tomwer 1.2.0a3__py3-none-any.whl → 1.2.0a4__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- orangecontrib/tomwer/widgets/reconstruction/NabuHelicalPrepareWeightsDoubleOW.py +169 -169
- tomwer/app/imagekeyeditor.py +1 -0
- tomwer/app/imagekeyupgrader.py +2 -0
- tomwer/app/nxtomoeditor.py +2 -0
- tomwer/app/zstitching.py +1 -0
- tomwer/resources/gui/icons/esrf_1.svg +307 -0
- tomwer/resources/gui/icons/triangle.svg +80 -0
- tomwer/version.py +1 -1
- {tomwer-1.2.0a3.dist-info → tomwer-1.2.0a4.dist-info}/METADATA +1 -1
- {tomwer-1.2.0a3.dist-info → tomwer-1.2.0a4.dist-info}/RECORD +16 -21
- tomwer/third_party/__init__.py +0 -0
- tomwer/third_party/nabu/__init__.py +0 -0
- tomwer/third_party/nabu/preproc/__init__.py +0 -0
- tomwer/third_party/nabu/preproc/phase.py +0 -387
- tomwer/third_party/nabu/utils.py +0 -201
- tomwer/third_party/tango/__init__.py +0 -0
- tomwer/third_party/tango/device.py +0 -15
- /tomwer-1.2.0a3-py3.11-nspkg.pth → /tomwer-1.2.0a4-py3.11-nspkg.pth +0 -0
- {tomwer-1.2.0a3.dist-info → tomwer-1.2.0a4.dist-info}/LICENSE +0 -0
- {tomwer-1.2.0a3.dist-info → tomwer-1.2.0a4.dist-info}/WHEEL +0 -0
- {tomwer-1.2.0a3.dist-info → tomwer-1.2.0a4.dist-info}/entry_points.txt +0 -0
- {tomwer-1.2.0a3.dist-info → tomwer-1.2.0a4.dist-info}/namespace_packages.txt +0 -0
- {tomwer-1.2.0a3.dist-info → tomwer-1.2.0a4.dist-info}/top_level.txt +0 -0
@@ -1,387 +0,0 @@
|
|
1
|
-
#!/usr/bin/env python
|
2
|
-
# -*- coding: utf-8 -*-
|
3
|
-
|
4
|
-
import numpy as np
|
5
|
-
from math import pi
|
6
|
-
from bisect import bisect
|
7
|
-
from ..utils import generate_powers
|
8
|
-
from silx.utils.enum import Enum as _Enum
|
9
|
-
|
10
|
-
|
11
|
-
def lmicron_to_db(Lmicron, energy, distance):
|
12
|
-
"""
|
13
|
-
Utility to convert the "Lmicron" parameter of PyHST
|
14
|
-
to a value of delta/beta.
|
15
|
-
|
16
|
-
Parameters
|
17
|
-
----------
|
18
|
-
Lmicron: float
|
19
|
-
Length in microns, values of the parameter "PAGANIN_Lmicron"
|
20
|
-
in PyHST2 parameter file.
|
21
|
-
energy: float
|
22
|
-
Energy in keV.
|
23
|
-
distance: float
|
24
|
-
Sample-detector distance in microns
|
25
|
-
|
26
|
-
Formula
|
27
|
-
-------
|
28
|
-
The conversion is done using the formula
|
29
|
-
|
30
|
-
$$
|
31
|
-
L^2 = \pi \lambda D \frac{\delta}{\beta} # noqa W605
|
32
|
-
$$
|
33
|
-
The PyHST2 normalization differs from the one used by other softwares
|
34
|
-
like tomopy by a factor $1/(4\pi^2)$
|
35
|
-
"""
|
36
|
-
L2 = Lmicron**2
|
37
|
-
wavelength = 1.23984199e-3 / energy
|
38
|
-
return L2 / (pi * wavelength * distance)
|
39
|
-
|
40
|
-
|
41
|
-
class PaddingMode(_Enum):
|
42
|
-
ZEROS = "zeros"
|
43
|
-
MEAN = "mean"
|
44
|
-
EDGE = "edge"
|
45
|
-
SYMMETRIC = "symmetric"
|
46
|
-
REFLECT = "reflect"
|
47
|
-
|
48
|
-
|
49
|
-
class PaganinPhaseRetrieval(object):
|
50
|
-
"""
|
51
|
-
Paganin Phase Retrieval for an infinitely distant point source.
|
52
|
-
Formula (10) in [1].
|
53
|
-
|
54
|
-
Parameters
|
55
|
-
----------
|
56
|
-
shape: int or tuple
|
57
|
-
Shape of each radio, in the format (num_rows, num_columns), i.e
|
58
|
-
(size_vertical, size_horizontal).
|
59
|
-
If an integer is provided, the shape is assumed to be square.
|
60
|
-
distance : float, optional
|
61
|
-
Propagation distance in cm.
|
62
|
-
energy : float, optional
|
63
|
-
Energy in keV.
|
64
|
-
delta_beta: float, optional
|
65
|
-
delta/beta ratio, where n = (1 - delta) + i*beta is the complex
|
66
|
-
refractive index of the sample.
|
67
|
-
pixel_size : float, optional
|
68
|
-
Detector pixel size in microns.
|
69
|
-
padding : str, optional
|
70
|
-
Padding method. Available are "zeros", "mean", "edge", "sym",
|
71
|
-
"reflect". Default is "edge".
|
72
|
-
Please refer to the "Padding" section below for more details.
|
73
|
-
margin: tuple, optional
|
74
|
-
The user may provide integers values U, D, L, R as a tuple under the
|
75
|
-
form ((U, D), (L, R)) (same syntax as numpy.pad()).
|
76
|
-
The resulting filtered radio will have a size equal to
|
77
|
-
(size_vertic - U - D, size_horiz - L - R).
|
78
|
-
These values serve to create a "margin" for the filtering process,
|
79
|
-
where U, D, L R are the margin of the Up, Down, Left and Right part,
|
80
|
-
respectively.
|
81
|
-
The filtering is done on a subset of the input radio. The subset
|
82
|
-
size is (Nrows - U - D, Ncols - R - L).
|
83
|
-
The margins is used to do the padding for the rest of the padded
|
84
|
-
array.
|
85
|
-
|
86
|
-
For example in one dimension, where padding="edge":
|
87
|
-
|
88
|
-
<------------------------------ padded_size --------------------------->
|
89
|
-
[padding=edge | padding=data | radio data | padding=data | padding=edge]
|
90
|
-
<------ N2 ---><----- L -----><- (N-L-R)--><----- R -----><----- N2 --->
|
91
|
-
|
92
|
-
Some or all the values U, D, L, R can be 0. In this case,
|
93
|
-
the padding of the parts related to the zero values will
|
94
|
-
fall back to the one of "padding" parameter.
|
95
|
-
For example, if padding="edge" and L, R are 0, then
|
96
|
-
the left and right parts will be padded with the edges, while
|
97
|
-
the Up and Down parts will be padded using the the user-provided
|
98
|
-
margins of the radio, and the final data will have shape
|
99
|
-
(Nrows - U - D, Ncols).
|
100
|
-
Some or all the values U, D, L, R can be the string "auto".
|
101
|
-
In this case, the values of U, D, L, R are automatically computed
|
102
|
-
as a function of the Paganin filter width.
|
103
|
-
use_R2C: bool, optional
|
104
|
-
Whether to use Real-to-Complex (R2C) transform instead of
|
105
|
-
standard Complex-to-Complex transform, providing better performances
|
106
|
-
|
107
|
-
Padding methods
|
108
|
-
---------------
|
109
|
-
The phase retrieval is a convolution done in Fourier domain using FFT,
|
110
|
-
so the Fourier transform size has to be at least twice the size of
|
111
|
-
the original data. Mathematically, the data should be padded with zeros
|
112
|
-
before being Fourier transformed. However, in practice, this can lead
|
113
|
-
to artefacts at the edges (Gibbs effect) if the data does not go to
|
114
|
-
zero at the edges.
|
115
|
-
Apart from applying an apodization (Hamming, Blackman, etc), a common
|
116
|
-
strategy to avoid these artefacts is to pad the data.
|
117
|
-
In tomography reconstruction, this is usually done by replicating the
|
118
|
-
last(s) value(s) of the edges ; but one can think of other methods:
|
119
|
-
|
120
|
-
- "zeros": the data is simply padded with zeros.
|
121
|
-
- "mean": the upper side of extended data is padded with the mean of
|
122
|
-
the first row, the lower side with the mean of the last row, etc.
|
123
|
-
- "edge": the data is padded by replicating the edges.
|
124
|
-
This is the default mode.
|
125
|
-
- "sym": the data is padded by mirroring the data with respect
|
126
|
-
to its edges. See numpy.pad().
|
127
|
-
- "reflect": the data is padded by reflecting the data with respect
|
128
|
-
to its edges, including the edges. See numpy.pad().
|
129
|
-
|
130
|
-
|
131
|
-
Formulas
|
132
|
-
--------
|
133
|
-
The radio is divided, in the Fourier domain, by the original
|
134
|
-
"Paganin filter" [1]
|
135
|
-
|
136
|
-
$$
|
137
|
-
F + 1 + \frac{\delta}{\beta} \lambda D \rho |k|^2 # noqa W605
|
138
|
-
$$
|
139
|
-
where $k$ is the wave vector, computed as
|
140
|
-
|
141
|
-
$$
|
142
|
-
k_l = \frac{1}{P} (\frac{-1}{2} + \frac{l}{N-1})
|
143
|
-
$$
|
144
|
-
where $P$ is the pixel size, $N$ the number of pixels in one direction,
|
145
|
-
and $l \in [0, N-1]$. # noqa W605
|
146
|
-
The factor $\rho$ is either $\pi$ or $1/(4\pi^2)$ # noqa W605
|
147
|
-
depending on the convention (default is the former).
|
148
|
-
|
149
|
-
|
150
|
-
References
|
151
|
-
-----------
|
152
|
-
[1] D. Paganin Et Al, "Simultaneous phase and amplitude extraction
|
153
|
-
from a single defocused image of a homogeneous object",
|
154
|
-
Journal of Microscopy, Vol 206, Part 1, 2002
|
155
|
-
"""
|
156
|
-
|
157
|
-
powers = generate_powers()
|
158
|
-
|
159
|
-
def __init__(
|
160
|
-
self,
|
161
|
-
shape,
|
162
|
-
distance=50,
|
163
|
-
energy=20,
|
164
|
-
delta_beta=250.0,
|
165
|
-
pixel_size=1,
|
166
|
-
padding="edge",
|
167
|
-
margin=None,
|
168
|
-
use_R2C=True,
|
169
|
-
):
|
170
|
-
self._init_parameters(
|
171
|
-
distance, energy, pixel_size, delta_beta, padding, use_R2C
|
172
|
-
)
|
173
|
-
self._calc_shape(shape, margin)
|
174
|
-
self.compute_filter()
|
175
|
-
|
176
|
-
def _init_parameters(
|
177
|
-
self, distance, energy, pixel_size, delta_beta, padding, use_R2C
|
178
|
-
):
|
179
|
-
self.distance_cm = distance
|
180
|
-
self.distance_micron = distance * 1e4
|
181
|
-
self.energy_kev = energy
|
182
|
-
self.pixel_size_micron = pixel_size
|
183
|
-
self.delta_beta = delta_beta
|
184
|
-
self.wavelength_micron = 1.23984199e-3 / self.energy_kev
|
185
|
-
self.padding = padding
|
186
|
-
self.padding_methods = {
|
187
|
-
PaddingMode.ZEROS: self._pad_zeros,
|
188
|
-
PaddingMode.MEAN: self._pad_mean,
|
189
|
-
PaddingMode.EDGE: self._pad_edge,
|
190
|
-
PaddingMode.SYMMETRIC: self._pad_sym,
|
191
|
-
PaddingMode.REFLECT: self._pad_reflect,
|
192
|
-
}
|
193
|
-
self.use_R2C = use_R2C
|
194
|
-
if use_R2C:
|
195
|
-
self.fft_func = np.fft.rfft2
|
196
|
-
self.ifft_func = np.fft.irfft2
|
197
|
-
else:
|
198
|
-
self.fft_func = np.fft.fft2
|
199
|
-
self.ifft_func = np.fft.ifft2
|
200
|
-
|
201
|
-
def _calc_shape(self, shape, margin):
|
202
|
-
if np.isscalar(shape):
|
203
|
-
shape = (shape, shape)
|
204
|
-
else:
|
205
|
-
assert len(shape) == 2
|
206
|
-
self.shape = shape
|
207
|
-
self._set_margin_value(margin)
|
208
|
-
self._calc_padded_shape()
|
209
|
-
|
210
|
-
def _set_margin_value(self, margin):
|
211
|
-
self.margin = margin
|
212
|
-
if margin is None:
|
213
|
-
self.shape_inner = self.shape
|
214
|
-
self.use_margin = False
|
215
|
-
self.margin = ((0, 0), (0, 0))
|
216
|
-
return
|
217
|
-
self.use_margin = True
|
218
|
-
try:
|
219
|
-
((U, D), (L, R)) = margin
|
220
|
-
except ValueError:
|
221
|
-
raise ValueError("Expected margin in the format ((U, D), (L, R))")
|
222
|
-
for val in [U, D, L, R]:
|
223
|
-
if type(val) is str and val != "auto":
|
224
|
-
raise ValueError("Expected either an integer, or 'auto'")
|
225
|
-
if int(val) != val or val < 0:
|
226
|
-
raise ValueError("Expected positive integers for margin values")
|
227
|
-
self.shape_inner = (self.shape[0] - U - D, self.shape[1] - L - R)
|
228
|
-
|
229
|
-
def _calc_padded_shape(self):
|
230
|
-
"""
|
231
|
-
Compute the padded shape.
|
232
|
-
If margin = 0, length_padded = next_power(2*length).
|
233
|
-
Otherwise : length_padded = next_power(2*(length - margins))
|
234
|
-
|
235
|
-
Principle
|
236
|
-
----------
|
237
|
-
|
238
|
-
<--------------------- nx_p --------------------->
|
239
|
-
| | original data | |
|
240
|
-
< -- Pl - ><-- L -->< -- nx --><-- R --><-- Pr -->
|
241
|
-
<----------- nx0 ----------->
|
242
|
-
|
243
|
-
Pl, Pr : left/right padding length
|
244
|
-
L, R : left/right margin
|
245
|
-
nx : length of inner data (and length of final result)
|
246
|
-
nx0 : length of original data
|
247
|
-
nx_p : total length of padded data
|
248
|
-
"""
|
249
|
-
n_y, n_x = self.shape_inner
|
250
|
-
n_y_p = self._get_next_power(2 * n_y)
|
251
|
-
n_x_p = self._get_next_power(2 * n_x)
|
252
|
-
self.shape_padded = (n_y_p, n_x_p)
|
253
|
-
self.data_padded = np.zeros((n_y_p, n_x_p), dtype=np.float64)
|
254
|
-
|
255
|
-
((U, D), (L, R)) = self.margin
|
256
|
-
n_y0, n_x0 = self.shape
|
257
|
-
self.pad_top_len = (n_y_p - n_y0) // 2
|
258
|
-
self.pad_bottom_len = n_y_p - n_y0 - self.pad_top_len
|
259
|
-
self.pad_left_len = (n_x_p - n_x0) // 2
|
260
|
-
self.pad_right_len = n_x_p - n_x0 - self.pad_left_len
|
261
|
-
|
262
|
-
def _get_next_power(self, n):
|
263
|
-
"""
|
264
|
-
Given a number, get the closest (upper) number p such that
|
265
|
-
p is a power of 2, 3, 5 and 7.
|
266
|
-
"""
|
267
|
-
idx = bisect(self.powers, n)
|
268
|
-
if self.powers[idx - 1] == n:
|
269
|
-
return n
|
270
|
-
return self.powers[idx]
|
271
|
-
|
272
|
-
def compute_filter(self):
|
273
|
-
nyp, nxp = self.shape_padded
|
274
|
-
fftfreq = np.fft.rfftfreq if self.use_R2C else np.fft.fftfreq
|
275
|
-
fy = np.fft.fftfreq(nyp, d=self.pixel_size_micron)
|
276
|
-
fx = fftfreq(nxp, d=self.pixel_size_micron)
|
277
|
-
self._coords_grid = np.add.outer(fy**2, fx**2)
|
278
|
-
#
|
279
|
-
k2 = self._coords_grid
|
280
|
-
D = self.distance_micron
|
281
|
-
L = self.wavelength_micron
|
282
|
-
db = self.delta_beta
|
283
|
-
self.paganin_filter = 1.0 / (1 + db * L * D * pi * k2) # HST / savu
|
284
|
-
# ~ self.paganin_filter = 1.0 / (1 + db * L * D * k2/ (4*pi)) # Paganin / tomopy
|
285
|
-
|
286
|
-
def pad_with_values(self, data, top_val=0, bottom_val=0, left_val=0, right_val=0):
|
287
|
-
"""
|
288
|
-
Pad the data into `self.padded_data` with values.
|
289
|
-
|
290
|
-
Parameters
|
291
|
-
----------
|
292
|
-
data: numpy.ndarray
|
293
|
-
data (radio)
|
294
|
-
top_val: float or numpy.ndarray, optional
|
295
|
-
Value(s) to fill the top of the padded data with.
|
296
|
-
bottom_val: float or numpy.ndarray, optional
|
297
|
-
Value(s) to fill the bottom of the padded data with.
|
298
|
-
left_val: float or numpy.ndarray, optional
|
299
|
-
Value(s) to fill the left of the padded data with.
|
300
|
-
right_val: float or numpy.ndarray, optional
|
301
|
-
Value(s) to fill the right of the padded data with.
|
302
|
-
"""
|
303
|
-
self.data_padded.fill(0)
|
304
|
-
Pu, Pd = self.pad_top_len, self.pad_bottom_len
|
305
|
-
Pl, Pr = self.pad_left_len, self.pad_right_len
|
306
|
-
self.data_padded[:Pu, :] = top_val
|
307
|
-
self.data_padded[-Pd:, :] = bottom_val
|
308
|
-
self.data_padded[:, :Pl] = left_val
|
309
|
-
self.data_padded[:, -Pr:] = right_val
|
310
|
-
self.data_padded[Pu:-Pd, Pl:-Pr] = data
|
311
|
-
# Transform the data to the FFT layout
|
312
|
-
self.data_padded = np.roll(self.data_padded, (-Pu, -Pl), axis=(0, 1))
|
313
|
-
|
314
|
-
def _pad_zeros(self, data):
|
315
|
-
return self.pad_with_values(
|
316
|
-
data, top_val=0, bottom_val=0, left_val=0, right_val=0
|
317
|
-
)
|
318
|
-
|
319
|
-
def _pad_mean(self, data):
|
320
|
-
"""
|
321
|
-
Pad the data at each border with a different constant value.
|
322
|
-
The value depends on the padding size:
|
323
|
-
- On the left, value = mean(first data column)
|
324
|
-
- On the right, value = mean(last data column)
|
325
|
-
- On the top, value = mean(first data row)
|
326
|
-
- On the bottom, value = mean(last data row)
|
327
|
-
"""
|
328
|
-
return self.pad_with_values(
|
329
|
-
data,
|
330
|
-
top_val=np.mean(data[0, :]),
|
331
|
-
bottom_val=np.mean(data[-1, :]),
|
332
|
-
left_val=np.mean(data[:, 0]),
|
333
|
-
right_val=np.mean(data[:, -1]),
|
334
|
-
)
|
335
|
-
|
336
|
-
def _pad_numpy(self, data, mode):
|
337
|
-
data_padded = np.pad(
|
338
|
-
data,
|
339
|
-
(
|
340
|
-
(self.pad_top_len, self.pad_bottom_len),
|
341
|
-
(self.pad_left_len, self.pad_right_len),
|
342
|
-
),
|
343
|
-
mode=mode.value,
|
344
|
-
)
|
345
|
-
# Transform the data to the FFT layout
|
346
|
-
Pu, Pl = self.pad_top_len, self.pad_left_len
|
347
|
-
return np.roll(data_padded, (-Pu, -Pl), axis=(0, 1))
|
348
|
-
|
349
|
-
def _pad_edge(self, data):
|
350
|
-
self.data_padded = self._pad_numpy(data, mode=PaddingMode.EDGE)
|
351
|
-
|
352
|
-
def _pad_sym(self, data):
|
353
|
-
self.data_padded = self._pad_numpy(data, mode=PaddingMode.SYMMETRIC)
|
354
|
-
|
355
|
-
def _pad_reflect(self, data):
|
356
|
-
self.data_padded = self._pad_numpy(data, mode=PaddingMode.REFLECT)
|
357
|
-
|
358
|
-
def pad_data(self, data, padding_method=None):
|
359
|
-
padding_method = padding_method or self.padding
|
360
|
-
padding_method = PaddingMode.from_value(padding_method)
|
361
|
-
if padding_method not in self.padding_methods:
|
362
|
-
raise ValueError(
|
363
|
-
"Unknown padding method %s. Available are: %s"
|
364
|
-
% (padding_method, str(list(self.padding_methods.keys())))
|
365
|
-
)
|
366
|
-
pad_func = self.padding_methods[padding_method]
|
367
|
-
pad_func(data)
|
368
|
-
return self.data_padded
|
369
|
-
|
370
|
-
def apply_filter(self, radio, padding_method=None):
|
371
|
-
self.pad_data(radio, padding_method=padding_method)
|
372
|
-
radio_f = self.fft_func(self.data_padded)
|
373
|
-
radio_f *= self.paganin_filter
|
374
|
-
radio_filtered = self.ifft_func(radio_f).real
|
375
|
-
s0, s1 = self.shape_inner
|
376
|
-
((U, _), (L, _)) = self.margin
|
377
|
-
return radio_filtered[U : U + s0, L : L + s1]
|
378
|
-
|
379
|
-
def lmicron_to_db(self, Lmicron):
|
380
|
-
"""
|
381
|
-
Utility to convert the "Lmicron" parameter of PyHST
|
382
|
-
to a value of delta/beta.
|
383
|
-
Please see the doc of nabu.preproc.phase.lmicron_to_db()
|
384
|
-
"""
|
385
|
-
return lmicron_to_db(Lmicron, self.energy_kev, self.distance_micron)
|
386
|
-
|
387
|
-
__call__ = apply_filter
|
tomwer/third_party/nabu/utils.py
DELETED
@@ -1,201 +0,0 @@
|
|
1
|
-
import os
|
2
|
-
import numpy as np
|
3
|
-
from time import time
|
4
|
-
from itertools import product
|
5
|
-
|
6
|
-
_warnings = {}
|
7
|
-
|
8
|
-
|
9
|
-
def nextpow2(N):
|
10
|
-
p = 1
|
11
|
-
while p < N:
|
12
|
-
p *= 2
|
13
|
-
return p
|
14
|
-
|
15
|
-
|
16
|
-
def updiv(a, b):
|
17
|
-
return (a + (b - 1)) // b
|
18
|
-
|
19
|
-
|
20
|
-
def get_folder_path(foldername=""):
|
21
|
-
_file_dir = os.path.dirname(os.path.realpath(__file__))
|
22
|
-
package_dir = _file_dir
|
23
|
-
return os.path.join(package_dir, foldername)
|
24
|
-
|
25
|
-
|
26
|
-
def get_cuda_srcfile(filename):
|
27
|
-
src_relpath = os.path.join("cuda", "src")
|
28
|
-
cuda_src_folder = get_folder_path(foldername=src_relpath)
|
29
|
-
return os.path.join(cuda_src_folder, filename)
|
30
|
-
|
31
|
-
|
32
|
-
def _sizeof(Type):
|
33
|
-
"""
|
34
|
-
return the size (in bytes) of a scalar type, like the C behavior
|
35
|
-
"""
|
36
|
-
return np.dtype(Type).itemsize
|
37
|
-
|
38
|
-
|
39
|
-
class FFTShift(object):
|
40
|
-
def __init__(self, N):
|
41
|
-
self._init_shape(N)
|
42
|
-
|
43
|
-
def _init_shape(self, N):
|
44
|
-
self.N = N
|
45
|
-
self.N2 = N // 2
|
46
|
-
self.N2b = N - self.N2 # N = N2 + N2b
|
47
|
-
|
48
|
-
def fftshift_coord(self, i):
|
49
|
-
if i < self.N2:
|
50
|
-
return i + self.N2b
|
51
|
-
else:
|
52
|
-
return i - self.N2
|
53
|
-
|
54
|
-
def fftshift_coords(self, coords):
|
55
|
-
N2 = self.N2
|
56
|
-
N2b = self.N2b
|
57
|
-
res = np.zeros_like(coords)
|
58
|
-
mask = coords < N2
|
59
|
-
res[:N2] = coords[mask] + N2b
|
60
|
-
res[N2:] = coords[np.logical_not(mask)] - N2
|
61
|
-
return res
|
62
|
-
|
63
|
-
|
64
|
-
def generate_powers():
|
65
|
-
"""
|
66
|
-
Generate a list of powers of [2, 3, 5, 7],
|
67
|
-
up to (2**15)*(3**9)*(5**6)*(7**5).
|
68
|
-
"""
|
69
|
-
primes = [2, 3, 5, 7]
|
70
|
-
maxpow = {2: 15, 3: 9, 5: 6, 7: 5}
|
71
|
-
valuations = []
|
72
|
-
for prime in primes:
|
73
|
-
# disallow any odd number (for R2C transform), and any number
|
74
|
-
# not multiple of 4 (Ram-Lak filter behaves strangely when
|
75
|
-
# dwidth_padded/2 is not even)
|
76
|
-
minval = 2 if prime == 2 else 0
|
77
|
-
valuations.append(range(minval, maxpow[prime] + 1))
|
78
|
-
powers = product(*valuations)
|
79
|
-
res = []
|
80
|
-
for pw in powers:
|
81
|
-
res.append(np.prod(list(map(lambda x: x[0] ** x[1], zip(primes, pw)))))
|
82
|
-
return np.unique(res)
|
83
|
-
|
84
|
-
|
85
|
-
def calc_padding_lengths1D(length, length_padded):
|
86
|
-
"""
|
87
|
-
Compute the padding lengths at both side along one dimension.
|
88
|
-
|
89
|
-
Parameters
|
90
|
-
----------
|
91
|
-
length: int
|
92
|
-
Number of elements along one dimension of the original array
|
93
|
-
length_padded: tuple
|
94
|
-
Number of elements along one dimension of the padded array
|
95
|
-
|
96
|
-
Returns
|
97
|
-
-------
|
98
|
-
pad_lengths: tuple
|
99
|
-
A tuple under the form (padding_left, padding_right). These are the
|
100
|
-
lengths needed to pad the original array.
|
101
|
-
"""
|
102
|
-
pad_left = (length_padded - length) // 2
|
103
|
-
pad_right = length_padded - length - pad_left
|
104
|
-
return (pad_left, pad_right)
|
105
|
-
|
106
|
-
|
107
|
-
def calc_padding_lengths(shape, shape_padded):
|
108
|
-
"""
|
109
|
-
Multi-dimensional version of calc_padding_lengths1D.
|
110
|
-
Please refer to the documentation of calc_padding_lengths1D.
|
111
|
-
"""
|
112
|
-
assert len(shape) == len(shape_padded)
|
113
|
-
padding_lengths = []
|
114
|
-
for dim_len, dim_len_padded in zip(shape, shape_padded):
|
115
|
-
pad0, pad1 = calc_padding_lengths1D(dim_len, dim_len_padded)
|
116
|
-
padding_lengths.append((pad0, pad1))
|
117
|
-
return tuple(padding_lengths)
|
118
|
-
|
119
|
-
|
120
|
-
# ------------------------------------------------------------------------------
|
121
|
-
# ------------------------ Image (move elsewhere ?) ----------------------------
|
122
|
-
# ------------------------------------------------------------------------------
|
123
|
-
|
124
|
-
|
125
|
-
def generate_coords(img_shp, center=None):
|
126
|
-
l_r, l_c = float(img_shp[0]), float(img_shp[1])
|
127
|
-
R, C = np.mgrid[:l_r, :l_c] # np.indices is faster
|
128
|
-
if center is None:
|
129
|
-
center0, center1 = l_r / 2.0, l_c / 2.0
|
130
|
-
else:
|
131
|
-
center0, center1 = center
|
132
|
-
R += 0.5 - center0
|
133
|
-
C += 0.5 - center1
|
134
|
-
return R, C
|
135
|
-
|
136
|
-
|
137
|
-
def clip_circle(img, center=None, radius=None):
|
138
|
-
R, C = generate_coords(img.shape, center)
|
139
|
-
M = R**2 + C**2
|
140
|
-
res = np.zeros_like(img)
|
141
|
-
res[M < radius**2] = img[M < radius**2]
|
142
|
-
return res
|
143
|
-
|
144
|
-
|
145
|
-
def apply_along_z(vol, func, res):
|
146
|
-
for i in range(vol.shape[0]):
|
147
|
-
res[i] = func(vol[i])
|
148
|
-
return res
|
149
|
-
|
150
|
-
|
151
|
-
# ------------------------------------------------------------------------------
|
152
|
-
# ---------------------------- Decorators --------------------------------------
|
153
|
-
# ------------------------------------------------------------------------------
|
154
|
-
|
155
|
-
|
156
|
-
def measure_time(func):
|
157
|
-
def wrapper(*args, **kwargs):
|
158
|
-
t0 = time()
|
159
|
-
res = func(*args, **kwargs)
|
160
|
-
el = time() - t0
|
161
|
-
return el, res
|
162
|
-
|
163
|
-
return wrapper
|
164
|
-
|
165
|
-
|
166
|
-
def wip(func):
|
167
|
-
def wrapper(*args, **kwargs):
|
168
|
-
func_name = func.__name__
|
169
|
-
if func_name not in _warnings:
|
170
|
-
_warnings[func_name] = 1
|
171
|
-
print(
|
172
|
-
"Warning: function %s is a work in progress, it is likely to change in the future"
|
173
|
-
)
|
174
|
-
return func(*args, **kwargs)
|
175
|
-
|
176
|
-
return wrapper
|
177
|
-
|
178
|
-
|
179
|
-
def warning(msg):
|
180
|
-
def decorator(func):
|
181
|
-
def wrapper(*args, **kwargs):
|
182
|
-
func_name = func.__name__
|
183
|
-
if func_name not in _warnings:
|
184
|
-
_warnings[func_name] = 1
|
185
|
-
print(msg)
|
186
|
-
res = func(*args, **kwargs)
|
187
|
-
return res
|
188
|
-
|
189
|
-
return wrapper
|
190
|
-
|
191
|
-
return decorator
|
192
|
-
|
193
|
-
|
194
|
-
def log_work(func):
|
195
|
-
def wrapper(*args, **kwargs):
|
196
|
-
print("[%d] Executing %s ..." % (os.getpid(), func.__name__)) # TODO in file ?
|
197
|
-
res = func(*args, **kwargs)
|
198
|
-
print("[%d] ... done" % os.getpid())
|
199
|
-
return res
|
200
|
-
|
201
|
-
return wrapper
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|