together 2.0.0a8__py3-none-any.whl → 2.0.0a10__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (36) hide show
  1. together/_streaming.py +50 -48
  2. together/_types.py +3 -2
  3. together/_utils/_utils.py +1 -1
  4. together/_version.py +1 -1
  5. together/lib/cli/api/fine_tuning.py +65 -3
  6. together/lib/cli/api/models.py +1 -6
  7. together/lib/resources/fine_tuning.py +41 -2
  8. together/resources/audio/transcriptions.py +20 -0
  9. together/resources/chat/completions.py +48 -0
  10. together/resources/fine_tuning.py +213 -5
  11. together/resources/images.py +13 -1
  12. together/resources/models.py +41 -5
  13. together/types/__init__.py +3 -0
  14. together/types/audio/transcription_create_params.py +14 -0
  15. together/types/audio/voice_list_response.py +4 -0
  16. together/types/autoscaling.py +2 -0
  17. together/types/autoscaling_param.py +2 -0
  18. together/types/chat/completion_create_params.py +78 -5
  19. together/types/dedicated_endpoint.py +2 -0
  20. together/types/endpoint_list_avzones_response.py +2 -0
  21. together/types/endpoint_list_response.py +2 -0
  22. together/types/execute_response.py +7 -0
  23. together/types/fine_tuning_cancel_response.py +6 -0
  24. together/types/fine_tuning_estimate_price_params.py +98 -0
  25. together/types/fine_tuning_estimate_price_response.py +24 -0
  26. together/types/fine_tuning_list_response.py +6 -0
  27. together/types/hardware_list_response.py +8 -0
  28. together/types/image_generate_params.py +9 -0
  29. together/types/model_list_params.py +12 -0
  30. together/types/video_job.py +8 -0
  31. {together-2.0.0a8.dist-info → together-2.0.0a10.dist-info}/METADATA +11 -12
  32. {together-2.0.0a8.dist-info → together-2.0.0a10.dist-info}/RECORD +35 -33
  33. together/lib/resources/models.py +0 -35
  34. {together-2.0.0a8.dist-info → together-2.0.0a10.dist-info}/WHEEL +0 -0
  35. {together-2.0.0a8.dist-info → together-2.0.0a10.dist-info}/entry_points.txt +0 -0
  36. {together-2.0.0a8.dist-info → together-2.0.0a10.dist-info}/licenses/LICENSE +0 -0
together/_streaming.py CHANGED
@@ -55,30 +55,31 @@ class Stream(Generic[_T]):
55
55
  process_data = self._client._process_response_data
56
56
  iterator = self._iter_events()
57
57
 
58
- for sse in iterator:
59
- if sse.data.startswith("[DONE]"):
60
- break
61
-
62
- if sse.event is None:
63
- data = sse.json()
64
- if is_mapping(data) and data.get("error"):
65
- message = None
66
- error = data.get("error")
67
- if is_mapping(error):
68
- message = error.get("message")
69
- if not message or not isinstance(message, str):
70
- message = "An error occurred during streaming"
71
-
72
- raise APIError(
73
- message=message,
74
- request=self.response.request,
75
- body=data["error"],
76
- )
77
-
78
- yield process_data(data=data, cast_to=cast_to, response=response)
79
-
80
- # As we might not fully consume the response stream, we need to close it explicitly
81
- response.close()
58
+ try:
59
+ for sse in iterator:
60
+ if sse.data.startswith("[DONE]"):
61
+ break
62
+
63
+ if sse.event is None:
64
+ data = sse.json()
65
+ if is_mapping(data) and data.get("error"):
66
+ message = None
67
+ error = data.get("error")
68
+ if is_mapping(error):
69
+ message = error.get("message")
70
+ if not message or not isinstance(message, str):
71
+ message = "An error occurred during streaming"
72
+
73
+ raise APIError(
74
+ message=message,
75
+ request=self.response.request,
76
+ body=data["error"],
77
+ )
78
+
79
+ yield process_data(data=data, cast_to=cast_to, response=response)
80
+ finally:
81
+ # Ensure the response is closed even if the consumer doesn't read all data
82
+ response.close()
82
83
 
83
84
  def __enter__(self) -> Self:
84
85
  return self
@@ -137,30 +138,31 @@ class AsyncStream(Generic[_T]):
137
138
  process_data = self._client._process_response_data
138
139
  iterator = self._iter_events()
139
140
 
140
- async for sse in iterator:
141
- if sse.data.startswith("[DONE]"):
142
- break
143
-
144
- if sse.event is None:
145
- data = sse.json()
146
- if is_mapping(data) and data.get("error"):
147
- message = None
148
- error = data.get("error")
149
- if is_mapping(error):
150
- message = error.get("message")
151
- if not message or not isinstance(message, str):
152
- message = "An error occurred during streaming"
153
-
154
- raise APIError(
155
- message=message,
156
- request=self.response.request,
157
- body=data["error"],
158
- )
159
-
160
- yield process_data(data=data, cast_to=cast_to, response=response)
161
-
162
- # As we might not fully consume the response stream, we need to close it explicitly
163
- await response.aclose()
141
+ try:
142
+ async for sse in iterator:
143
+ if sse.data.startswith("[DONE]"):
144
+ break
145
+
146
+ if sse.event is None:
147
+ data = sse.json()
148
+ if is_mapping(data) and data.get("error"):
149
+ message = None
150
+ error = data.get("error")
151
+ if is_mapping(error):
152
+ message = error.get("message")
153
+ if not message or not isinstance(message, str):
154
+ message = "An error occurred during streaming"
155
+
156
+ raise APIError(
157
+ message=message,
158
+ request=self.response.request,
159
+ body=data["error"],
160
+ )
161
+
162
+ yield process_data(data=data, cast_to=cast_to, response=response)
163
+ finally:
164
+ # Ensure the response is closed even if the consumer doesn't read all data
165
+ await response.aclose()
164
166
 
165
167
  async def __aenter__(self) -> Self:
166
168
  return self
together/_types.py CHANGED
@@ -243,6 +243,9 @@ _T_co = TypeVar("_T_co", covariant=True)
243
243
  if TYPE_CHECKING:
244
244
  # This works because str.__contains__ does not accept object (either in typeshed or at runtime)
245
245
  # https://github.com/hauntsaninja/useful_types/blob/5e9710f3875107d068e7679fd7fec9cfab0eff3b/useful_types/__init__.py#L285
246
+ #
247
+ # Note: index() and count() methods are intentionally omitted to allow pyright to properly
248
+ # infer TypedDict types when dict literals are used in lists assigned to SequenceNotStr.
246
249
  class SequenceNotStr(Protocol[_T_co]):
247
250
  @overload
248
251
  def __getitem__(self, index: SupportsIndex, /) -> _T_co: ...
@@ -251,8 +254,6 @@ if TYPE_CHECKING:
251
254
  def __contains__(self, value: object, /) -> bool: ...
252
255
  def __len__(self) -> int: ...
253
256
  def __iter__(self) -> Iterator[_T_co]: ...
254
- def index(self, value: Any, start: int = 0, stop: int = ..., /) -> int: ...
255
- def count(self, value: Any, /) -> int: ...
256
257
  def __reversed__(self) -> Iterator[_T_co]: ...
257
258
  else:
258
259
  # just point this to a normal `Sequence` at runtime to avoid having to special case
together/_utils/_utils.py CHANGED
@@ -373,7 +373,7 @@ def get_required_header(headers: HeadersLike, header: str) -> str:
373
373
  lower_header = header.lower()
374
374
  if is_mapping_t(headers):
375
375
  # mypy doesn't understand the type narrowing here
376
- for k, v in headers.items(): # type: ignore[misc, has-type]
376
+ for k, v in headers.items(): # type: ignore[misc, has-type, attr-defined]
377
377
  if k.lower() == lower_header and isinstance(v, str): # type: ignore[has-type]
378
378
  return v # type: ignore[has-type]
379
379
 
together/_version.py CHANGED
@@ -1,4 +1,4 @@
1
1
  # File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details.
2
2
 
3
3
  __title__ = "together"
4
- __version__ = "2.0.0-alpha.8" # x-release-please-version
4
+ __version__ = "2.0.0-alpha.10" # x-release-please-version
@@ -13,6 +13,7 @@ from tabulate import tabulate
13
13
  from click.core import ParameterSource # type: ignore[attr-defined]
14
14
 
15
15
  from together import Together
16
+ from together.types import fine_tuning_estimate_price_params as pe_params
16
17
  from together._types import NOT_GIVEN, NotGiven
17
18
  from together.lib.utils import log_warn
18
19
  from together.lib.utils.tools import format_timestamp, finetune_price_to_dollars
@@ -24,13 +25,21 @@ from together.lib.resources.fine_tuning import get_model_limits
24
25
 
25
26
  _CONFIRMATION_MESSAGE = (
26
27
  "You are about to create a fine-tuning job. "
27
- "The cost of your job will be determined by the model size, the number of tokens "
28
+ "The estimated price of this job is {price}. "
29
+ "The actual cost of your job will be determined by the model size, the number of tokens "
28
30
  "in the training file, the number of tokens in the validation file, the number of epochs, and "
29
- "the number of evaluations. Visit https://www.together.ai/pricing to get a price estimate.\n"
31
+ "the number of evaluations. Visit https://www.together.ai/pricing to learn more about pricing.\n"
32
+ "{warning}"
30
33
  "You can pass `-y` or `--confirm` to your command to skip this message.\n\n"
31
34
  "Do you want to proceed?"
32
35
  )
33
36
 
37
+ _WARNING_MESSAGE_INSUFFICIENT_FUNDS = (
38
+ "The estimated price of this job is significantly greater than your current credit limit and balance combined. "
39
+ "It will likely get cancelled due to insufficient funds. "
40
+ "Consider increasing your credit limit at https://api.together.xyz/settings/profile\n"
41
+ )
42
+
34
43
  _FT_JOB_WITH_STEP_REGEX = r"^ft-[\dabcdef-]+:\d+$"
35
44
 
36
45
 
@@ -323,7 +332,60 @@ def create(
323
332
  elif n_evals > 0 and not validation_file:
324
333
  raise click.BadParameter("You have specified a number of evaluation loops but no validation file.")
325
334
 
326
- if confirm or click.confirm(_CONFIRMATION_MESSAGE, default=True, show_default=True):
335
+ training_type_cls: pe_params.TrainingType
336
+ if lora:
337
+ training_type_cls = pe_params.TrainingTypeLoRaTrainingType(
338
+ lora_alpha=int(lora_alpha or 0),
339
+ lora_r=lora_r or 0,
340
+ lora_dropout=lora_dropout or 0,
341
+ lora_trainable_modules=lora_trainable_modules or "all-linear",
342
+ type="Lora",
343
+ )
344
+ else:
345
+ training_type_cls = pe_params.TrainingTypeFullTrainingType(
346
+ type="Full",
347
+ )
348
+
349
+ training_method_cls: pe_params.TrainingMethod
350
+ if training_method == "sft":
351
+ training_method_cls = pe_params.TrainingMethodTrainingMethodSft(
352
+ method="sft",
353
+ train_on_inputs=train_on_inputs or "auto",
354
+ )
355
+ else:
356
+ training_method_cls = pe_params.TrainingMethodTrainingMethodDpo(
357
+ method="dpo",
358
+ dpo_beta=dpo_beta or 0,
359
+ dpo_normalize_logratios_by_length=dpo_normalize_logratios_by_length or False,
360
+ dpo_reference_free=False,
361
+ rpo_alpha=rpo_alpha or 0,
362
+ simpo_gamma=simpo_gamma or 0,
363
+ )
364
+
365
+ finetune_price_estimation_result = client.fine_tuning.estimate_price(
366
+ training_file=training_file,
367
+ validation_file=validation_file,
368
+ model=model or "",
369
+ n_epochs=n_epochs,
370
+ n_evals=n_evals,
371
+ training_type=training_type_cls,
372
+ training_method=training_method_cls,
373
+ )
374
+ price = click.style(
375
+ f"${finetune_price_estimation_result.estimated_total_price:.2f}",
376
+ bold=True,
377
+ )
378
+ if not finetune_price_estimation_result.allowed_to_proceed:
379
+ warning = click.style(_WARNING_MESSAGE_INSUFFICIENT_FUNDS, fg="red", bold=True)
380
+ else:
381
+ warning = ""
382
+
383
+ confirmation_message = _CONFIRMATION_MESSAGE.format(
384
+ price=price,
385
+ warning=warning,
386
+ )
387
+
388
+ if confirm or click.confirm(confirmation_message, default=True, show_default=True):
327
389
  response = client.fine_tuning.create(
328
390
  **training_args,
329
391
  verbose=True,
@@ -7,7 +7,6 @@ from tabulate import tabulate
7
7
  from together import Together, omit
8
8
  from together._models import BaseModel
9
9
  from together._response import APIResponse as APIResponse
10
- from together.lib.resources.models import filter_by_dedicated_models
11
10
  from together.types.model_upload_response import ModelUploadResponse
12
11
 
13
12
 
@@ -34,11 +33,7 @@ def list(ctx: click.Context, type: Optional[str], json: bool) -> None:
34
33
  """List models"""
35
34
  client: Together = ctx.obj
36
35
 
37
- response = client.models.list()
38
- models_list = response
39
-
40
- if type == "dedicated":
41
- models_list = filter_by_dedicated_models(client, models_list)
36
+ models_list = client.models.list(dedicated=type == "dedicated" if type else omit)
42
37
 
43
38
  display_list: List[Dict[str, Any]] = []
44
39
  model: BaseModel
@@ -4,6 +4,7 @@ from typing import TYPE_CHECKING, Literal
4
4
 
5
5
  from rich import print as rprint
6
6
 
7
+ from together.types import fine_tuning_estimate_price_params as pe_params
7
8
  from together.lib.utils import log_warn_once
8
9
 
9
10
  if TYPE_CHECKING:
@@ -66,7 +67,7 @@ def create_finetune_request(
66
67
  hf_model_revision: str | None = None,
67
68
  hf_api_token: str | None = None,
68
69
  hf_output_repo_name: str | None = None,
69
- ) -> FinetuneRequest:
70
+ ) -> tuple[FinetuneRequest, pe_params.TrainingType, pe_params.TrainingMethod]:
70
71
  if model is not None and from_checkpoint is not None:
71
72
  raise ValueError("You must specify either a model or a checkpoint to start a job from, not both")
72
73
 
@@ -233,8 +234,46 @@ def create_finetune_request(
233
234
  hf_output_repo_name=hf_output_repo_name,
234
235
  )
235
236
 
236
- return finetune_request
237
+ training_type_pe, training_method_pe = create_price_estimation_params(finetune_request)
237
238
 
239
+ return finetune_request, training_type_pe, training_method_pe
240
+
241
+ def create_price_estimation_params(finetune_request: FinetuneRequest) -> tuple[pe_params.TrainingType, pe_params.TrainingMethod]:
242
+ training_type_cls: pe_params.TrainingType
243
+ if isinstance(finetune_request.training_type, FullTrainingType):
244
+ training_type_cls = pe_params.TrainingTypeFullTrainingType(
245
+ type="Full",
246
+ )
247
+ elif isinstance(finetune_request.training_type, LoRATrainingType):
248
+ training_type_cls = pe_params.TrainingTypeLoRaTrainingType(
249
+ lora_alpha=finetune_request.training_type.lora_alpha,
250
+ lora_r=finetune_request.training_type.lora_r,
251
+ lora_dropout=finetune_request.training_type.lora_dropout,
252
+ lora_trainable_modules=finetune_request.training_type.lora_trainable_modules,
253
+ type="Lora",
254
+ )
255
+ else:
256
+ raise ValueError(f"Unknown training type: {finetune_request.training_type}")
257
+
258
+ training_method_cls: pe_params.TrainingMethod
259
+ if isinstance(finetune_request.training_method, TrainingMethodSFT):
260
+ training_method_cls = pe_params.TrainingMethodTrainingMethodSft(
261
+ method="sft",
262
+ train_on_inputs=finetune_request.training_method.train_on_inputs,
263
+ )
264
+ elif isinstance(finetune_request.training_method, TrainingMethodDPO):
265
+ training_method_cls = pe_params.TrainingMethodTrainingMethodDpo(
266
+ method="dpo",
267
+ dpo_beta=finetune_request.training_method.dpo_beta or 0,
268
+ dpo_normalize_logratios_by_length=finetune_request.training_method.dpo_normalize_logratios_by_length,
269
+ dpo_reference_free=finetune_request.training_method.dpo_reference_free,
270
+ rpo_alpha=finetune_request.training_method.rpo_alpha or 0,
271
+ simpo_gamma=finetune_request.training_method.simpo_gamma or 0,
272
+ )
273
+ else:
274
+ raise ValueError(f"Unknown training method: {finetune_request.training_method}")
275
+
276
+ return training_type_cls, training_method_cls
238
277
 
239
278
  def get_model_limits(client: Together, model: str) -> FinetuneTrainingLimits:
240
279
  """
@@ -50,6 +50,8 @@ class TranscriptionsResource(SyncAPIResource):
50
50
  file: FileTypes,
51
51
  diarize: bool | Omit = omit,
52
52
  language: str | Omit = omit,
53
+ max_speakers: int | Omit = omit,
54
+ min_speakers: int | Omit = omit,
53
55
  model: Literal["openai/whisper-large-v3"] | Omit = omit,
54
56
  prompt: str | Omit = omit,
55
57
  response_format: Literal["json", "verbose_json"] | Omit = omit,
@@ -82,6 +84,12 @@ class TranscriptionsResource(SyncAPIResource):
82
84
  language: Optional ISO 639-1 language code. If `auto` is provided, language is
83
85
  auto-detected.
84
86
 
87
+ max_speakers: Maximum number of speakers expected in the audio. Used to improve diarization
88
+ accuracy when the approximate number of speakers is known.
89
+
90
+ min_speakers: Minimum number of speakers expected in the audio. Used to improve diarization
91
+ accuracy when the approximate number of speakers is known.
92
+
85
93
  model: Model to use for transcription
86
94
 
87
95
  prompt: Optional text to bias decoding.
@@ -107,6 +115,8 @@ class TranscriptionsResource(SyncAPIResource):
107
115
  "file": file,
108
116
  "diarize": diarize,
109
117
  "language": language,
118
+ "max_speakers": max_speakers,
119
+ "min_speakers": min_speakers,
110
120
  "model": model,
111
121
  "prompt": prompt,
112
122
  "response_format": response_format,
@@ -161,6 +171,8 @@ class AsyncTranscriptionsResource(AsyncAPIResource):
161
171
  file: FileTypes,
162
172
  diarize: bool | Omit = omit,
163
173
  language: str | Omit = omit,
174
+ max_speakers: int | Omit = omit,
175
+ min_speakers: int | Omit = omit,
164
176
  model: Literal["openai/whisper-large-v3"] | Omit = omit,
165
177
  prompt: str | Omit = omit,
166
178
  response_format: Literal["json", "verbose_json"] | Omit = omit,
@@ -193,6 +205,12 @@ class AsyncTranscriptionsResource(AsyncAPIResource):
193
205
  language: Optional ISO 639-1 language code. If `auto` is provided, language is
194
206
  auto-detected.
195
207
 
208
+ max_speakers: Maximum number of speakers expected in the audio. Used to improve diarization
209
+ accuracy when the approximate number of speakers is known.
210
+
211
+ min_speakers: Minimum number of speakers expected in the audio. Used to improve diarization
212
+ accuracy when the approximate number of speakers is known.
213
+
196
214
  model: Model to use for transcription
197
215
 
198
216
  prompt: Optional text to bias decoding.
@@ -218,6 +236,8 @@ class AsyncTranscriptionsResource(AsyncAPIResource):
218
236
  "file": file,
219
237
  "diarize": diarize,
220
238
  "language": language,
239
+ "max_speakers": max_speakers,
240
+ "min_speakers": min_speakers,
221
241
  "model": model,
222
242
  "prompt": prompt,
223
243
  "response_format": response_format,
@@ -136,6 +136,14 @@ class CompletionsResource(SyncAPIResource):
136
136
 
137
137
  response_format: An object specifying the format that the model must output.
138
138
 
139
+ Setting to `{ "type": "json_schema", "json_schema": {...} }` enables Structured
140
+ Outputs which ensures the model will match your supplied JSON schema. Learn more
141
+ in the [Structured Outputs guide](https://docs.together.ai/docs/json-mode).
142
+
143
+ Setting to `{ "type": "json_object" }` enables the older JSON mode, which
144
+ ensures the message the model generates is valid JSON. Using `json_schema` is
145
+ preferred for models that support it.
146
+
139
147
  safety_model: The name of the moderation model used to validate tokens. Choose from the
140
148
  available moderation models found
141
149
  [here](https://docs.together.ai/docs/inference-models#moderation-models).
@@ -277,6 +285,14 @@ class CompletionsResource(SyncAPIResource):
277
285
 
278
286
  response_format: An object specifying the format that the model must output.
279
287
 
288
+ Setting to `{ "type": "json_schema", "json_schema": {...} }` enables Structured
289
+ Outputs which ensures the model will match your supplied JSON schema. Learn more
290
+ in the [Structured Outputs guide](https://docs.together.ai/docs/json-mode).
291
+
292
+ Setting to `{ "type": "json_object" }` enables the older JSON mode, which
293
+ ensures the message the model generates is valid JSON. Using `json_schema` is
294
+ preferred for models that support it.
295
+
280
296
  safety_model: The name of the moderation model used to validate tokens. Choose from the
281
297
  available moderation models found
282
298
  [here](https://docs.together.ai/docs/inference-models#moderation-models).
@@ -414,6 +430,14 @@ class CompletionsResource(SyncAPIResource):
414
430
 
415
431
  response_format: An object specifying the format that the model must output.
416
432
 
433
+ Setting to `{ "type": "json_schema", "json_schema": {...} }` enables Structured
434
+ Outputs which ensures the model will match your supplied JSON schema. Learn more
435
+ in the [Structured Outputs guide](https://docs.together.ai/docs/json-mode).
436
+
437
+ Setting to `{ "type": "json_object" }` enables the older JSON mode, which
438
+ ensures the message the model generates is valid JSON. Using `json_schema` is
439
+ preferred for models that support it.
440
+
417
441
  safety_model: The name of the moderation model used to validate tokens. Choose from the
418
442
  available moderation models found
419
443
  [here](https://docs.together.ai/docs/inference-models#moderation-models).
@@ -653,6 +677,14 @@ class AsyncCompletionsResource(AsyncAPIResource):
653
677
 
654
678
  response_format: An object specifying the format that the model must output.
655
679
 
680
+ Setting to `{ "type": "json_schema", "json_schema": {...} }` enables Structured
681
+ Outputs which ensures the model will match your supplied JSON schema. Learn more
682
+ in the [Structured Outputs guide](https://docs.together.ai/docs/json-mode).
683
+
684
+ Setting to `{ "type": "json_object" }` enables the older JSON mode, which
685
+ ensures the message the model generates is valid JSON. Using `json_schema` is
686
+ preferred for models that support it.
687
+
656
688
  safety_model: The name of the moderation model used to validate tokens. Choose from the
657
689
  available moderation models found
658
690
  [here](https://docs.together.ai/docs/inference-models#moderation-models).
@@ -794,6 +826,14 @@ class AsyncCompletionsResource(AsyncAPIResource):
794
826
 
795
827
  response_format: An object specifying the format that the model must output.
796
828
 
829
+ Setting to `{ "type": "json_schema", "json_schema": {...} }` enables Structured
830
+ Outputs which ensures the model will match your supplied JSON schema. Learn more
831
+ in the [Structured Outputs guide](https://docs.together.ai/docs/json-mode).
832
+
833
+ Setting to `{ "type": "json_object" }` enables the older JSON mode, which
834
+ ensures the message the model generates is valid JSON. Using `json_schema` is
835
+ preferred for models that support it.
836
+
797
837
  safety_model: The name of the moderation model used to validate tokens. Choose from the
798
838
  available moderation models found
799
839
  [here](https://docs.together.ai/docs/inference-models#moderation-models).
@@ -931,6 +971,14 @@ class AsyncCompletionsResource(AsyncAPIResource):
931
971
 
932
972
  response_format: An object specifying the format that the model must output.
933
973
 
974
+ Setting to `{ "type": "json_schema", "json_schema": {...} }` enables Structured
975
+ Outputs which ensures the model will match your supplied JSON schema. Learn more
976
+ in the [Structured Outputs guide](https://docs.together.ai/docs/json-mode).
977
+
978
+ Setting to `{ "type": "json_object" }` enables the older JSON mode, which
979
+ ensures the message the model generates is valid JSON. Using `json_schema` is
980
+ preferred for models that support it.
981
+
934
982
  safety_model: The name of the moderation model used to validate tokens. Choose from the
935
983
  available moderation models found
936
984
  [here](https://docs.together.ai/docs/inference-models#moderation-models).