tomwer 1.2.0a2__py3-none-any.whl → 1.2.0a4__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- orangecontrib/tomwer/widgets/control/SingleTomoObjOW.py +0 -6
- orangecontrib/tomwer/widgets/reconstruction/DarkRefAndCopyOW.py +6 -2
- orangecontrib/tomwer/widgets/reconstruction/NabuHelicalPrepareWeightsDoubleOW.py +169 -169
- tomwer/app/canvas_launcher/mainwindow.py +0 -3
- tomwer/app/imagekeyeditor.py +1 -0
- tomwer/app/imagekeyupgrader.py +2 -0
- tomwer/app/nxtomoeditor.py +2 -0
- tomwer/app/zstitching.py +1 -0
- tomwer/core/process/reconstruction/nabu/nabucommon.py +57 -12
- tomwer/core/process/reconstruction/nabu/nabuscores.py +3 -2
- tomwer/core/process/reconstruction/nabu/nabuslices.py +7 -9
- tomwer/core/process/reconstruction/nabu/nabuvolume.py +10 -9
- tomwer/core/process/reconstruction/nabu/utils.py +10 -36
- tomwer/core/process/test/test_nabu.py +5 -5
- tomwer/gui/visualization/reconstructionparameters.py +9 -1
- tomwer/gui/visualization/volumeviewer.py +2 -0
- tomwer/resources/gui/icons/esrf_1.svg +307 -0
- tomwer/resources/gui/icons/triangle.svg +80 -0
- tomwer/version.py +1 -1
- {tomwer-1.2.0a2.dist-info → tomwer-1.2.0a4.dist-info}/METADATA +1 -1
- {tomwer-1.2.0a2.dist-info → tomwer-1.2.0a4.dist-info}/RECORD +27 -32
- tomwer/third_party/__init__.py +0 -0
- tomwer/third_party/nabu/__init__.py +0 -0
- tomwer/third_party/nabu/preproc/__init__.py +0 -0
- tomwer/third_party/nabu/preproc/phase.py +0 -387
- tomwer/third_party/nabu/utils.py +0 -201
- tomwer/third_party/tango/__init__.py +0 -0
- tomwer/third_party/tango/device.py +0 -15
- /tomwer-1.2.0a2-py3.11-nspkg.pth → /tomwer-1.2.0a4-py3.11-nspkg.pth +0 -0
- {tomwer-1.2.0a2.dist-info → tomwer-1.2.0a4.dist-info}/LICENSE +0 -0
- {tomwer-1.2.0a2.dist-info → tomwer-1.2.0a4.dist-info}/WHEEL +0 -0
- {tomwer-1.2.0a2.dist-info → tomwer-1.2.0a4.dist-info}/entry_points.txt +0 -0
- {tomwer-1.2.0a2.dist-info → tomwer-1.2.0a4.dist-info}/namespace_packages.txt +0 -0
- {tomwer-1.2.0a2.dist-info → tomwer-1.2.0a4.dist-info}/top_level.txt +0 -0
@@ -1,4 +1,4 @@
|
|
1
|
-
tomwer-1.2.
|
1
|
+
tomwer-1.2.0a4-py3.11-nspkg.pth,sha256=xeeGR3TjdoVxdFeF6T-zSwZWh6Et--EYuPWu67LxL_c,574
|
2
2
|
orangecontrib/tomwer/__init__.py,sha256=B4DXy1gY_wXmNYa2aOfapmJb2mEuCAjoaNEGnpBs70g,148
|
3
3
|
orangecontrib/tomwer/state_summary.py,sha256=5_dPzweL3r0ye4ZfJo6IV2ThJI8fQhWoO2ySdJJajj8,1711
|
4
4
|
orangecontrib/tomwer/orange/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
@@ -42,7 +42,7 @@ orangecontrib/tomwer/widgets/control/NXTomomillOW.py,sha256=M41e4w2dn4U4690EpsT5
|
|
42
42
|
orangecontrib/tomwer/widgets/control/NXtomoConcatenate.py,sha256=9jf0Qs8jb73hPeLukmulpGRLRRm3rcdHIeks82EwaKA,5998
|
43
43
|
orangecontrib/tomwer/widgets/control/NotifierOW.py,sha256=k_SOG-L7EVwKtAb22aSpkpcdeHFDLFRixEcapQh9NxE,4207
|
44
44
|
orangecontrib/tomwer/widgets/control/ReduceDarkFlatSelectorOW.py,sha256=llc0e2Y8nMtXDQ56WXZoIdvjRwqcwU64yPVRnuyIOxY,2836
|
45
|
-
orangecontrib/tomwer/widgets/control/SingleTomoObjOW.py,sha256=
|
45
|
+
orangecontrib/tomwer/widgets/control/SingleTomoObjOW.py,sha256=tQibP4N46T9OUNsm5BsTJQd3v3uZ6d0WMnDJFRHT8yA,6786
|
46
46
|
orangecontrib/tomwer/widgets/control/TimerOW.py,sha256=H-MWEgXXjmSa_9ExPEJr3OhRCHuT8rAAZcb0JWfoB-o,4395
|
47
47
|
orangecontrib/tomwer/widgets/control/TomoObjSerieOW.py,sha256=pVU6M8CUdmO6T8Ib3EnLi1RcsQeXivc_wBbMOP9M2tY,3203
|
48
48
|
orangecontrib/tomwer/widgets/control/VolumeSelector.py,sha256=nnqGw8oYaUnTglTrHoCorvqJ_sT_DmK2knazsEVY51k,5081
|
@@ -138,8 +138,8 @@ orangecontrib/tomwer/widgets/other/icons/hub.png,sha256=wnKSaxw2WnBkSQjI86aLZfdm
|
|
138
138
|
orangecontrib/tomwer/widgets/other/icons/hub.svg,sha256=9EYoBKY-P-cO17nM48OPA9VDZSCbyGtrMRc80BGHflk,3735
|
139
139
|
orangecontrib/tomwer/widgets/reconstruction/AxisOW.py,sha256=jZtGIbbbTIaAyLfJWijBrEQkBvo7whOXxWcBqtjxoVM,22218
|
140
140
|
orangecontrib/tomwer/widgets/reconstruction/CastNabuVolumeOW.py,sha256=bGKijEHkZu9x14nwjuMnUInVA0zzhVg-p6PltgTDf-w,9047
|
141
|
-
orangecontrib/tomwer/widgets/reconstruction/DarkRefAndCopyOW.py,sha256=
|
142
|
-
orangecontrib/tomwer/widgets/reconstruction/NabuHelicalPrepareWeightsDoubleOW.py,sha256=
|
141
|
+
orangecontrib/tomwer/widgets/reconstruction/DarkRefAndCopyOW.py,sha256=DyjkZ3RDgUvEkK3yR8qCWQq9eaVus8I-64nvhrHN1ZQ,10988
|
142
|
+
orangecontrib/tomwer/widgets/reconstruction/NabuHelicalPrepareWeightsDoubleOW.py,sha256=V8n4V-UYVTMFst59iXk6OzTUVH6B5mdhRDEflQourrs,5688
|
143
143
|
orangecontrib/tomwer/widgets/reconstruction/NabuOW.py,sha256=D_0DjYYLKi-Avry_PUM_0A7UayZSw0CKKhwFvKD76O8,11865
|
144
144
|
orangecontrib/tomwer/widgets/reconstruction/NabuVolumeOW.py,sha256=Updr8SolE-5_5MYtbNE7u3x_0XBm7pVFQSG0Iwyis_w,17925
|
145
145
|
orangecontrib/tomwer/widgets/reconstruction/SAAxisOW.py,sha256=MSDaxFTX1VUvIEVl0GhY8Iflgxl2oKSrUUFhdtRqpKY,18723
|
@@ -211,19 +211,19 @@ orangecontrib/tomwer/widgets/visualization/icons/volumeviewer.svg,sha256=2uT9_px
|
|
211
211
|
tomwer/__init__.py,sha256=82Jp1abyG4UWdGuT4nNU7LxaUV6xxkOte5pIz3w69Do,1745
|
212
212
|
tomwer/__main__.py,sha256=jkdSlsmo3fEdkyV5yDRi1IyvQbyAWlXNm5B_G97Dr58,10290
|
213
213
|
tomwer/utils.py,sha256=EgVwJ5CQVjoBvcKNwyVoXv_P4ciI11oxb8fNyy82Lck,8465
|
214
|
-
tomwer/version.py,sha256=
|
214
|
+
tomwer/version.py,sha256=7RuqY3vyNsEJZB6MimCiGIApoN22hNhPM4iTMD0xvzk,4386
|
215
215
|
tomwer/app/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
216
216
|
tomwer/app/axis.py,sha256=UQNxYpHzxnGdNpkV6sJoO_0tPGCxJkylghwbA7ENsM0,5948
|
217
217
|
tomwer/app/canvas.py,sha256=Px0oWLny53xe-2OXnepfRH5ZIcuO_e7wSYmE0femhjg,1379
|
218
218
|
tomwer/app/darkref.py,sha256=R_EMV9fAa0ixvdewItmw6c6n7a6QSx7IGDWsfVbgf_k,269
|
219
219
|
tomwer/app/darkrefpatch.py,sha256=bI76FUXw5buNzJ3ryM3WwpviwTurAZ2coracPv7lDW8,278
|
220
220
|
tomwer/app/diffframe.py,sha256=QYFPh4ZrcXayzBgsounw-5bOW92OqLLRnyUGqK3ETo8,3110
|
221
|
-
tomwer/app/imagekeyeditor.py,sha256=
|
222
|
-
tomwer/app/imagekeyupgrader.py,sha256=
|
221
|
+
tomwer/app/imagekeyeditor.py,sha256=c4TH9nVn_ELUUeeiCz8nOXLhEpqWZ9zRTMsBofhUsZw,2829
|
222
|
+
tomwer/app/imagekeyupgrader.py,sha256=bPxH_oyQK6il9ePhAJTokcAkxDmLJG8R1hhI9tgZizw,3225
|
223
223
|
tomwer/app/intensitynormalization.py,sha256=bk2Hxg0JLYkzZHEk_qqEzztXWtAiHd1asKNd-jrhnFk,6567
|
224
224
|
tomwer/app/lamino.py,sha256=8orl9GkKQb4yyVqAoLLe7GsEVmJeelNUWxAaf1n4J2s,4809
|
225
225
|
tomwer/app/nabuapp.py,sha256=6ytKx88wOYX_Cs6Vl_m7poL7z5gpb4s6iJod4ikaCH4,8027
|
226
|
-
tomwer/app/nxtomoeditor.py,sha256=
|
226
|
+
tomwer/app/nxtomoeditor.py,sha256=BabQ8lSBzMqZLyoKN8k2ubDj6dxYApp_Ipi1SjSN1So,2837
|
227
227
|
tomwer/app/patchrawdarkflat.py,sha256=HsWKKyFpUwO2Pig06nMYWa9RYXeUzdkE2MQeIkhCRl4,3827
|
228
228
|
tomwer/app/radiostack.py,sha256=Weh8Yvq69bQgBYs9nXrHY_yp_yM_flbiWMi4E5f5CJs,2531
|
229
229
|
tomwer/app/reducedarkflat.py,sha256=QK_RAszzNDHCOTgqi28DydmnUnAPBRJHnONUF_Hy0lU,6520
|
@@ -235,11 +235,11 @@ tomwer/app/scanviewer.py,sha256=0HI7uV7zRiK-2MyLlAE6vCMdgmiFfMbsF33CNoxKlLw,2646
|
|
235
235
|
tomwer/app/sinogramviewer.py,sha256=9V5o2OiHOyYxiWOdjZjjQuC8hRdrsOQCbpQ0QYPfSbc,3620
|
236
236
|
tomwer/app/slicestack.py,sha256=OpvgRgXj62ThovS1wAaCTFoneJkIOwRT5BMV75hEf2M,2371
|
237
237
|
tomwer/app/stopdatalistener.py,sha256=p5G6sP2DUXEREZzFf0QGowU9C7hX7nexWZHmC0bTIM4,957
|
238
|
-
tomwer/app/zstitching.py,sha256=
|
238
|
+
tomwer/app/zstitching.py,sha256=9qmMx5YaiJ1fSjD1Yz31UKEcEJLuQSyWRGz_tEaOVk0,9486
|
239
239
|
tomwer/app/canvas_launcher/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
240
240
|
tomwer/app/canvas_launcher/config.py,sha256=D4qyh_3ynl7o1P2f8mhAefhNnraaLpVi1v4vDYaA2Yo,7249
|
241
241
|
tomwer/app/canvas_launcher/environ.py,sha256=tHIlYXcFWinNLTV7dL2iBOWCp9oe9iouibU9NlzFbCk,2500
|
242
|
-
tomwer/app/canvas_launcher/mainwindow.py,sha256=
|
242
|
+
tomwer/app/canvas_launcher/mainwindow.py,sha256=r_zw7tZ1rMOZczBOTn7lgnyqPFqEUckdgePIqgCSm_c,18184
|
243
243
|
tomwer/app/canvas_launcher/splash.py,sha256=2z3q5QwoQ_ad-a2UI0R8hR3252MWG7DggXPOgDZfgBA,560
|
244
244
|
tomwer/app/canvas_launcher/widgetsscheme.py,sha256=S4x1LO798fOxL3-g2WDuAh0T2Y_Kbg79DbH3siwKPiM,2859
|
245
245
|
tomwer/core/__init__.py,sha256=lLfviCLw9VdT6SQ_9eYhqFe8QtUA-Dv-JDGpgxQ8Yzs,1373
|
@@ -310,13 +310,13 @@ tomwer/core/process/reconstruction/lamino/tofu.py,sha256=53_n2xcHiF3InqUf0ZnnyIn
|
|
310
310
|
tomwer/core/process/reconstruction/nabu/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
311
311
|
tomwer/core/process/reconstruction/nabu/castvolume.py,sha256=g2NuI78KFIWy2iZmg4iJkUlqE2b2Ji4LPXKytcyGnXY,10246
|
312
312
|
tomwer/core/process/reconstruction/nabu/helical.py,sha256=rWp7DP-Uphrxhm4ztK1RwTNhnDFj0H3FTz37zuip7vU,1749
|
313
|
-
tomwer/core/process/reconstruction/nabu/nabucommon.py,sha256=
|
314
|
-
tomwer/core/process/reconstruction/nabu/nabuscores.py,sha256=
|
315
|
-
tomwer/core/process/reconstruction/nabu/nabuslices.py,sha256=
|
316
|
-
tomwer/core/process/reconstruction/nabu/nabuvolume.py,sha256=
|
313
|
+
tomwer/core/process/reconstruction/nabu/nabucommon.py,sha256=J9FaOe9tX_EL9oNid1BDt16YFiYUWc6ZD24SMg1LV7c,24543
|
314
|
+
tomwer/core/process/reconstruction/nabu/nabuscores.py,sha256=8ZGomiSz7yUncap9hXRhmwXG2-TBlnUf5Umav8CvdkQ,12825
|
315
|
+
tomwer/core/process/reconstruction/nabu/nabuslices.py,sha256=tKRkJRmazD8ogYw7_zKdfMmyU40DR6vBGbaozjiUiAA,36278
|
316
|
+
tomwer/core/process/reconstruction/nabu/nabuvolume.py,sha256=AKJEuuazHtsbCmOABoLkINd14arF8K5Z6zPB8OKT1l4,20688
|
317
317
|
tomwer/core/process/reconstruction/nabu/settings.py,sha256=bH5bW88tikwGQXIBNVznefXNldlClhKk-LhhU3qOcO0,2264
|
318
318
|
tomwer/core/process/reconstruction/nabu/target.py,sha256=_Z4gViprjR3Vm4KASqsASStLA9GM1wTyoi3Pg0PUSeg,1481
|
319
|
-
tomwer/core/process/reconstruction/nabu/utils.py,sha256=
|
319
|
+
tomwer/core/process/reconstruction/nabu/utils.py,sha256=G6wfaQn8_9h_AX9MUCnY-OTSLuA8L7bzymUyCO5_IlM,12956
|
320
320
|
tomwer/core/process/reconstruction/normalization/__init__.py,sha256=TDtATpMVFkEOT93wLXLpW0A_TOeiQDiM7AWAqX4FIB0,119
|
321
321
|
tomwer/core/process/reconstruction/normalization/normalization.py,sha256=G-eAZIct47RvzvHNMbKsG4Dt58vTSKhvH-NnIMzxzOs,13210
|
322
322
|
tomwer/core/process/reconstruction/normalization/params.py,sha256=porWC6G5lQWF-4JB03B56uGmuMxjx3u0ZMums-Bh2p8,4790
|
@@ -352,7 +352,7 @@ tomwer/core/process/test/test_data_listener.py,sha256=ab_FZM7f-lXzQ6eMY-4aCFyTUq
|
|
352
352
|
tomwer/core/process/test/test_data_transfer.py,sha256=q6NBX2keRfjwI1-8zth01zFZqNTECkNN8XzuEHNq94Y,15387
|
353
353
|
tomwer/core/process/test/test_data_watcher.py,sha256=y0FpUqxlpKZu7OhuwlxeLPX5ESPXj_2m2lKjEWrVCV4,3138
|
354
354
|
tomwer/core/process/test/test_lamino.py,sha256=MPMzmXbrqRX2hbt-RT3XM6qpCU7s4E0mAYK7GdroWfM,3009
|
355
|
-
tomwer/core/process/test/test_nabu.py,sha256=
|
355
|
+
tomwer/core/process/test/test_nabu.py,sha256=OrZcTPV8oOzb1x7845ha4JAHMNZzNqVVxi_GzZ4Cjds,19279
|
356
356
|
tomwer/core/process/test/test_normalization.py,sha256=WPdXga1OYq8WB7xWhYw0owSf0PT20eVcKOPLhfvv1wQ,4008
|
357
357
|
tomwer/core/process/test/test_timer.py,sha256=T25A7c81696c7D_sZiAy59b9RX-F6MdvUy-_st-qLVQ,3027
|
358
358
|
tomwer/core/process/visualization/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
@@ -573,12 +573,12 @@ tomwer/gui/visualization/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZ
|
|
573
573
|
tomwer/gui/visualization/dataviewer.py,sha256=trHX7R_eMOK9bkHHTMjIOAILMvzOX72IotAsrCyQoOA,26335
|
574
574
|
tomwer/gui/visualization/fullscreenplot.py,sha256=ptLrhF8DUsYNMj-KDioe9Y-KxnOzqepGlS8K2A2hjck,3639
|
575
575
|
tomwer/gui/visualization/nxtomometadata.py,sha256=uR2bHPnMp66mOJkE9WscTcQaiasr01pt3IbLUPP1F5M,683
|
576
|
-
tomwer/gui/visualization/reconstructionparameters.py,sha256=
|
576
|
+
tomwer/gui/visualization/reconstructionparameters.py,sha256=19W0uAdkda8kzp9rWj4gbMuG4t16kBc3j6RwM_1hogk,10230
|
577
577
|
tomwer/gui/visualization/scanoverview.py,sha256=zX1sKNKFb-HznOTOZqLr6HbmFjzdR35sBVmETBTcxNU,9215
|
578
578
|
tomwer/gui/visualization/sinogramviewer.py,sha256=JH_Ws2sJM9uls8rygXw2CMDvVwVG_1O-trtyI7OxAdE,10116
|
579
579
|
tomwer/gui/visualization/tomoobjoverview.py,sha256=YzocBQXhgnzI8IsJg5junE7218WcJdvSNH4r6DQgo74,1991
|
580
580
|
tomwer/gui/visualization/volumeoverview.py,sha256=6Hv1TtsDlaGQPCJKW-IkGy_r5Buue-O95tl1KkpMD-0,2491
|
581
|
-
tomwer/gui/visualization/volumeviewer.py,sha256=
|
581
|
+
tomwer/gui/visualization/volumeviewer.py,sha256=eOFIultoKryz2B3tslG3YFzo945n94zSviEz8vxaapk,16750
|
582
582
|
tomwer/gui/visualization/diffviewer/__init__.py,sha256=rZ7qOTfAChU3FouCdkZllXT9ZZqTdo1XhLZMfmOqUAE,39
|
583
583
|
tomwer/gui/visualization/diffviewer/diffviewer.py,sha256=XyEd8-wWt-8qf4H1RZPMwQbjpvB7EbOpu00nOL_psmc,22015
|
584
584
|
tomwer/gui/visualization/diffviewer/shiftwidget.py,sha256=ZY-P1nEudYXXYqnioTa9dG_gEte_Nf84RlXUKp8rgdE,21029
|
@@ -623,6 +623,7 @@ tomwer/resources/gui/icons/datalistener_deactivate.png,sha256=vB2zaa8UNPCrrMnTMo
|
|
623
623
|
tomwer/resources/gui/icons/datalistener_deactivate.svg,sha256=W2dXJ1z33pDrcQYW0kVv9W3Bo53kif1pQvejPD0ardQ,3857
|
624
624
|
tomwer/resources/gui/icons/delta_beta.png,sha256=gcRqLJ3ybHsGNxj6pWV2Vh3XJwvlrkf6l8W7ap-mo00,1869
|
625
625
|
tomwer/resources/gui/icons/delta_beta.svg,sha256=j8vUteCDAbST0MkcwEEXxRC1VsZP_eZsWL6c89E_mCI,2426
|
626
|
+
tomwer/resources/gui/icons/esrf_1.svg,sha256=6a4sJBjjAON3zvLumC9xa3g61bVURle8KJqdBh4U3h4,21483
|
626
627
|
tomwer/resources/gui/icons/exit.png,sha256=ovcPdlUS1ZLJ5aalNzvOXtrPacpe089f59Z97Sk-WZk,1002
|
627
628
|
tomwer/resources/gui/icons/exit.svg,sha256=bDa7822wNHLLQIOyn3cYB8LPo8FdmO0KzWghiydoZrI,10773
|
628
629
|
tomwer/resources/gui/icons/full_screen.png,sha256=XaVKDMuUpMBx6Ra07cEYQBqqtrp969zovS_EPVLJHdo,674
|
@@ -699,6 +700,7 @@ tomwer/resources/gui/icons/stitching_modeRefine.svg,sha256=gsSLWIPgKcwQzZ8Ds2pjQ
|
|
699
700
|
tomwer/resources/gui/icons/switch.png,sha256=OYhfT5uV_tSAfiFOF6ul57cC9Vs6vKgNM8TfFshv9Ic,491
|
700
701
|
tomwer/resources/gui/icons/tomwer.png,sha256=C3Pg4DHiFgV6UFedNKvqQWihhZGdsPg8lxa08ve58JQ,24955
|
701
702
|
tomwer/resources/gui/icons/tomwer_large.png,sha256=kStquHhlb65WUEojlLUAkWVYfv3Ku2a3AQNrdFZuxBQ,176673
|
703
|
+
tomwer/resources/gui/icons/triangle.svg,sha256=iAtFlXpq2TujOMjvN4xi9mEtqGEim061tmDnvwrKCiI,2849
|
702
704
|
tomwer/resources/gui/icons/unlocked.png,sha256=zkUuqKlzSi8nxXitwYwdV2_Y0emtDXioKG2jLQ-NrNs,365
|
703
705
|
tomwer/resources/gui/icons/unlocked.svg,sha256=T2xH018d4KoCm40w6-ggDbcEq49OrkwGjQ_dQxS-074,2141
|
704
706
|
tomwer/resources/gui/icons/unsharp_mask.png,sha256=sM7_Y6jkQlCIaDsw9hNuOnbSbeoFo3_uPz5aFs0fAr4,100796
|
@@ -773,17 +775,10 @@ tomwer/tests/test_scripts.py,sha256=cAiWjkQtaG3p0nRVaDUY9RNieAb1tC6UT6vsyBkcBsE,
|
|
773
775
|
tomwer/tests/test_utils.py,sha256=D0rNDSK6csEOYBY_7gD-4A3jp8rYAm8L1_Xg34A9I2s,305
|
774
776
|
tomwer/tests/utils/__init__.py,sha256=AAO9QsJsqO7uEg7t7fOOdniqaD4Nw6g3gQO-Fb8hXE4,8653
|
775
777
|
tomwer/tests/utils/utilstest.py,sha256=mNDjZhyzPatgMH0IwwiaFWUu8UBpzuhP5NLgxo1rrQE,7341
|
776
|
-
tomwer/
|
777
|
-
tomwer/
|
778
|
-
tomwer/
|
779
|
-
tomwer/
|
780
|
-
tomwer/
|
781
|
-
tomwer/
|
782
|
-
tomwer
|
783
|
-
tomwer-1.2.0a2.dist-info/LICENSE,sha256=yR_hIZ1MfDh9x2_s23uFqBH7m5DgrBl9nJKkE37YChM,1877
|
784
|
-
tomwer-1.2.0a2.dist-info/METADATA,sha256=YGQRmkPlCN3g-fFLxSdvGjmgZ2Z5wDUTBQFVJwLpgwc,10865
|
785
|
-
tomwer-1.2.0a2.dist-info/WHEEL,sha256=pkctZYzUS4AYVn6dJ-7367OJZivF2e8RA9b_ZBjif18,92
|
786
|
-
tomwer-1.2.0a2.dist-info/entry_points.txt,sha256=fIcDnCxjgwzfIylLYhUsFyiNZjZMxsfRQBxi4f-cJg8,440
|
787
|
-
tomwer-1.2.0a2.dist-info/namespace_packages.txt,sha256=Iut-JTfT11SZHHm77_ZeszD7pZDWXcTweCbvrJpqDyQ,14
|
788
|
-
tomwer-1.2.0a2.dist-info/top_level.txt,sha256=Yz5zKh0FPiImtzHYcPuztG1AO8-6KEpUWgoChGbA0Ys,21
|
789
|
-
tomwer-1.2.0a2.dist-info/RECORD,,
|
778
|
+
tomwer-1.2.0a4.dist-info/LICENSE,sha256=yR_hIZ1MfDh9x2_s23uFqBH7m5DgrBl9nJKkE37YChM,1877
|
779
|
+
tomwer-1.2.0a4.dist-info/METADATA,sha256=3StXR6mgEch20U40_O-D0AsBWY6uEzigWGvK0p1UMrw,10865
|
780
|
+
tomwer-1.2.0a4.dist-info/WHEEL,sha256=pkctZYzUS4AYVn6dJ-7367OJZivF2e8RA9b_ZBjif18,92
|
781
|
+
tomwer-1.2.0a4.dist-info/entry_points.txt,sha256=fIcDnCxjgwzfIylLYhUsFyiNZjZMxsfRQBxi4f-cJg8,440
|
782
|
+
tomwer-1.2.0a4.dist-info/namespace_packages.txt,sha256=Iut-JTfT11SZHHm77_ZeszD7pZDWXcTweCbvrJpqDyQ,14
|
783
|
+
tomwer-1.2.0a4.dist-info/top_level.txt,sha256=Yz5zKh0FPiImtzHYcPuztG1AO8-6KEpUWgoChGbA0Ys,21
|
784
|
+
tomwer-1.2.0a4.dist-info/RECORD,,
|
tomwer/third_party/__init__.py
DELETED
File without changes
|
File without changes
|
File without changes
|
@@ -1,387 +0,0 @@
|
|
1
|
-
#!/usr/bin/env python
|
2
|
-
# -*- coding: utf-8 -*-
|
3
|
-
|
4
|
-
import numpy as np
|
5
|
-
from math import pi
|
6
|
-
from bisect import bisect
|
7
|
-
from ..utils import generate_powers
|
8
|
-
from silx.utils.enum import Enum as _Enum
|
9
|
-
|
10
|
-
|
11
|
-
def lmicron_to_db(Lmicron, energy, distance):
|
12
|
-
"""
|
13
|
-
Utility to convert the "Lmicron" parameter of PyHST
|
14
|
-
to a value of delta/beta.
|
15
|
-
|
16
|
-
Parameters
|
17
|
-
----------
|
18
|
-
Lmicron: float
|
19
|
-
Length in microns, values of the parameter "PAGANIN_Lmicron"
|
20
|
-
in PyHST2 parameter file.
|
21
|
-
energy: float
|
22
|
-
Energy in keV.
|
23
|
-
distance: float
|
24
|
-
Sample-detector distance in microns
|
25
|
-
|
26
|
-
Formula
|
27
|
-
-------
|
28
|
-
The conversion is done using the formula
|
29
|
-
|
30
|
-
$$
|
31
|
-
L^2 = \pi \lambda D \frac{\delta}{\beta} # noqa W605
|
32
|
-
$$
|
33
|
-
The PyHST2 normalization differs from the one used by other softwares
|
34
|
-
like tomopy by a factor $1/(4\pi^2)$
|
35
|
-
"""
|
36
|
-
L2 = Lmicron**2
|
37
|
-
wavelength = 1.23984199e-3 / energy
|
38
|
-
return L2 / (pi * wavelength * distance)
|
39
|
-
|
40
|
-
|
41
|
-
class PaddingMode(_Enum):
|
42
|
-
ZEROS = "zeros"
|
43
|
-
MEAN = "mean"
|
44
|
-
EDGE = "edge"
|
45
|
-
SYMMETRIC = "symmetric"
|
46
|
-
REFLECT = "reflect"
|
47
|
-
|
48
|
-
|
49
|
-
class PaganinPhaseRetrieval(object):
|
50
|
-
"""
|
51
|
-
Paganin Phase Retrieval for an infinitely distant point source.
|
52
|
-
Formula (10) in [1].
|
53
|
-
|
54
|
-
Parameters
|
55
|
-
----------
|
56
|
-
shape: int or tuple
|
57
|
-
Shape of each radio, in the format (num_rows, num_columns), i.e
|
58
|
-
(size_vertical, size_horizontal).
|
59
|
-
If an integer is provided, the shape is assumed to be square.
|
60
|
-
distance : float, optional
|
61
|
-
Propagation distance in cm.
|
62
|
-
energy : float, optional
|
63
|
-
Energy in keV.
|
64
|
-
delta_beta: float, optional
|
65
|
-
delta/beta ratio, where n = (1 - delta) + i*beta is the complex
|
66
|
-
refractive index of the sample.
|
67
|
-
pixel_size : float, optional
|
68
|
-
Detector pixel size in microns.
|
69
|
-
padding : str, optional
|
70
|
-
Padding method. Available are "zeros", "mean", "edge", "sym",
|
71
|
-
"reflect". Default is "edge".
|
72
|
-
Please refer to the "Padding" section below for more details.
|
73
|
-
margin: tuple, optional
|
74
|
-
The user may provide integers values U, D, L, R as a tuple under the
|
75
|
-
form ((U, D), (L, R)) (same syntax as numpy.pad()).
|
76
|
-
The resulting filtered radio will have a size equal to
|
77
|
-
(size_vertic - U - D, size_horiz - L - R).
|
78
|
-
These values serve to create a "margin" for the filtering process,
|
79
|
-
where U, D, L R are the margin of the Up, Down, Left and Right part,
|
80
|
-
respectively.
|
81
|
-
The filtering is done on a subset of the input radio. The subset
|
82
|
-
size is (Nrows - U - D, Ncols - R - L).
|
83
|
-
The margins is used to do the padding for the rest of the padded
|
84
|
-
array.
|
85
|
-
|
86
|
-
For example in one dimension, where padding="edge":
|
87
|
-
|
88
|
-
<------------------------------ padded_size --------------------------->
|
89
|
-
[padding=edge | padding=data | radio data | padding=data | padding=edge]
|
90
|
-
<------ N2 ---><----- L -----><- (N-L-R)--><----- R -----><----- N2 --->
|
91
|
-
|
92
|
-
Some or all the values U, D, L, R can be 0. In this case,
|
93
|
-
the padding of the parts related to the zero values will
|
94
|
-
fall back to the one of "padding" parameter.
|
95
|
-
For example, if padding="edge" and L, R are 0, then
|
96
|
-
the left and right parts will be padded with the edges, while
|
97
|
-
the Up and Down parts will be padded using the the user-provided
|
98
|
-
margins of the radio, and the final data will have shape
|
99
|
-
(Nrows - U - D, Ncols).
|
100
|
-
Some or all the values U, D, L, R can be the string "auto".
|
101
|
-
In this case, the values of U, D, L, R are automatically computed
|
102
|
-
as a function of the Paganin filter width.
|
103
|
-
use_R2C: bool, optional
|
104
|
-
Whether to use Real-to-Complex (R2C) transform instead of
|
105
|
-
standard Complex-to-Complex transform, providing better performances
|
106
|
-
|
107
|
-
Padding methods
|
108
|
-
---------------
|
109
|
-
The phase retrieval is a convolution done in Fourier domain using FFT,
|
110
|
-
so the Fourier transform size has to be at least twice the size of
|
111
|
-
the original data. Mathematically, the data should be padded with zeros
|
112
|
-
before being Fourier transformed. However, in practice, this can lead
|
113
|
-
to artefacts at the edges (Gibbs effect) if the data does not go to
|
114
|
-
zero at the edges.
|
115
|
-
Apart from applying an apodization (Hamming, Blackman, etc), a common
|
116
|
-
strategy to avoid these artefacts is to pad the data.
|
117
|
-
In tomography reconstruction, this is usually done by replicating the
|
118
|
-
last(s) value(s) of the edges ; but one can think of other methods:
|
119
|
-
|
120
|
-
- "zeros": the data is simply padded with zeros.
|
121
|
-
- "mean": the upper side of extended data is padded with the mean of
|
122
|
-
the first row, the lower side with the mean of the last row, etc.
|
123
|
-
- "edge": the data is padded by replicating the edges.
|
124
|
-
This is the default mode.
|
125
|
-
- "sym": the data is padded by mirroring the data with respect
|
126
|
-
to its edges. See numpy.pad().
|
127
|
-
- "reflect": the data is padded by reflecting the data with respect
|
128
|
-
to its edges, including the edges. See numpy.pad().
|
129
|
-
|
130
|
-
|
131
|
-
Formulas
|
132
|
-
--------
|
133
|
-
The radio is divided, in the Fourier domain, by the original
|
134
|
-
"Paganin filter" [1]
|
135
|
-
|
136
|
-
$$
|
137
|
-
F + 1 + \frac{\delta}{\beta} \lambda D \rho |k|^2 # noqa W605
|
138
|
-
$$
|
139
|
-
where $k$ is the wave vector, computed as
|
140
|
-
|
141
|
-
$$
|
142
|
-
k_l = \frac{1}{P} (\frac{-1}{2} + \frac{l}{N-1})
|
143
|
-
$$
|
144
|
-
where $P$ is the pixel size, $N$ the number of pixels in one direction,
|
145
|
-
and $l \in [0, N-1]$. # noqa W605
|
146
|
-
The factor $\rho$ is either $\pi$ or $1/(4\pi^2)$ # noqa W605
|
147
|
-
depending on the convention (default is the former).
|
148
|
-
|
149
|
-
|
150
|
-
References
|
151
|
-
-----------
|
152
|
-
[1] D. Paganin Et Al, "Simultaneous phase and amplitude extraction
|
153
|
-
from a single defocused image of a homogeneous object",
|
154
|
-
Journal of Microscopy, Vol 206, Part 1, 2002
|
155
|
-
"""
|
156
|
-
|
157
|
-
powers = generate_powers()
|
158
|
-
|
159
|
-
def __init__(
|
160
|
-
self,
|
161
|
-
shape,
|
162
|
-
distance=50,
|
163
|
-
energy=20,
|
164
|
-
delta_beta=250.0,
|
165
|
-
pixel_size=1,
|
166
|
-
padding="edge",
|
167
|
-
margin=None,
|
168
|
-
use_R2C=True,
|
169
|
-
):
|
170
|
-
self._init_parameters(
|
171
|
-
distance, energy, pixel_size, delta_beta, padding, use_R2C
|
172
|
-
)
|
173
|
-
self._calc_shape(shape, margin)
|
174
|
-
self.compute_filter()
|
175
|
-
|
176
|
-
def _init_parameters(
|
177
|
-
self, distance, energy, pixel_size, delta_beta, padding, use_R2C
|
178
|
-
):
|
179
|
-
self.distance_cm = distance
|
180
|
-
self.distance_micron = distance * 1e4
|
181
|
-
self.energy_kev = energy
|
182
|
-
self.pixel_size_micron = pixel_size
|
183
|
-
self.delta_beta = delta_beta
|
184
|
-
self.wavelength_micron = 1.23984199e-3 / self.energy_kev
|
185
|
-
self.padding = padding
|
186
|
-
self.padding_methods = {
|
187
|
-
PaddingMode.ZEROS: self._pad_zeros,
|
188
|
-
PaddingMode.MEAN: self._pad_mean,
|
189
|
-
PaddingMode.EDGE: self._pad_edge,
|
190
|
-
PaddingMode.SYMMETRIC: self._pad_sym,
|
191
|
-
PaddingMode.REFLECT: self._pad_reflect,
|
192
|
-
}
|
193
|
-
self.use_R2C = use_R2C
|
194
|
-
if use_R2C:
|
195
|
-
self.fft_func = np.fft.rfft2
|
196
|
-
self.ifft_func = np.fft.irfft2
|
197
|
-
else:
|
198
|
-
self.fft_func = np.fft.fft2
|
199
|
-
self.ifft_func = np.fft.ifft2
|
200
|
-
|
201
|
-
def _calc_shape(self, shape, margin):
|
202
|
-
if np.isscalar(shape):
|
203
|
-
shape = (shape, shape)
|
204
|
-
else:
|
205
|
-
assert len(shape) == 2
|
206
|
-
self.shape = shape
|
207
|
-
self._set_margin_value(margin)
|
208
|
-
self._calc_padded_shape()
|
209
|
-
|
210
|
-
def _set_margin_value(self, margin):
|
211
|
-
self.margin = margin
|
212
|
-
if margin is None:
|
213
|
-
self.shape_inner = self.shape
|
214
|
-
self.use_margin = False
|
215
|
-
self.margin = ((0, 0), (0, 0))
|
216
|
-
return
|
217
|
-
self.use_margin = True
|
218
|
-
try:
|
219
|
-
((U, D), (L, R)) = margin
|
220
|
-
except ValueError:
|
221
|
-
raise ValueError("Expected margin in the format ((U, D), (L, R))")
|
222
|
-
for val in [U, D, L, R]:
|
223
|
-
if type(val) is str and val != "auto":
|
224
|
-
raise ValueError("Expected either an integer, or 'auto'")
|
225
|
-
if int(val) != val or val < 0:
|
226
|
-
raise ValueError("Expected positive integers for margin values")
|
227
|
-
self.shape_inner = (self.shape[0] - U - D, self.shape[1] - L - R)
|
228
|
-
|
229
|
-
def _calc_padded_shape(self):
|
230
|
-
"""
|
231
|
-
Compute the padded shape.
|
232
|
-
If margin = 0, length_padded = next_power(2*length).
|
233
|
-
Otherwise : length_padded = next_power(2*(length - margins))
|
234
|
-
|
235
|
-
Principle
|
236
|
-
----------
|
237
|
-
|
238
|
-
<--------------------- nx_p --------------------->
|
239
|
-
| | original data | |
|
240
|
-
< -- Pl - ><-- L -->< -- nx --><-- R --><-- Pr -->
|
241
|
-
<----------- nx0 ----------->
|
242
|
-
|
243
|
-
Pl, Pr : left/right padding length
|
244
|
-
L, R : left/right margin
|
245
|
-
nx : length of inner data (and length of final result)
|
246
|
-
nx0 : length of original data
|
247
|
-
nx_p : total length of padded data
|
248
|
-
"""
|
249
|
-
n_y, n_x = self.shape_inner
|
250
|
-
n_y_p = self._get_next_power(2 * n_y)
|
251
|
-
n_x_p = self._get_next_power(2 * n_x)
|
252
|
-
self.shape_padded = (n_y_p, n_x_p)
|
253
|
-
self.data_padded = np.zeros((n_y_p, n_x_p), dtype=np.float64)
|
254
|
-
|
255
|
-
((U, D), (L, R)) = self.margin
|
256
|
-
n_y0, n_x0 = self.shape
|
257
|
-
self.pad_top_len = (n_y_p - n_y0) // 2
|
258
|
-
self.pad_bottom_len = n_y_p - n_y0 - self.pad_top_len
|
259
|
-
self.pad_left_len = (n_x_p - n_x0) // 2
|
260
|
-
self.pad_right_len = n_x_p - n_x0 - self.pad_left_len
|
261
|
-
|
262
|
-
def _get_next_power(self, n):
|
263
|
-
"""
|
264
|
-
Given a number, get the closest (upper) number p such that
|
265
|
-
p is a power of 2, 3, 5 and 7.
|
266
|
-
"""
|
267
|
-
idx = bisect(self.powers, n)
|
268
|
-
if self.powers[idx - 1] == n:
|
269
|
-
return n
|
270
|
-
return self.powers[idx]
|
271
|
-
|
272
|
-
def compute_filter(self):
|
273
|
-
nyp, nxp = self.shape_padded
|
274
|
-
fftfreq = np.fft.rfftfreq if self.use_R2C else np.fft.fftfreq
|
275
|
-
fy = np.fft.fftfreq(nyp, d=self.pixel_size_micron)
|
276
|
-
fx = fftfreq(nxp, d=self.pixel_size_micron)
|
277
|
-
self._coords_grid = np.add.outer(fy**2, fx**2)
|
278
|
-
#
|
279
|
-
k2 = self._coords_grid
|
280
|
-
D = self.distance_micron
|
281
|
-
L = self.wavelength_micron
|
282
|
-
db = self.delta_beta
|
283
|
-
self.paganin_filter = 1.0 / (1 + db * L * D * pi * k2) # HST / savu
|
284
|
-
# ~ self.paganin_filter = 1.0 / (1 + db * L * D * k2/ (4*pi)) # Paganin / tomopy
|
285
|
-
|
286
|
-
def pad_with_values(self, data, top_val=0, bottom_val=0, left_val=0, right_val=0):
|
287
|
-
"""
|
288
|
-
Pad the data into `self.padded_data` with values.
|
289
|
-
|
290
|
-
Parameters
|
291
|
-
----------
|
292
|
-
data: numpy.ndarray
|
293
|
-
data (radio)
|
294
|
-
top_val: float or numpy.ndarray, optional
|
295
|
-
Value(s) to fill the top of the padded data with.
|
296
|
-
bottom_val: float or numpy.ndarray, optional
|
297
|
-
Value(s) to fill the bottom of the padded data with.
|
298
|
-
left_val: float or numpy.ndarray, optional
|
299
|
-
Value(s) to fill the left of the padded data with.
|
300
|
-
right_val: float or numpy.ndarray, optional
|
301
|
-
Value(s) to fill the right of the padded data with.
|
302
|
-
"""
|
303
|
-
self.data_padded.fill(0)
|
304
|
-
Pu, Pd = self.pad_top_len, self.pad_bottom_len
|
305
|
-
Pl, Pr = self.pad_left_len, self.pad_right_len
|
306
|
-
self.data_padded[:Pu, :] = top_val
|
307
|
-
self.data_padded[-Pd:, :] = bottom_val
|
308
|
-
self.data_padded[:, :Pl] = left_val
|
309
|
-
self.data_padded[:, -Pr:] = right_val
|
310
|
-
self.data_padded[Pu:-Pd, Pl:-Pr] = data
|
311
|
-
# Transform the data to the FFT layout
|
312
|
-
self.data_padded = np.roll(self.data_padded, (-Pu, -Pl), axis=(0, 1))
|
313
|
-
|
314
|
-
def _pad_zeros(self, data):
|
315
|
-
return self.pad_with_values(
|
316
|
-
data, top_val=0, bottom_val=0, left_val=0, right_val=0
|
317
|
-
)
|
318
|
-
|
319
|
-
def _pad_mean(self, data):
|
320
|
-
"""
|
321
|
-
Pad the data at each border with a different constant value.
|
322
|
-
The value depends on the padding size:
|
323
|
-
- On the left, value = mean(first data column)
|
324
|
-
- On the right, value = mean(last data column)
|
325
|
-
- On the top, value = mean(first data row)
|
326
|
-
- On the bottom, value = mean(last data row)
|
327
|
-
"""
|
328
|
-
return self.pad_with_values(
|
329
|
-
data,
|
330
|
-
top_val=np.mean(data[0, :]),
|
331
|
-
bottom_val=np.mean(data[-1, :]),
|
332
|
-
left_val=np.mean(data[:, 0]),
|
333
|
-
right_val=np.mean(data[:, -1]),
|
334
|
-
)
|
335
|
-
|
336
|
-
def _pad_numpy(self, data, mode):
|
337
|
-
data_padded = np.pad(
|
338
|
-
data,
|
339
|
-
(
|
340
|
-
(self.pad_top_len, self.pad_bottom_len),
|
341
|
-
(self.pad_left_len, self.pad_right_len),
|
342
|
-
),
|
343
|
-
mode=mode.value,
|
344
|
-
)
|
345
|
-
# Transform the data to the FFT layout
|
346
|
-
Pu, Pl = self.pad_top_len, self.pad_left_len
|
347
|
-
return np.roll(data_padded, (-Pu, -Pl), axis=(0, 1))
|
348
|
-
|
349
|
-
def _pad_edge(self, data):
|
350
|
-
self.data_padded = self._pad_numpy(data, mode=PaddingMode.EDGE)
|
351
|
-
|
352
|
-
def _pad_sym(self, data):
|
353
|
-
self.data_padded = self._pad_numpy(data, mode=PaddingMode.SYMMETRIC)
|
354
|
-
|
355
|
-
def _pad_reflect(self, data):
|
356
|
-
self.data_padded = self._pad_numpy(data, mode=PaddingMode.REFLECT)
|
357
|
-
|
358
|
-
def pad_data(self, data, padding_method=None):
|
359
|
-
padding_method = padding_method or self.padding
|
360
|
-
padding_method = PaddingMode.from_value(padding_method)
|
361
|
-
if padding_method not in self.padding_methods:
|
362
|
-
raise ValueError(
|
363
|
-
"Unknown padding method %s. Available are: %s"
|
364
|
-
% (padding_method, str(list(self.padding_methods.keys())))
|
365
|
-
)
|
366
|
-
pad_func = self.padding_methods[padding_method]
|
367
|
-
pad_func(data)
|
368
|
-
return self.data_padded
|
369
|
-
|
370
|
-
def apply_filter(self, radio, padding_method=None):
|
371
|
-
self.pad_data(radio, padding_method=padding_method)
|
372
|
-
radio_f = self.fft_func(self.data_padded)
|
373
|
-
radio_f *= self.paganin_filter
|
374
|
-
radio_filtered = self.ifft_func(radio_f).real
|
375
|
-
s0, s1 = self.shape_inner
|
376
|
-
((U, _), (L, _)) = self.margin
|
377
|
-
return radio_filtered[U : U + s0, L : L + s1]
|
378
|
-
|
379
|
-
def lmicron_to_db(self, Lmicron):
|
380
|
-
"""
|
381
|
-
Utility to convert the "Lmicron" parameter of PyHST
|
382
|
-
to a value of delta/beta.
|
383
|
-
Please see the doc of nabu.preproc.phase.lmicron_to_db()
|
384
|
-
"""
|
385
|
-
return lmicron_to_db(Lmicron, self.energy_kev, self.distance_micron)
|
386
|
-
|
387
|
-
__call__ = apply_filter
|