
|
+
"repository": "https://github.com/opencobra/optlang",
|
|
473
|
+
"installation": {
|
|
474
|
+
"pip": "pip install optlang",
|
|
475
|
+
"conda": "conda install -c conda-forge optlang"
|
|
476
|
+
},
|
|
477
|
+
"usage_example": "import optlang\nfrom optlang import Model, Variable, Constraint, Objective\n\n# Define variables\nx1 = Variable('x1', lb=0) # Lower bound 0\nx2 = Variable('x2', lb=0)\nx3 = Variable('x3', lb=0)\n\nprint(f'Created variables: {x1.name}, {x2.name}, {x3.name}')\n\n# Define constraints\nc1 = Constraint(x1 + x2 + x3, lb=1, ub=1, name='constraint1') # x1 + x2 + x3 = 1\nc2 = Constraint(x1 + 2*x2 + 3*x3, ub=3, name='constraint2') # x1 + 2*x2 + 3*x3 <= 3\nc3 = Constraint(2*x1 + x2, lb=1, name='constraint3') # 2*x1 + x2 >= 1\n\n# Define objective function (maximize)\nobjective = Objective(x1 + 2*x2 + 3*x3, direction='max')\n\n# Create model\nmodel = Model(name='example_model')\nmodel.add([x1, x2, x3]) # Add variables\nmodel.add([c1, c2, c3]) # Add constraints\nmodel.objective = objective\n\nprint(f'Model: {model.name}')\nprint(f'Variables: {len(model.variables)}')\nprint(f'Constraints: {len(model.constraints)}')\nprint(f'Objective: {model.objective}')\n\n# Solve optimization problem\nstatus = model.optimize()\n\nprint(f'\\nOptimization status: {status}')\nif status == optlang.interface.OPTIMAL:\n print(f'Optimal value: {model.objective.value:.4f}')\n print('Variable values:')\n for var in model.variables:\n print(f' {var.name} = {var.primal:.4f}')\nelse:\n print('Optimization failed or infeasible')\n\n# Access dual values (shadow prices)\nprint('\\nConstraint dual values:')\nfor cons in model.constraints:\n if hasattr(cons, 'dual'):\n print(f' {cons.name}: {cons.dual:.4f}')",
|
|
478
|
+
"quick_start": [
|
|
479
|
+
"Install: pip install optlang",
|
|
480
|
+
"Create variables: Variable('x', lb=0, ub=10)",
|
|
481
|
+
"Add constraints: Constraint(expression, lb, ub)",
|
|
482
|
+
"Set objective: Objective(expression, direction='max')",
|
|
483
|
+
"Build model: model.add([vars, constraints])",
|
|
484
|
+
"Solve: model.optimize()"
|
|
485
|
+
]
|
|
486
|
+
}
|
|
487
|
+
},
|
|
488
|
+
{
|
|
489
|
+
"type": "PackageTool",
|
|
490
|
+
"name": "get_dask_info",
|
|
491
|
+
"description": "Get information about the dask package. Parallel computing with task scheduling",
|
|
492
|
+
"package_name": "dask",
|
|
493
|
+
"parameter": {
|
|
494
|
+
"type": "object",
|
|
495
|
+
"properties": {},
|
|
496
|
+
"required": []
|
|
497
|
+
},
|
|
498
|
+
"required": []
|
|
499
|
+
},
|
|
500
|
+
{
|
|
501
|
+
"type": "PackageTool",
|
|
502
|
+
"name": "get_zarr_info",
|
|
503
|
+
"description": "Get information about the zarr package. Chunked, compressed, N-dimensional arrays",
|
|
504
|
+
"package_name": "zarr",
|
|
505
|
+
"parameter": {
|
|
506
|
+
"type": "object",
|
|
507
|
+
"properties": {},
|
|
508
|
+
"required": []
|
|
509
|
+
},
|
|
510
|
+
"required": []
|
|
511
|
+
},
|
|
512
|
+
{
|
|
513
|
+
"type": "PackageTool",
|
|
514
|
+
"name": "get_xarray_info",
|
|
515
|
+
"description": "Get information about the xarray package. N-D labeled arrays and datasets in Python",
|
|
516
|
+
"package_name": "xarray",
|
|
517
|
+
"parameter": {
|
|
518
|
+
"type": "object",
|
|
519
|
+
"properties": {},
|
|
520
|
+
"required": []
|
|
521
|
+
},
|
|
522
|
+
"required": []
|
|
523
|
+
},
|
|
524
|
+
{
|
|
525
|
+
"type": "PackageTool",
|
|
526
|
+
"name": "get_cupy_info",
|
|
527
|
+
"description": "Get information about the cupy package. NumPy-compatible array library accelerated with CUDA",
|
|
528
|
+
"package_name": "cupy",
|
|
529
|
+
"parameter": {
|
|
530
|
+
"type": "object",
|
|
531
|
+
"properties": {},
|
|
532
|
+
"required": []
|
|
533
|
+
},
|
|
534
|
+
"required": []
|
|
535
|
+
},
|
|
536
|
+
{
|
|
537
|
+
"type": "PackageTool",
|
|
538
|
+
"name": "get_joblib_info",
|
|
539
|
+
"description": "Get information about the joblib package. Lightweight pipelining with Python functions",
|
|
540
|
+
"package_name": "joblib",
|
|
541
|
+
"parameter": {
|
|
542
|
+
"type": "object",
|
|
543
|
+
"properties": {},
|
|
544
|
+
"required": []
|
|
545
|
+
},
|
|
546
|
+
"required": []
|
|
547
|
+
},
|
|
548
|
+
{
|
|
549
|
+
"type": "PackageTool",
|
|
550
|
+
"name": "get_patsy_info",
|
|
551
|
+
"description": "Get information about the patsy package. Python library for describing statistical models",
|
|
552
|
+
"package_name": "patsy",
|
|
553
|
+
"parameter": {
|
|
554
|
+
"type": "object",
|
|
555
|
+
"properties": {},
|
|
556
|
+
"required": []
|
|
557
|
+
},
|
|
558
|
+
"required": []
|
|
559
|
+
}
|
|
560
|
+
]
|