tokenator 0.1.8__py3-none-any.whl → 0.1.10__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- tokenator/__init__.py +3 -3
- tokenator/anthropic/client_anthropic.py +155 -0
- tokenator/anthropic/stream_interceptors.py +146 -0
- tokenator/base_wrapper.py +26 -13
- tokenator/create_migrations.py +6 -5
- tokenator/migrations/env.py +5 -4
- tokenator/migrations/versions/f6f1f2437513_initial_migration.py +25 -23
- tokenator/migrations.py +9 -6
- tokenator/models.py +15 -4
- tokenator/openai/client_openai.py +163 -0
- tokenator/openai/stream_interceptors.py +146 -0
- tokenator/schemas.py +26 -27
- tokenator/usage.py +114 -47
- tokenator/utils.py +14 -9
- {tokenator-0.1.8.dist-info → tokenator-0.1.10.dist-info}/METADATA +40 -13
- tokenator-0.1.10.dist-info/RECORD +19 -0
- tokenator/client_anthropic.py +0 -148
- tokenator/client_openai.py +0 -151
- tokenator-0.1.8.dist-info/RECORD +0 -17
- {tokenator-0.1.8.dist-info → tokenator-0.1.10.dist-info}/LICENSE +0 -0
- {tokenator-0.1.8.dist-info → tokenator-0.1.10.dist-info}/WHEEL +0 -0
@@ -0,0 +1,163 @@
|
|
1
|
+
"""OpenAI client wrapper with token usage tracking."""
|
2
|
+
|
3
|
+
from typing import Any, Optional, Union, overload, Iterator, AsyncIterator
|
4
|
+
import logging
|
5
|
+
|
6
|
+
from openai import AsyncOpenAI, OpenAI
|
7
|
+
from openai.types.chat import ChatCompletion, ChatCompletionChunk
|
8
|
+
|
9
|
+
from ..models import Usage, TokenUsageStats
|
10
|
+
from ..base_wrapper import BaseWrapper, ResponseType
|
11
|
+
from .stream_interceptors import OpenAIAsyncStreamInterceptor, OpenAISyncStreamInterceptor
|
12
|
+
|
13
|
+
logger = logging.getLogger(__name__)
|
14
|
+
|
15
|
+
|
16
|
+
class BaseOpenAIWrapper(BaseWrapper):
|
17
|
+
provider = "openai"
|
18
|
+
|
19
|
+
def _process_response_usage(
|
20
|
+
self, response: ResponseType
|
21
|
+
) -> Optional[TokenUsageStats]:
|
22
|
+
"""Process and log usage statistics from a response."""
|
23
|
+
try:
|
24
|
+
if isinstance(response, ChatCompletion):
|
25
|
+
if response.usage is None:
|
26
|
+
return None
|
27
|
+
usage = Usage(
|
28
|
+
prompt_tokens=response.usage.prompt_tokens,
|
29
|
+
completion_tokens=response.usage.completion_tokens,
|
30
|
+
total_tokens=response.usage.total_tokens,
|
31
|
+
)
|
32
|
+
return TokenUsageStats(model=response.model, usage=usage)
|
33
|
+
|
34
|
+
elif isinstance(response, dict):
|
35
|
+
usage_dict = response.get("usage")
|
36
|
+
if not usage_dict:
|
37
|
+
return None
|
38
|
+
usage = Usage(
|
39
|
+
prompt_tokens=usage_dict.get("prompt_tokens", 0),
|
40
|
+
completion_tokens=usage_dict.get("completion_tokens", 0),
|
41
|
+
total_tokens=usage_dict.get("total_tokens", 0),
|
42
|
+
)
|
43
|
+
return TokenUsageStats(
|
44
|
+
model=response.get("model", "unknown"), usage=usage
|
45
|
+
)
|
46
|
+
except Exception as e:
|
47
|
+
logger.warning("Failed to process usage stats: %s", str(e))
|
48
|
+
return None
|
49
|
+
return None
|
50
|
+
|
51
|
+
@property
|
52
|
+
def chat(self):
|
53
|
+
return self
|
54
|
+
|
55
|
+
@property
|
56
|
+
def completions(self):
|
57
|
+
return self
|
58
|
+
|
59
|
+
|
60
|
+
def _create_usage_callback(execution_id, log_usage_fn):
|
61
|
+
"""Creates a callback function for processing usage statistics from stream chunks."""
|
62
|
+
|
63
|
+
def usage_callback(chunks):
|
64
|
+
if not chunks:
|
65
|
+
return
|
66
|
+
# Build usage_data from the first chunk's model
|
67
|
+
usage_data = TokenUsageStats(
|
68
|
+
model=chunks[0].model,
|
69
|
+
usage=Usage(),
|
70
|
+
)
|
71
|
+
# Sum up usage from all chunks
|
72
|
+
has_usage = False
|
73
|
+
for ch in chunks:
|
74
|
+
if ch.usage:
|
75
|
+
has_usage = True
|
76
|
+
usage_data.usage.prompt_tokens += ch.usage.prompt_tokens
|
77
|
+
usage_data.usage.completion_tokens += ch.usage.completion_tokens
|
78
|
+
usage_data.usage.total_tokens += ch.usage.total_tokens
|
79
|
+
|
80
|
+
if has_usage:
|
81
|
+
log_usage_fn(usage_data, execution_id=execution_id)
|
82
|
+
|
83
|
+
return usage_callback
|
84
|
+
|
85
|
+
|
86
|
+
class OpenAIWrapper(BaseOpenAIWrapper):
|
87
|
+
def create(
|
88
|
+
self, *args: Any, execution_id: Optional[str] = None, **kwargs: Any
|
89
|
+
) -> Union[ChatCompletion, Iterator[ChatCompletion]]:
|
90
|
+
"""Create a chat completion and log token usage."""
|
91
|
+
logger.debug("Creating chat completion with args: %s, kwargs: %s", args, kwargs)
|
92
|
+
|
93
|
+
if kwargs.get("stream", False):
|
94
|
+
base_stream = self.client.chat.completions.create(*args, **kwargs)
|
95
|
+
return OpenAISyncStreamInterceptor(
|
96
|
+
base_stream=base_stream,
|
97
|
+
usage_callback=_create_usage_callback(execution_id, self._log_usage),
|
98
|
+
)
|
99
|
+
|
100
|
+
response = self.client.chat.completions.create(*args, **kwargs)
|
101
|
+
usage_data = self._process_response_usage(response)
|
102
|
+
if usage_data:
|
103
|
+
self._log_usage(usage_data, execution_id=execution_id)
|
104
|
+
|
105
|
+
return response
|
106
|
+
|
107
|
+
|
108
|
+
class AsyncOpenAIWrapper(BaseOpenAIWrapper):
|
109
|
+
async def create(
|
110
|
+
self, *args: Any, execution_id: Optional[str] = None, **kwargs: Any
|
111
|
+
) -> Union[ChatCompletion, AsyncIterator[ChatCompletionChunk]]:
|
112
|
+
"""
|
113
|
+
Create a chat completion and log token usage.
|
114
|
+
"""
|
115
|
+
logger.debug("Creating chat completion with args: %s, kwargs: %s", args, kwargs)
|
116
|
+
|
117
|
+
# If user wants a stream, return an interceptor
|
118
|
+
if kwargs.get("stream", False):
|
119
|
+
base_stream = await self.client.chat.completions.create(*args, **kwargs)
|
120
|
+
return OpenAIAsyncStreamInterceptor(
|
121
|
+
base_stream=base_stream,
|
122
|
+
usage_callback=_create_usage_callback(execution_id, self._log_usage),
|
123
|
+
)
|
124
|
+
|
125
|
+
# Non-streaming path remains unchanged
|
126
|
+
response = await self.client.chat.completions.create(*args, **kwargs)
|
127
|
+
usage_data = self._process_response_usage(response)
|
128
|
+
if usage_data:
|
129
|
+
self._log_usage(usage_data, execution_id=execution_id)
|
130
|
+
return response
|
131
|
+
|
132
|
+
|
133
|
+
@overload
|
134
|
+
def tokenator_openai(
|
135
|
+
client: OpenAI,
|
136
|
+
db_path: Optional[str] = None,
|
137
|
+
) -> OpenAIWrapper: ...
|
138
|
+
|
139
|
+
|
140
|
+
@overload
|
141
|
+
def tokenator_openai(
|
142
|
+
client: AsyncOpenAI,
|
143
|
+
db_path: Optional[str] = None,
|
144
|
+
) -> AsyncOpenAIWrapper: ...
|
145
|
+
|
146
|
+
|
147
|
+
def tokenator_openai(
|
148
|
+
client: Union[OpenAI, AsyncOpenAI],
|
149
|
+
db_path: Optional[str] = None,
|
150
|
+
) -> Union[OpenAIWrapper, AsyncOpenAIWrapper]:
|
151
|
+
"""Create a token-tracking wrapper for an OpenAI client.
|
152
|
+
|
153
|
+
Args:
|
154
|
+
client: OpenAI or AsyncOpenAI client instance
|
155
|
+
db_path: Optional path to SQLite database for token tracking
|
156
|
+
"""
|
157
|
+
if isinstance(client, OpenAI):
|
158
|
+
return OpenAIWrapper(client=client, db_path=db_path)
|
159
|
+
|
160
|
+
if isinstance(client, AsyncOpenAI):
|
161
|
+
return AsyncOpenAIWrapper(client=client, db_path=db_path)
|
162
|
+
|
163
|
+
raise ValueError("Client must be an instance of OpenAI or AsyncOpenAI")
|
@@ -0,0 +1,146 @@
|
|
1
|
+
import logging
|
2
|
+
from typing import AsyncIterator, Callable, List, Optional, TypeVar, Iterator
|
3
|
+
|
4
|
+
from openai import AsyncStream, Stream
|
5
|
+
|
6
|
+
logger = logging.getLogger(__name__)
|
7
|
+
|
8
|
+
_T = TypeVar("_T") # or you might specifically do _T = ChatCompletionChunk
|
9
|
+
|
10
|
+
|
11
|
+
class OpenAIAsyncStreamInterceptor(AsyncStream[_T]):
|
12
|
+
"""
|
13
|
+
A wrapper around openai.AsyncStream that delegates all functionality
|
14
|
+
to the 'base_stream' but intercepts each chunk to handle usage or
|
15
|
+
logging logic. This preserves .response and other methods.
|
16
|
+
|
17
|
+
You can store aggregated usage in a local list and process it when
|
18
|
+
the stream ends (StopAsyncIteration).
|
19
|
+
"""
|
20
|
+
|
21
|
+
def __init__(
|
22
|
+
self,
|
23
|
+
base_stream: AsyncStream[_T],
|
24
|
+
usage_callback: Optional[Callable[[List[_T]], None]] = None,
|
25
|
+
):
|
26
|
+
# We do NOT call super().__init__() because openai.AsyncStream
|
27
|
+
# expects constructor parameters we don't want to re-initialize.
|
28
|
+
# Instead, we just store the base_stream and delegate everything to it.
|
29
|
+
self._base_stream = base_stream
|
30
|
+
self._usage_callback = usage_callback
|
31
|
+
self._chunks: List[_T] = []
|
32
|
+
|
33
|
+
@property
|
34
|
+
def response(self):
|
35
|
+
"""Expose the original stream's 'response' so user code can do stream.response, etc."""
|
36
|
+
return self._base_stream.response
|
37
|
+
|
38
|
+
def __aiter__(self) -> AsyncIterator[_T]:
|
39
|
+
"""
|
40
|
+
Called when we do 'async for chunk in wrapped_stream:'
|
41
|
+
We simply return 'self'. Then __anext__ does the rest.
|
42
|
+
"""
|
43
|
+
return self
|
44
|
+
|
45
|
+
async def __anext__(self) -> _T:
|
46
|
+
"""
|
47
|
+
Intercept iteration. We pull the next chunk from the base_stream.
|
48
|
+
If it's the end, do any final usage logging, then raise StopAsyncIteration.
|
49
|
+
Otherwise, we can accumulate usage info or do whatever we need with the chunk.
|
50
|
+
"""
|
51
|
+
try:
|
52
|
+
chunk = await self._base_stream.__anext__()
|
53
|
+
except StopAsyncIteration:
|
54
|
+
# Once the base stream is fully consumed, we can do final usage/logging.
|
55
|
+
if self._usage_callback and self._chunks:
|
56
|
+
self._usage_callback(self._chunks)
|
57
|
+
raise
|
58
|
+
|
59
|
+
# Intercept each chunk
|
60
|
+
self._chunks.append(chunk)
|
61
|
+
return chunk
|
62
|
+
|
63
|
+
async def __aenter__(self) -> "OpenAIAsyncStreamInterceptor[_T]":
|
64
|
+
"""Support async with ... : usage."""
|
65
|
+
await self._base_stream.__aenter__()
|
66
|
+
return self
|
67
|
+
|
68
|
+
async def __aexit__(self, exc_type, exc_val, exc_tb):
|
69
|
+
"""
|
70
|
+
Ensure we propagate __aexit__ to the base stream,
|
71
|
+
so connections are properly closed.
|
72
|
+
"""
|
73
|
+
return await self._base_stream.__aexit__(exc_type, exc_val, exc_tb)
|
74
|
+
|
75
|
+
async def close(self) -> None:
|
76
|
+
"""Delegate close to the base_stream."""
|
77
|
+
await self._base_stream.close()
|
78
|
+
|
79
|
+
|
80
|
+
class OpenAISyncStreamInterceptor(Stream[_T]):
|
81
|
+
"""
|
82
|
+
A wrapper around openai.Stream that delegates all functionality
|
83
|
+
to the 'base_stream' but intercepts each chunk to handle usage or
|
84
|
+
logging logic. This preserves .response and other methods.
|
85
|
+
|
86
|
+
You can store aggregated usage in a local list and process it when
|
87
|
+
the stream ends (StopIteration).
|
88
|
+
"""
|
89
|
+
|
90
|
+
def __init__(
|
91
|
+
self,
|
92
|
+
base_stream: Stream[_T],
|
93
|
+
usage_callback: Optional[Callable[[List[_T]], None]] = None,
|
94
|
+
):
|
95
|
+
# We do NOT call super().__init__() because openai.Stream
|
96
|
+
# expects constructor parameters we don't want to re-initialize.
|
97
|
+
# Instead, we just store the base_stream and delegate everything to it.
|
98
|
+
self._base_stream = base_stream
|
99
|
+
self._usage_callback = usage_callback
|
100
|
+
self._chunks: List[_T] = []
|
101
|
+
|
102
|
+
@property
|
103
|
+
def response(self):
|
104
|
+
"""Expose the original stream's 'response' so user code can do stream.response, etc."""
|
105
|
+
return self._base_stream.response
|
106
|
+
|
107
|
+
def __iter__(self) -> Iterator[_T]:
|
108
|
+
"""
|
109
|
+
Called when we do 'for chunk in wrapped_stream:'
|
110
|
+
We simply return 'self'. Then __next__ does the rest.
|
111
|
+
"""
|
112
|
+
return self
|
113
|
+
|
114
|
+
def __next__(self) -> _T:
|
115
|
+
"""
|
116
|
+
Intercept iteration. We pull the next chunk from the base_stream.
|
117
|
+
If it's the end, do any final usage logging, then raise StopIteration.
|
118
|
+
Otherwise, we can accumulate usage info or do whatever we need with the chunk.
|
119
|
+
"""
|
120
|
+
try:
|
121
|
+
chunk = self._base_stream.__next__()
|
122
|
+
except StopIteration:
|
123
|
+
# Once the base stream is fully consumed, we can do final usage/logging.
|
124
|
+
if self._usage_callback and self._chunks:
|
125
|
+
self._usage_callback(self._chunks)
|
126
|
+
raise
|
127
|
+
|
128
|
+
# Intercept each chunk
|
129
|
+
self._chunks.append(chunk)
|
130
|
+
return chunk
|
131
|
+
|
132
|
+
def __enter__(self) -> "OpenAISyncStreamInterceptor[_T]":
|
133
|
+
"""Support with ... : usage."""
|
134
|
+
self._base_stream.__enter__()
|
135
|
+
return self
|
136
|
+
|
137
|
+
def __exit__(self, exc_type, exc_val, exc_tb):
|
138
|
+
"""
|
139
|
+
Ensure we propagate __exit__ to the base stream,
|
140
|
+
so connections are properly closed.
|
141
|
+
"""
|
142
|
+
return self._base_stream.__exit__(exc_type, exc_val, exc_tb)
|
143
|
+
|
144
|
+
def close(self) -> None:
|
145
|
+
"""Delegate close to the base_stream."""
|
146
|
+
self._base_stream.close()
|
tokenator/schemas.py
CHANGED
@@ -1,26 +1,22 @@
|
|
1
1
|
"""SQLAlchemy models for tokenator."""
|
2
2
|
|
3
|
-
import uuid
|
4
3
|
from datetime import datetime
|
5
|
-
import os
|
6
4
|
|
7
|
-
from sqlalchemy import create_engine, Column, Integer, String, DateTime,
|
5
|
+
from sqlalchemy import create_engine, Column, Integer, String, DateTime, Index
|
8
6
|
from sqlalchemy.orm import sessionmaker, scoped_session, declarative_base
|
9
7
|
|
10
8
|
from .utils import get_default_db_path
|
11
9
|
|
12
10
|
Base = declarative_base()
|
13
11
|
|
12
|
+
|
14
13
|
def get_engine(db_path: str = None):
|
15
14
|
"""Create SQLAlchemy engine with the given database path."""
|
16
15
|
if db_path is None:
|
17
|
-
|
18
|
-
import google.colab # type: ignore
|
19
|
-
db_path = '/content/tokenator.db'
|
20
|
-
except ImportError:
|
21
|
-
db_path = get_default_db_path()
|
16
|
+
db_path = get_default_db_path()
|
22
17
|
return create_engine(f"sqlite:///{db_path}", echo=False)
|
23
18
|
|
19
|
+
|
24
20
|
def get_session(db_path: str = None):
|
25
21
|
"""Create a thread-safe session factory."""
|
26
22
|
engine = get_engine(db_path)
|
@@ -28,39 +24,42 @@ def get_session(db_path: str = None):
|
|
28
24
|
session_factory = sessionmaker(bind=engine)
|
29
25
|
return scoped_session(session_factory)
|
30
26
|
|
27
|
+
|
31
28
|
class TokenUsage(Base):
|
32
29
|
"""Model for tracking token usage."""
|
33
|
-
|
30
|
+
|
34
31
|
__tablename__ = "token_usage"
|
35
|
-
|
32
|
+
|
36
33
|
id = Column(Integer, primary_key=True)
|
37
34
|
execution_id = Column(String, nullable=False)
|
38
35
|
provider = Column(String, nullable=False)
|
39
36
|
model = Column(String, nullable=False)
|
40
37
|
created_at = Column(DateTime, nullable=False, default=datetime.now)
|
41
|
-
updated_at = Column(
|
38
|
+
updated_at = Column(
|
39
|
+
DateTime, nullable=False, default=datetime.now, onupdate=datetime.now
|
40
|
+
)
|
42
41
|
prompt_tokens = Column(Integer, nullable=False)
|
43
42
|
completion_tokens = Column(Integer, nullable=False)
|
44
43
|
total_tokens = Column(Integer, nullable=False)
|
45
|
-
|
44
|
+
|
46
45
|
# Create indexes
|
47
46
|
__table_args__ = (
|
48
|
-
Index(
|
49
|
-
Index(
|
50
|
-
Index(
|
51
|
-
Index(
|
47
|
+
Index("idx_created_at", "created_at"),
|
48
|
+
Index("idx_execution_id", "execution_id"),
|
49
|
+
Index("idx_provider", "provider"),
|
50
|
+
Index("idx_model", "model"),
|
52
51
|
)
|
53
|
-
|
52
|
+
|
54
53
|
def to_dict(self):
|
55
54
|
"""Convert model instance to dictionary."""
|
56
55
|
return {
|
57
|
-
|
58
|
-
|
59
|
-
|
60
|
-
|
61
|
-
|
62
|
-
|
63
|
-
|
64
|
-
|
65
|
-
|
66
|
-
}
|
56
|
+
"id": self.id,
|
57
|
+
"execution_id": self.execution_id,
|
58
|
+
"provider": self.provider,
|
59
|
+
"model": self.model,
|
60
|
+
"created_at": self.created_at,
|
61
|
+
"updated_at": self.updated_at,
|
62
|
+
"prompt_tokens": self.prompt_tokens,
|
63
|
+
"completion_tokens": self.completion_tokens,
|
64
|
+
"total_tokens": self.total_tokens,
|
65
|
+
}
|