tokenator 0.1.7__py3-none-any.whl → 0.1.9__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- tokenator/__init__.py +1 -1
- tokenator/openai/AsyncStreamInterceptor.py +78 -0
- tokenator/{client_openai.py → openai/client_openai.py} +45 -27
- {tokenator-0.1.7.dist-info → tokenator-0.1.9.dist-info}/METADATA +28 -3
- {tokenator-0.1.7.dist-info → tokenator-0.1.9.dist-info}/RECORD +7 -6
- {tokenator-0.1.7.dist-info → tokenator-0.1.9.dist-info}/LICENSE +0 -0
- {tokenator-0.1.7.dist-info → tokenator-0.1.9.dist-info}/WHEEL +0 -0
tokenator/__init__.py
CHANGED
@@ -1,7 +1,7 @@
|
|
1
1
|
"""Tokenator - Track and analyze your OpenAI API token usage and costs."""
|
2
2
|
|
3
3
|
import logging
|
4
|
-
from .client_openai import tokenator_openai
|
4
|
+
from .openai.client_openai import tokenator_openai
|
5
5
|
from .client_anthropic import tokenator_anthropic
|
6
6
|
from . import usage
|
7
7
|
from .utils import get_default_db_path
|
@@ -0,0 +1,78 @@
|
|
1
|
+
import logging
|
2
|
+
from typing import AsyncIterator, Callable, Generic, List, Optional, TypeVar
|
3
|
+
|
4
|
+
from openai import AsyncStream, AsyncOpenAI
|
5
|
+
from openai.types.chat import ChatCompletionChunk
|
6
|
+
|
7
|
+
logger = logging.getLogger(__name__)
|
8
|
+
|
9
|
+
_T = TypeVar("_T") # or you might specifically do _T = ChatCompletionChunk
|
10
|
+
|
11
|
+
|
12
|
+
class AsyncStreamInterceptor(AsyncStream[_T]):
|
13
|
+
"""
|
14
|
+
A wrapper around openai.AsyncStream that delegates all functionality
|
15
|
+
to the 'base_stream' but intercepts each chunk to handle usage or
|
16
|
+
logging logic. This preserves .response and other methods.
|
17
|
+
|
18
|
+
You can store aggregated usage in a local list and process it when
|
19
|
+
the stream ends (StopAsyncIteration).
|
20
|
+
"""
|
21
|
+
|
22
|
+
def __init__(
|
23
|
+
self,
|
24
|
+
base_stream: AsyncStream[_T],
|
25
|
+
usage_callback: Optional[Callable[[List[_T]], None]] = None,
|
26
|
+
):
|
27
|
+
# We do NOT call super().__init__() because openai.AsyncStream
|
28
|
+
# expects constructor parameters we don't want to re-initialize.
|
29
|
+
# Instead, we just store the base_stream and delegate everything to it.
|
30
|
+
self._base_stream = base_stream
|
31
|
+
self._usage_callback = usage_callback
|
32
|
+
self._chunks: List[_T] = []
|
33
|
+
|
34
|
+
@property
|
35
|
+
def response(self):
|
36
|
+
"""Expose the original stream's 'response' so user code can do stream.response, etc."""
|
37
|
+
return self._base_stream.response
|
38
|
+
|
39
|
+
def __aiter__(self) -> AsyncIterator[_T]:
|
40
|
+
"""
|
41
|
+
Called when we do 'async for chunk in wrapped_stream:'
|
42
|
+
We simply return 'self'. Then __anext__ does the rest.
|
43
|
+
"""
|
44
|
+
return self
|
45
|
+
|
46
|
+
async def __anext__(self) -> _T:
|
47
|
+
"""
|
48
|
+
Intercept iteration. We pull the next chunk from the base_stream.
|
49
|
+
If it's the end, do any final usage logging, then raise StopAsyncIteration.
|
50
|
+
Otherwise, we can accumulate usage info or do whatever we need with the chunk.
|
51
|
+
"""
|
52
|
+
try:
|
53
|
+
chunk = await self._base_stream.__anext__()
|
54
|
+
except StopAsyncIteration:
|
55
|
+
# Once the base stream is fully consumed, we can do final usage/logging.
|
56
|
+
if self._usage_callback and self._chunks:
|
57
|
+
self._usage_callback(self._chunks)
|
58
|
+
raise
|
59
|
+
|
60
|
+
# Intercept each chunk
|
61
|
+
self._chunks.append(chunk)
|
62
|
+
return chunk
|
63
|
+
|
64
|
+
async def __aenter__(self) -> "AsyncStreamInterceptor[_T]":
|
65
|
+
"""Support async with ... : usage."""
|
66
|
+
await self._base_stream.__aenter__()
|
67
|
+
return self
|
68
|
+
|
69
|
+
async def __aexit__(self, exc_type, exc_val, exc_tb):
|
70
|
+
"""
|
71
|
+
Ensure we propagate __aexit__ to the base stream,
|
72
|
+
so connections are properly closed.
|
73
|
+
"""
|
74
|
+
return await self._base_stream.__aexit__(exc_type, exc_val, exc_tb)
|
75
|
+
|
76
|
+
async def close(self) -> None:
|
77
|
+
"""Delegate close to the base_stream."""
|
78
|
+
await self._base_stream.close()
|
@@ -6,8 +6,9 @@ import logging
|
|
6
6
|
from openai import AsyncOpenAI, AsyncStream, OpenAI, Stream
|
7
7
|
from openai.types.chat import ChatCompletion, ChatCompletionChunk
|
8
8
|
|
9
|
-
from
|
10
|
-
from
|
9
|
+
from ..models import Usage, TokenUsageStats
|
10
|
+
from ..base_wrapper import BaseWrapper, ResponseType
|
11
|
+
from .AsyncStreamInterceptor import AsyncStreamInterceptor
|
11
12
|
|
12
13
|
logger = logging.getLogger(__name__)
|
13
14
|
|
@@ -87,37 +88,54 @@ class OpenAIWrapper(BaseOpenAIWrapper):
|
|
87
88
|
|
88
89
|
|
89
90
|
class AsyncOpenAIWrapper(BaseOpenAIWrapper):
|
90
|
-
async def create(
|
91
|
-
|
91
|
+
async def create(
|
92
|
+
self,
|
93
|
+
*args: Any,
|
94
|
+
execution_id: Optional[str] = None,
|
95
|
+
**kwargs: Any
|
96
|
+
) -> Union[ChatCompletion, AsyncIterator[ChatCompletionChunk]]:
|
97
|
+
"""
|
98
|
+
Create a chat completion and log token usage.
|
99
|
+
"""
|
92
100
|
logger.debug("Creating chat completion with args: %s, kwargs: %s", args, kwargs)
|
93
|
-
|
94
|
-
|
95
|
-
|
96
|
-
|
97
|
-
|
101
|
+
|
102
|
+
# If user wants a stream, return an interceptor
|
103
|
+
if kwargs.get("stream", False):
|
104
|
+
base_stream = await self.client.chat.completions.create(*args, **kwargs)
|
105
|
+
|
106
|
+
# Define a callback that will get called once the stream ends
|
107
|
+
def usage_callback(chunks):
|
108
|
+
# Mimic your old logic to gather usage from chunk.usage
|
109
|
+
# e.g. ChatCompletionChunk.usage
|
110
|
+
# Then call self._log_usage(...)
|
111
|
+
if not chunks:
|
112
|
+
return
|
113
|
+
# Build usage_data from the first chunk's model
|
114
|
+
usage_data = TokenUsageStats(
|
115
|
+
model=chunks[0].model,
|
116
|
+
usage=Usage(),
|
117
|
+
)
|
118
|
+
# Sum up usage from all chunks
|
119
|
+
for ch in chunks:
|
120
|
+
if ch.usage:
|
121
|
+
usage_data.usage.prompt_tokens += ch.usage.prompt_tokens
|
122
|
+
usage_data.usage.completion_tokens += ch.usage.completion_tokens
|
123
|
+
usage_data.usage.total_tokens += ch.usage.total_tokens
|
124
|
+
|
125
|
+
self._log_usage(usage_data, execution_id=execution_id)
|
126
|
+
|
127
|
+
# Return the interceptor that wraps the real AsyncStream
|
128
|
+
return AsyncStreamInterceptor(
|
129
|
+
base_stream=base_stream,
|
130
|
+
usage_callback=usage_callback,
|
131
|
+
)
|
132
|
+
|
133
|
+
# Non-streaming path remains unchanged
|
98
134
|
response = await self.client.chat.completions.create(*args, **kwargs)
|
99
135
|
usage_data = self._process_response_usage(response)
|
100
136
|
if usage_data:
|
101
137
|
self._log_usage(usage_data, execution_id=execution_id)
|
102
138
|
return response
|
103
|
-
|
104
|
-
async def _wrap_streaming_response(self, response_iter: AsyncStream[ChatCompletionChunk], execution_id: Optional[str]) -> AsyncIterator[ChatCompletionChunk]:
|
105
|
-
"""Wrap streaming response to capture final usage stats"""
|
106
|
-
chunks_with_usage = []
|
107
|
-
async for chunk in response_iter:
|
108
|
-
if isinstance(chunk, ChatCompletionChunk) and chunk.usage is not None:
|
109
|
-
chunks_with_usage.append(chunk)
|
110
|
-
yield chunk
|
111
|
-
|
112
|
-
if len(chunks_with_usage) > 0:
|
113
|
-
usage_data: TokenUsageStats = TokenUsageStats(model=chunks_with_usage[0].model, usage=Usage())
|
114
|
-
for chunk in chunks_with_usage:
|
115
|
-
usage_data.usage.prompt_tokens += chunk.usage.prompt_tokens
|
116
|
-
usage_data.usage.completion_tokens += chunk.usage.completion_tokens
|
117
|
-
usage_data.usage.total_tokens += chunk.usage.total_tokens
|
118
|
-
|
119
|
-
self._log_usage(usage_data, execution_id=execution_id)
|
120
|
-
|
121
139
|
@overload
|
122
140
|
def tokenator_openai(
|
123
141
|
client: OpenAI,
|
@@ -1,6 +1,6 @@
|
|
1
1
|
Metadata-Version: 2.1
|
2
2
|
Name: tokenator
|
3
|
-
Version: 0.1.
|
3
|
+
Version: 0.1.9
|
4
4
|
Summary: Token usage tracking wrapper for LLMs
|
5
5
|
License: MIT
|
6
6
|
Author: Ujjwal Maheshwari
|
@@ -27,7 +27,7 @@ Have you ever wondered about :
|
|
27
27
|
- How much does it cost to do run a complex AI workflow with multiple LLM providers?
|
28
28
|
- How much money did I spent today on development?
|
29
29
|
|
30
|
-
Afraid not, tokenator is here! With tokenator's easy to use API, you can start tracking LLM usage in a matter of minutes
|
30
|
+
Afraid not, tokenator is here! With tokenator's easy to use API, you can start tracking LLM usage in a matter of minutes.
|
31
31
|
|
32
32
|
Get started with just 3 lines of code!
|
33
33
|
|
@@ -80,7 +80,32 @@ cost.last_day("google")
|
|
80
80
|
### Example `cost` object
|
81
81
|
|
82
82
|
```json
|
83
|
-
|
83
|
+
# print(cost.last_hour().model_dump_json(indent=4))
|
84
|
+
|
85
|
+
usage : {
|
86
|
+
"total_cost": 0.0004,
|
87
|
+
"total_tokens": 79,
|
88
|
+
"prompt_tokens": 52,
|
89
|
+
"completion_tokens": 27,
|
90
|
+
"providers": [
|
91
|
+
{
|
92
|
+
"total_cost": 0.0004,
|
93
|
+
"total_tokens": 79,
|
94
|
+
"prompt_tokens": 52,
|
95
|
+
"completion_tokens": 27,
|
96
|
+
"provider": "openai",
|
97
|
+
"models": [
|
98
|
+
{
|
99
|
+
"total_cost": 0.0004,
|
100
|
+
"total_tokens": 79,
|
101
|
+
"prompt_tokens": 52,
|
102
|
+
"completion_tokens": 27,
|
103
|
+
"model": "gpt-4o-2024-08-06"
|
104
|
+
}
|
105
|
+
]
|
106
|
+
}
|
107
|
+
]
|
108
|
+
}
|
84
109
|
```
|
85
110
|
|
86
111
|
## Features
|
@@ -1,17 +1,18 @@
|
|
1
|
-
tokenator/__init__.py,sha256=
|
1
|
+
tokenator/__init__.py,sha256=mYwK5EJTlbh_7WvylzxXcL-yzWe_fESSL6FLrlY1qck,583
|
2
2
|
tokenator/base_wrapper.py,sha256=vSu_pStKYulho7_5g0jMCNf84KRxC4kTKep0v8YE61M,2377
|
3
3
|
tokenator/client_anthropic.py,sha256=1ejWIZBxtk-mWTVaKWeMUvS2hZ_Dn-vNKYa3yopdjAU,6714
|
4
|
-
tokenator/client_openai.py,sha256=1xZuRA90kwlflTwEuFkXJHHN584XTeNh1CfEBMLELbQ,6308
|
5
4
|
tokenator/create_migrations.py,sha256=n1OVbWrdwvBdaN-Aqqt1gLCPQidfoQfeJtGsab_epGk,746
|
6
5
|
tokenator/migrations/env.py,sha256=LR_hONDa8Saiq9CyNUpH8kZCi5PtXLaDlfABs_CePkk,1415
|
7
6
|
tokenator/migrations/script.py.mako,sha256=nJL-tbLQE0Qy4P9S4r4ntNAcikPtoFUlvXe6xvm9ot8,635
|
8
7
|
tokenator/migrations/versions/f6f1f2437513_initial_migration.py,sha256=DvHcjnREmUHZVX9q1e6PS4wNK_d4qGw-8pz0eS4_3mE,1860
|
9
8
|
tokenator/migrations.py,sha256=BFgZRsdIx-Qs_WwDaH6cyi2124mLf5hA8VrIlW7f7Mg,1134
|
10
9
|
tokenator/models.py,sha256=EprE_MMJxDS-YXlcIQLZzfekH7xTYbeOC3bx3B2osVw,1171
|
10
|
+
tokenator/openai/AsyncStreamInterceptor.py,sha256=estfEFBFyo5BWqTNwHlCZ-wE0dRjtGeyQ0ihBeW3jrU,2842
|
11
|
+
tokenator/openai/client_openai.py,sha256=q-0abTq54zRORPLeushdHx1UYq-hOAlp6qY8wAOP2GQ,6682
|
11
12
|
tokenator/schemas.py,sha256=V7NYfY9eZvH3J6uOwXJz4dSAU6WYzINRnfFi1wWsTcc,2280
|
12
13
|
tokenator/usage.py,sha256=aHjGwzDzaiVznahNk5HqVyk3IxDo5FtFVfOUCeE7DZ4,7833
|
13
14
|
tokenator/utils.py,sha256=5mDiGHgt4koCY0onHwkRjwZIuAgP6QvrDZCwD20Sdk8,1969
|
14
|
-
tokenator-0.1.
|
15
|
-
tokenator-0.1.
|
16
|
-
tokenator-0.1.
|
17
|
-
tokenator-0.1.
|
15
|
+
tokenator-0.1.9.dist-info/LICENSE,sha256=wdG-B6-ODk8RQ4jq5uXSn0w1UWTzCH_MMyvh7AwtGns,1074
|
16
|
+
tokenator-0.1.9.dist-info/METADATA,sha256=A7x7gEjbTwOBoR7mxGiHKiZVvKL8ZD6ecL7Wd0y6jfM,3093
|
17
|
+
tokenator-0.1.9.dist-info/WHEEL,sha256=Nq82e9rUAnEjt98J6MlVmMCZb-t9cYE2Ir1kpBmnWfs,88
|
18
|
+
tokenator-0.1.9.dist-info/RECORD,,
|
File without changes
|
File without changes
|