tnfr 6.0.0__py3-none-any.whl → 7.0.0__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of tnfr might be problematic. Click here for more details.
- tnfr/__init__.py +50 -5
- tnfr/__init__.pyi +0 -7
- tnfr/_compat.py +0 -1
- tnfr/_generated_version.py +34 -0
- tnfr/_version.py +44 -2
- tnfr/alias.py +14 -13
- tnfr/alias.pyi +5 -37
- tnfr/cache.py +9 -729
- tnfr/cache.pyi +8 -224
- tnfr/callback_utils.py +16 -31
- tnfr/callback_utils.pyi +3 -29
- tnfr/cli/__init__.py +17 -11
- tnfr/cli/__init__.pyi +0 -21
- tnfr/cli/arguments.py +175 -14
- tnfr/cli/arguments.pyi +5 -11
- tnfr/cli/execution.py +434 -48
- tnfr/cli/execution.pyi +14 -24
- tnfr/cli/utils.py +20 -3
- tnfr/cli/utils.pyi +5 -5
- tnfr/config/__init__.py +2 -1
- tnfr/config/__init__.pyi +2 -0
- tnfr/config/feature_flags.py +83 -0
- tnfr/config/init.py +1 -1
- tnfr/config/operator_names.py +1 -14
- tnfr/config/presets.py +6 -26
- tnfr/constants/__init__.py +10 -13
- tnfr/constants/__init__.pyi +10 -22
- tnfr/constants/aliases.py +31 -0
- tnfr/constants/core.py +4 -3
- tnfr/constants/init.py +1 -1
- tnfr/constants/metric.py +3 -3
- tnfr/dynamics/__init__.py +64 -10
- tnfr/dynamics/__init__.pyi +3 -4
- tnfr/dynamics/adaptation.py +79 -13
- tnfr/dynamics/aliases.py +10 -9
- tnfr/dynamics/coordination.py +77 -35
- tnfr/dynamics/dnfr.py +575 -274
- tnfr/dynamics/dnfr.pyi +1 -10
- tnfr/dynamics/integrators.py +47 -33
- tnfr/dynamics/integrators.pyi +0 -1
- tnfr/dynamics/runtime.py +489 -129
- tnfr/dynamics/sampling.py +2 -0
- tnfr/dynamics/selectors.py +101 -62
- tnfr/execution.py +15 -8
- tnfr/execution.pyi +5 -25
- tnfr/flatten.py +7 -3
- tnfr/flatten.pyi +1 -8
- tnfr/gamma.py +22 -26
- tnfr/gamma.pyi +0 -6
- tnfr/glyph_history.py +37 -26
- tnfr/glyph_history.pyi +1 -19
- tnfr/glyph_runtime.py +16 -0
- tnfr/glyph_runtime.pyi +9 -0
- tnfr/immutable.py +20 -15
- tnfr/immutable.pyi +4 -7
- tnfr/initialization.py +5 -7
- tnfr/initialization.pyi +1 -9
- tnfr/io.py +6 -305
- tnfr/io.pyi +13 -8
- tnfr/mathematics/__init__.py +81 -0
- tnfr/mathematics/backend.py +426 -0
- tnfr/mathematics/dynamics.py +398 -0
- tnfr/mathematics/epi.py +254 -0
- tnfr/mathematics/generators.py +222 -0
- tnfr/mathematics/metrics.py +119 -0
- tnfr/mathematics/operators.py +233 -0
- tnfr/mathematics/operators_factory.py +71 -0
- tnfr/mathematics/projection.py +78 -0
- tnfr/mathematics/runtime.py +173 -0
- tnfr/mathematics/spaces.py +247 -0
- tnfr/mathematics/transforms.py +292 -0
- tnfr/metrics/__init__.py +10 -10
- tnfr/metrics/coherence.py +123 -94
- tnfr/metrics/common.py +22 -13
- tnfr/metrics/common.pyi +42 -11
- tnfr/metrics/core.py +72 -14
- tnfr/metrics/diagnosis.py +48 -57
- tnfr/metrics/diagnosis.pyi +3 -7
- tnfr/metrics/export.py +3 -5
- tnfr/metrics/glyph_timing.py +41 -31
- tnfr/metrics/reporting.py +13 -6
- tnfr/metrics/sense_index.py +884 -114
- tnfr/metrics/trig.py +167 -11
- tnfr/metrics/trig.pyi +1 -0
- tnfr/metrics/trig_cache.py +112 -15
- tnfr/node.py +400 -17
- tnfr/node.pyi +55 -38
- tnfr/observers.py +111 -8
- tnfr/observers.pyi +0 -15
- tnfr/ontosim.py +9 -6
- tnfr/ontosim.pyi +0 -5
- tnfr/operators/__init__.py +529 -42
- tnfr/operators/__init__.pyi +14 -0
- tnfr/operators/definitions.py +350 -18
- tnfr/operators/definitions.pyi +0 -14
- tnfr/operators/grammar.py +760 -0
- tnfr/operators/jitter.py +28 -22
- tnfr/operators/registry.py +7 -12
- tnfr/operators/registry.pyi +0 -2
- tnfr/operators/remesh.py +38 -61
- tnfr/rng.py +17 -300
- tnfr/schemas/__init__.py +8 -0
- tnfr/schemas/grammar.json +94 -0
- tnfr/selector.py +3 -4
- tnfr/selector.pyi +1 -1
- tnfr/sense.py +22 -24
- tnfr/sense.pyi +0 -7
- tnfr/structural.py +504 -21
- tnfr/structural.pyi +41 -18
- tnfr/telemetry/__init__.py +23 -1
- tnfr/telemetry/cache_metrics.py +226 -0
- tnfr/telemetry/nu_f.py +423 -0
- tnfr/telemetry/nu_f.pyi +123 -0
- tnfr/tokens.py +1 -4
- tnfr/tokens.pyi +1 -6
- tnfr/trace.py +20 -53
- tnfr/trace.pyi +9 -37
- tnfr/types.py +244 -15
- tnfr/types.pyi +200 -14
- tnfr/units.py +69 -0
- tnfr/units.pyi +16 -0
- tnfr/utils/__init__.py +107 -48
- tnfr/utils/__init__.pyi +80 -11
- tnfr/utils/cache.py +1705 -65
- tnfr/utils/cache.pyi +370 -58
- tnfr/utils/chunks.py +104 -0
- tnfr/utils/chunks.pyi +21 -0
- tnfr/utils/data.py +95 -5
- tnfr/utils/data.pyi +8 -17
- tnfr/utils/graph.py +2 -4
- tnfr/utils/init.py +31 -7
- tnfr/utils/init.pyi +4 -11
- tnfr/utils/io.py +313 -14
- tnfr/{helpers → utils}/numeric.py +50 -24
- tnfr/utils/numeric.pyi +21 -0
- tnfr/validation/__init__.py +92 -4
- tnfr/validation/__init__.pyi +77 -17
- tnfr/validation/compatibility.py +79 -43
- tnfr/validation/compatibility.pyi +4 -6
- tnfr/validation/grammar.py +55 -133
- tnfr/validation/grammar.pyi +37 -8
- tnfr/validation/graph.py +138 -0
- tnfr/validation/graph.pyi +17 -0
- tnfr/validation/rules.py +161 -74
- tnfr/validation/rules.pyi +55 -18
- tnfr/validation/runtime.py +263 -0
- tnfr/validation/runtime.pyi +31 -0
- tnfr/validation/soft_filters.py +170 -0
- tnfr/validation/soft_filters.pyi +37 -0
- tnfr/validation/spectral.py +159 -0
- tnfr/validation/spectral.pyi +46 -0
- tnfr/validation/syntax.py +28 -139
- tnfr/validation/syntax.pyi +7 -4
- tnfr/validation/window.py +39 -0
- tnfr/validation/window.pyi +1 -0
- tnfr/viz/__init__.py +9 -0
- tnfr/viz/matplotlib.py +246 -0
- {tnfr-6.0.0.dist-info → tnfr-7.0.0.dist-info}/METADATA +63 -19
- tnfr-7.0.0.dist-info/RECORD +185 -0
- {tnfr-6.0.0.dist-info → tnfr-7.0.0.dist-info}/licenses/LICENSE.md +1 -1
- tnfr/constants_glyphs.py +0 -16
- tnfr/constants_glyphs.pyi +0 -12
- tnfr/grammar.py +0 -25
- tnfr/grammar.pyi +0 -13
- tnfr/helpers/__init__.py +0 -151
- tnfr/helpers/__init__.pyi +0 -66
- tnfr/helpers/numeric.pyi +0 -12
- tnfr/presets.py +0 -15
- tnfr/presets.pyi +0 -7
- tnfr/utils/io.pyi +0 -10
- tnfr/utils/validators.py +0 -130
- tnfr/utils/validators.pyi +0 -19
- tnfr-6.0.0.dist-info/RECORD +0 -157
- {tnfr-6.0.0.dist-info → tnfr-7.0.0.dist-info}/WHEEL +0 -0
- {tnfr-6.0.0.dist-info → tnfr-7.0.0.dist-info}/entry_points.txt +0 -0
- {tnfr-6.0.0.dist-info → tnfr-7.0.0.dist-info}/top_level.txt +0 -0
tnfr/metrics/trig.py
CHANGED
|
@@ -9,11 +9,11 @@ from __future__ import annotations
|
|
|
9
9
|
import math
|
|
10
10
|
from collections.abc import Iterable, Iterator, Sequence
|
|
11
11
|
from itertools import tee
|
|
12
|
-
from typing import TYPE_CHECKING, Any,
|
|
12
|
+
from typing import TYPE_CHECKING, Any, cast, overload
|
|
13
13
|
|
|
14
|
-
from ..
|
|
15
|
-
from ..utils import cached_import, get_numpy
|
|
14
|
+
from ..utils import kahan_sum_nd
|
|
16
15
|
from ..types import NodeId, Phase, TNFRGraph
|
|
16
|
+
from ..utils import cached_import, get_numpy
|
|
17
17
|
|
|
18
18
|
if TYPE_CHECKING: # pragma: no cover - typing only
|
|
19
19
|
from ..node import NodeProtocol
|
|
@@ -23,6 +23,7 @@ __all__ = (
|
|
|
23
23
|
"_phase_mean_from_iter",
|
|
24
24
|
"_neighbor_phase_mean_core",
|
|
25
25
|
"_neighbor_phase_mean_generic",
|
|
26
|
+
"neighbor_phase_mean_bulk",
|
|
26
27
|
"neighbor_phase_mean_list",
|
|
27
28
|
"neighbor_phase_mean",
|
|
28
29
|
)
|
|
@@ -123,7 +124,7 @@ def _neighbor_phase_mean_generic(
|
|
|
123
124
|
np: Any | None = None,
|
|
124
125
|
fallback: float = 0.0,
|
|
125
126
|
) -> float:
|
|
126
|
-
"""
|
|
127
|
+
"""Compute the neighbour phase mean via :func:`_neighbor_phase_mean_core`.
|
|
127
128
|
|
|
128
129
|
``obj`` may be either a node bound to a graph or a sequence of neighbours.
|
|
129
130
|
When ``cos_map`` and ``sin_map`` are ``None`` the function assumes ``obj`` is
|
|
@@ -138,9 +139,7 @@ def _neighbor_phase_mean_generic(
|
|
|
138
139
|
if cos_map is None or sin_map is None:
|
|
139
140
|
node = cast("NodeProtocol", obj)
|
|
140
141
|
if getattr(node, "G", None) is None:
|
|
141
|
-
raise TypeError(
|
|
142
|
-
"neighbor_phase_mean requires nodes bound to a graph"
|
|
143
|
-
)
|
|
142
|
+
raise TypeError("neighbor_phase_mean requires nodes bound to a graph")
|
|
144
143
|
from .trig_cache import get_trig_cache
|
|
145
144
|
|
|
146
145
|
trig = get_trig_cache(node.G)
|
|
@@ -172,14 +171,171 @@ def neighbor_phase_mean_list(
|
|
|
172
171
|
)
|
|
173
172
|
|
|
174
173
|
|
|
174
|
+
def neighbor_phase_mean_bulk(
|
|
175
|
+
edge_src: Any,
|
|
176
|
+
edge_dst: Any,
|
|
177
|
+
*,
|
|
178
|
+
cos_values: Any,
|
|
179
|
+
sin_values: Any,
|
|
180
|
+
theta_values: Any,
|
|
181
|
+
node_count: int,
|
|
182
|
+
np: Any,
|
|
183
|
+
neighbor_cos_sum: Any | None = None,
|
|
184
|
+
neighbor_sin_sum: Any | None = None,
|
|
185
|
+
neighbor_counts: Any | None = None,
|
|
186
|
+
mean_cos: Any | None = None,
|
|
187
|
+
mean_sin: Any | None = None,
|
|
188
|
+
) -> tuple[Any, Any]:
|
|
189
|
+
"""Vectorised neighbour phase means for all nodes in a graph.
|
|
190
|
+
|
|
191
|
+
Parameters
|
|
192
|
+
----------
|
|
193
|
+
edge_src, edge_dst:
|
|
194
|
+
Arrays describing the source (neighbour) and destination (node) indices
|
|
195
|
+
for each edge contribution. They must have matching shapes.
|
|
196
|
+
cos_values, sin_values:
|
|
197
|
+
Arrays containing the cosine and sine values of each node's phase. The
|
|
198
|
+
arrays must be indexed using the same positional indices referenced by
|
|
199
|
+
``edge_src``.
|
|
200
|
+
theta_values:
|
|
201
|
+
Array with the baseline phase for each node. Positions that do not have
|
|
202
|
+
neighbours reuse this baseline as their mean phase.
|
|
203
|
+
node_count:
|
|
204
|
+
Total number of nodes represented in ``theta_values``.
|
|
205
|
+
np:
|
|
206
|
+
Numpy module used to materialise the vectorised operations.
|
|
207
|
+
|
|
208
|
+
Optional buffers
|
|
209
|
+
-----------------
|
|
210
|
+
neighbor_cos_sum, neighbor_sin_sum, neighbor_counts, mean_cos, mean_sin:
|
|
211
|
+
Preallocated arrays sized ``node_count`` reused to accumulate the
|
|
212
|
+
neighbour cosine/sine sums, neighbour sample counts, and the averaged
|
|
213
|
+
cosine/sine vectors. When omitted, the helper materialises fresh
|
|
214
|
+
buffers that match the previous semantics.
|
|
215
|
+
|
|
216
|
+
Returns
|
|
217
|
+
-------
|
|
218
|
+
tuple[Any, Any]
|
|
219
|
+
Tuple ``(mean_theta, has_neighbors)`` where ``mean_theta`` contains the
|
|
220
|
+
circular mean of neighbour phases for every node and ``has_neighbors``
|
|
221
|
+
is a boolean mask identifying which nodes contributed at least one
|
|
222
|
+
neighbour sample.
|
|
223
|
+
"""
|
|
224
|
+
|
|
225
|
+
if node_count <= 0:
|
|
226
|
+
empty_mean = np.zeros(0, dtype=float)
|
|
227
|
+
return empty_mean, empty_mean.astype(bool)
|
|
228
|
+
|
|
229
|
+
edge_src_arr = np.asarray(edge_src, dtype=np.intp)
|
|
230
|
+
edge_dst_arr = np.asarray(edge_dst, dtype=np.intp)
|
|
231
|
+
|
|
232
|
+
if edge_src_arr.shape != edge_dst_arr.shape:
|
|
233
|
+
raise ValueError("edge_src and edge_dst must share the same shape")
|
|
234
|
+
|
|
235
|
+
theta_arr = np.asarray(theta_values, dtype=float)
|
|
236
|
+
if theta_arr.ndim != 1 or theta_arr.size != node_count:
|
|
237
|
+
raise ValueError("theta_values must be a 1-D array matching node_count")
|
|
238
|
+
|
|
239
|
+
cos_arr = np.asarray(cos_values, dtype=float)
|
|
240
|
+
sin_arr = np.asarray(sin_values, dtype=float)
|
|
241
|
+
if cos_arr.ndim != 1 or cos_arr.size != node_count:
|
|
242
|
+
raise ValueError("cos_values must be a 1-D array matching node_count")
|
|
243
|
+
if sin_arr.ndim != 1 or sin_arr.size != node_count:
|
|
244
|
+
raise ValueError("sin_values must be a 1-D array matching node_count")
|
|
245
|
+
|
|
246
|
+
edge_count = edge_dst_arr.size
|
|
247
|
+
def _coerce_buffer(buffer: Any | None, *, name: str) -> tuple[Any, bool]:
|
|
248
|
+
if buffer is None:
|
|
249
|
+
return None, False
|
|
250
|
+
arr = np.array(buffer, dtype=float, copy=False)
|
|
251
|
+
if arr.ndim != 1 or arr.size != node_count:
|
|
252
|
+
raise ValueError(f"{name} must be a 1-D array sized node_count")
|
|
253
|
+
arr.fill(0.0)
|
|
254
|
+
return arr, True
|
|
255
|
+
|
|
256
|
+
neighbor_cos_sum, has_cos_buffer = _coerce_buffer(
|
|
257
|
+
neighbor_cos_sum, name="neighbor_cos_sum"
|
|
258
|
+
)
|
|
259
|
+
neighbor_sin_sum, has_sin_buffer = _coerce_buffer(
|
|
260
|
+
neighbor_sin_sum, name="neighbor_sin_sum"
|
|
261
|
+
)
|
|
262
|
+
neighbor_counts, has_count_buffer = _coerce_buffer(
|
|
263
|
+
neighbor_counts, name="neighbor_counts"
|
|
264
|
+
)
|
|
265
|
+
|
|
266
|
+
if edge_count:
|
|
267
|
+
cos_bincount = np.bincount(
|
|
268
|
+
edge_dst_arr,
|
|
269
|
+
weights=cos_arr[edge_src_arr],
|
|
270
|
+
minlength=node_count,
|
|
271
|
+
)
|
|
272
|
+
sin_bincount = np.bincount(
|
|
273
|
+
edge_dst_arr,
|
|
274
|
+
weights=sin_arr[edge_src_arr],
|
|
275
|
+
minlength=node_count,
|
|
276
|
+
)
|
|
277
|
+
count_bincount = np.bincount(
|
|
278
|
+
edge_dst_arr,
|
|
279
|
+
minlength=node_count,
|
|
280
|
+
).astype(float, copy=False)
|
|
281
|
+
|
|
282
|
+
if not has_cos_buffer:
|
|
283
|
+
neighbor_cos_sum = cos_bincount
|
|
284
|
+
else:
|
|
285
|
+
np.copyto(neighbor_cos_sum, cos_bincount)
|
|
286
|
+
|
|
287
|
+
if not has_sin_buffer:
|
|
288
|
+
neighbor_sin_sum = sin_bincount
|
|
289
|
+
else:
|
|
290
|
+
np.copyto(neighbor_sin_sum, sin_bincount)
|
|
291
|
+
|
|
292
|
+
if not has_count_buffer:
|
|
293
|
+
neighbor_counts = count_bincount
|
|
294
|
+
else:
|
|
295
|
+
np.copyto(neighbor_counts, count_bincount)
|
|
296
|
+
else:
|
|
297
|
+
if neighbor_cos_sum is None:
|
|
298
|
+
neighbor_cos_sum = np.zeros(node_count, dtype=float)
|
|
299
|
+
if neighbor_sin_sum is None:
|
|
300
|
+
neighbor_sin_sum = np.zeros(node_count, dtype=float)
|
|
301
|
+
if neighbor_counts is None:
|
|
302
|
+
neighbor_counts = np.zeros(node_count, dtype=float)
|
|
303
|
+
|
|
304
|
+
has_neighbors = neighbor_counts > 0.0
|
|
305
|
+
|
|
306
|
+
mean_cos, _ = _coerce_buffer(mean_cos, name="mean_cos")
|
|
307
|
+
mean_sin, _ = _coerce_buffer(mean_sin, name="mean_sin")
|
|
308
|
+
|
|
309
|
+
if mean_cos is None:
|
|
310
|
+
mean_cos = np.zeros(node_count, dtype=float)
|
|
311
|
+
if mean_sin is None:
|
|
312
|
+
mean_sin = np.zeros(node_count, dtype=float)
|
|
313
|
+
|
|
314
|
+
if edge_count:
|
|
315
|
+
with np.errstate(divide="ignore", invalid="ignore"):
|
|
316
|
+
np.divide(
|
|
317
|
+
neighbor_cos_sum,
|
|
318
|
+
neighbor_counts,
|
|
319
|
+
out=mean_cos,
|
|
320
|
+
where=has_neighbors,
|
|
321
|
+
)
|
|
322
|
+
np.divide(
|
|
323
|
+
neighbor_sin_sum,
|
|
324
|
+
neighbor_counts,
|
|
325
|
+
out=mean_sin,
|
|
326
|
+
where=has_neighbors,
|
|
327
|
+
)
|
|
328
|
+
|
|
329
|
+
mean_theta = np.where(has_neighbors, np.arctan2(mean_sin, mean_cos), theta_arr)
|
|
330
|
+
return mean_theta, has_neighbors
|
|
331
|
+
|
|
332
|
+
|
|
175
333
|
@overload
|
|
176
|
-
def neighbor_phase_mean(obj: "NodeProtocol", n: None = ...) -> Phase:
|
|
177
|
-
...
|
|
334
|
+
def neighbor_phase_mean(obj: "NodeProtocol", n: None = ...) -> Phase: ...
|
|
178
335
|
|
|
179
336
|
|
|
180
337
|
@overload
|
|
181
|
-
def neighbor_phase_mean(obj: TNFRGraph, n: NodeId) -> Phase:
|
|
182
|
-
...
|
|
338
|
+
def neighbor_phase_mean(obj: TNFRGraph, n: NodeId) -> Phase: ...
|
|
183
339
|
|
|
184
340
|
|
|
185
341
|
def neighbor_phase_mean(
|
tnfr/metrics/trig.pyi
CHANGED
tnfr/metrics/trig_cache.py
CHANGED
|
@@ -6,12 +6,14 @@ focused on pure mathematical utilities (phase means, compensated sums, etc.).
|
|
|
6
6
|
|
|
7
7
|
from __future__ import annotations
|
|
8
8
|
|
|
9
|
+
import hashlib
|
|
9
10
|
import math
|
|
11
|
+
import struct
|
|
10
12
|
from dataclasses import dataclass
|
|
11
13
|
from typing import Any, Iterable, Mapping
|
|
12
14
|
|
|
13
15
|
from ..alias import get_theta_attr
|
|
14
|
-
from ..types import GraphLike
|
|
16
|
+
from ..types import GraphLike, NodeAttrMap
|
|
15
17
|
from ..utils import edge_version_cache, get_numpy
|
|
16
18
|
|
|
17
19
|
__all__ = ("TrigCache", "compute_theta_trig", "get_trig_cache", "_compute_trig_python")
|
|
@@ -24,10 +26,18 @@ class TrigCache:
|
|
|
24
26
|
cos: dict[Any, float]
|
|
25
27
|
sin: dict[Any, float]
|
|
26
28
|
theta: dict[Any, float]
|
|
29
|
+
theta_checksums: dict[Any, bytes]
|
|
30
|
+
order: tuple[Any, ...]
|
|
31
|
+
cos_values: Any
|
|
32
|
+
sin_values: Any
|
|
33
|
+
theta_values: Any
|
|
34
|
+
index: dict[Any, int]
|
|
35
|
+
edge_src: Any | None = None
|
|
36
|
+
edge_dst: Any | None = None
|
|
27
37
|
|
|
28
38
|
|
|
29
39
|
def _iter_theta_pairs(
|
|
30
|
-
nodes: Iterable[tuple[Any,
|
|
40
|
+
nodes: Iterable[tuple[Any, NodeAttrMap | float]],
|
|
31
41
|
) -> Iterable[tuple[Any, float]]:
|
|
32
42
|
"""Yield ``(node, θ)`` pairs from ``nodes``."""
|
|
33
43
|
|
|
@@ -39,22 +49,48 @@ def _iter_theta_pairs(
|
|
|
39
49
|
|
|
40
50
|
|
|
41
51
|
def _compute_trig_python(
|
|
42
|
-
nodes: Iterable[tuple[Any,
|
|
52
|
+
nodes: Iterable[tuple[Any, NodeAttrMap | float]],
|
|
43
53
|
) -> TrigCache:
|
|
44
54
|
"""Compute trigonometric mappings using pure Python."""
|
|
45
55
|
|
|
56
|
+
pairs = list(_iter_theta_pairs(nodes))
|
|
57
|
+
|
|
46
58
|
cos_th: dict[Any, float] = {}
|
|
47
59
|
sin_th: dict[Any, float] = {}
|
|
48
60
|
thetas: dict[Any, float] = {}
|
|
49
|
-
|
|
61
|
+
theta_checksums: dict[Any, bytes] = {}
|
|
62
|
+
order_list: list[Any] = []
|
|
63
|
+
|
|
64
|
+
for n, th in pairs:
|
|
65
|
+
order_list.append(n)
|
|
50
66
|
thetas[n] = th
|
|
51
67
|
cos_th[n] = math.cos(th)
|
|
52
68
|
sin_th[n] = math.sin(th)
|
|
53
|
-
|
|
69
|
+
theta_checksums[n] = _theta_checksum(th)
|
|
70
|
+
|
|
71
|
+
order = tuple(order_list)
|
|
72
|
+
cos_values = tuple(cos_th[n] for n in order)
|
|
73
|
+
sin_values = tuple(sin_th[n] for n in order)
|
|
74
|
+
theta_values = tuple(thetas[n] for n in order)
|
|
75
|
+
index = {n: i for i, n in enumerate(order)}
|
|
76
|
+
|
|
77
|
+
return TrigCache(
|
|
78
|
+
cos=cos_th,
|
|
79
|
+
sin=sin_th,
|
|
80
|
+
theta=thetas,
|
|
81
|
+
theta_checksums=theta_checksums,
|
|
82
|
+
order=order,
|
|
83
|
+
cos_values=cos_values,
|
|
84
|
+
sin_values=sin_values,
|
|
85
|
+
theta_values=theta_values,
|
|
86
|
+
index=index,
|
|
87
|
+
edge_src=None,
|
|
88
|
+
edge_dst=None,
|
|
89
|
+
)
|
|
54
90
|
|
|
55
91
|
|
|
56
92
|
def compute_theta_trig(
|
|
57
|
-
nodes: Iterable[tuple[Any,
|
|
93
|
+
nodes: Iterable[tuple[Any, NodeAttrMap | float]],
|
|
58
94
|
np: Any | None = None,
|
|
59
95
|
) -> TrigCache:
|
|
60
96
|
"""Return trigonometric mappings of ``θ`` per node."""
|
|
@@ -66,9 +102,22 @@ def compute_theta_trig(
|
|
|
66
102
|
|
|
67
103
|
pairs = list(_iter_theta_pairs(nodes))
|
|
68
104
|
if not pairs:
|
|
69
|
-
return TrigCache(
|
|
105
|
+
return TrigCache(
|
|
106
|
+
cos={},
|
|
107
|
+
sin={},
|
|
108
|
+
theta={},
|
|
109
|
+
theta_checksums={},
|
|
110
|
+
order=(),
|
|
111
|
+
cos_values=(),
|
|
112
|
+
sin_values=(),
|
|
113
|
+
theta_values=(),
|
|
114
|
+
index={},
|
|
115
|
+
edge_src=None,
|
|
116
|
+
edge_dst=None,
|
|
117
|
+
)
|
|
70
118
|
|
|
71
119
|
node_list, theta_vals = zip(*pairs)
|
|
120
|
+
node_list = tuple(node_list)
|
|
72
121
|
theta_arr = np.fromiter(theta_vals, dtype=float)
|
|
73
122
|
cos_arr = np.cos(theta_arr)
|
|
74
123
|
sin_arr = np.sin(theta_arr)
|
|
@@ -76,7 +125,21 @@ def compute_theta_trig(
|
|
|
76
125
|
cos_th = dict(zip(node_list, map(float, cos_arr)))
|
|
77
126
|
sin_th = dict(zip(node_list, map(float, sin_arr)))
|
|
78
127
|
thetas = dict(zip(node_list, map(float, theta_arr)))
|
|
79
|
-
|
|
128
|
+
theta_checksums = {node: _theta_checksum(float(theta)) for node, theta in pairs}
|
|
129
|
+
index = {n: i for i, n in enumerate(node_list)}
|
|
130
|
+
return TrigCache(
|
|
131
|
+
cos=cos_th,
|
|
132
|
+
sin=sin_th,
|
|
133
|
+
theta=thetas,
|
|
134
|
+
theta_checksums=theta_checksums,
|
|
135
|
+
order=node_list,
|
|
136
|
+
cos_values=cos_arr,
|
|
137
|
+
sin_values=sin_arr,
|
|
138
|
+
theta_values=theta_arr,
|
|
139
|
+
index=index,
|
|
140
|
+
edge_src=None,
|
|
141
|
+
edge_dst=None,
|
|
142
|
+
)
|
|
80
143
|
|
|
81
144
|
|
|
82
145
|
def _build_trig_cache(G: GraphLike, np: Any | None = None) -> TrigCache:
|
|
@@ -95,11 +158,45 @@ def get_trig_cache(
|
|
|
95
158
|
|
|
96
159
|
if np is None:
|
|
97
160
|
np = get_numpy()
|
|
98
|
-
|
|
161
|
+
graph = G.graph
|
|
162
|
+
version = graph.setdefault("_trig_version", 0)
|
|
99
163
|
key = ("_trig", version)
|
|
100
|
-
|
|
101
|
-
|
|
102
|
-
|
|
103
|
-
|
|
104
|
-
|
|
105
|
-
)
|
|
164
|
+
|
|
165
|
+
def builder() -> TrigCache:
|
|
166
|
+
return _build_trig_cache(G, np=np)
|
|
167
|
+
|
|
168
|
+
trig = edge_version_cache(G, key, builder, max_entries=cache_size)
|
|
169
|
+
current_checksums = _graph_theta_checksums(G)
|
|
170
|
+
trig_checksums = getattr(trig, "theta_checksums", None)
|
|
171
|
+
if trig_checksums is None:
|
|
172
|
+
trig_checksums = {}
|
|
173
|
+
|
|
174
|
+
if trig_checksums != current_checksums:
|
|
175
|
+
version = version + 1
|
|
176
|
+
graph["_trig_version"] = version
|
|
177
|
+
key = ("_trig", version)
|
|
178
|
+
trig = edge_version_cache(G, key, builder, max_entries=cache_size)
|
|
179
|
+
trig_checksums = getattr(trig, "theta_checksums", None)
|
|
180
|
+
if trig_checksums is None:
|
|
181
|
+
trig_checksums = {}
|
|
182
|
+
if trig_checksums != current_checksums:
|
|
183
|
+
current_checksums = _graph_theta_checksums(G)
|
|
184
|
+
if trig_checksums != current_checksums:
|
|
185
|
+
return trig
|
|
186
|
+
return trig
|
|
187
|
+
|
|
188
|
+
|
|
189
|
+
def _theta_checksum(theta: float) -> bytes:
|
|
190
|
+
"""Return a deterministic checksum for ``theta``."""
|
|
191
|
+
|
|
192
|
+
packed = struct.pack("!d", float(theta))
|
|
193
|
+
return hashlib.blake2b(packed, digest_size=8).digest()
|
|
194
|
+
|
|
195
|
+
|
|
196
|
+
def _graph_theta_checksums(G: GraphLike) -> dict[Any, bytes]:
|
|
197
|
+
"""Return checksum snapshot of the graph's current ``θ`` values."""
|
|
198
|
+
|
|
199
|
+
checksums: dict[Any, bytes] = {}
|
|
200
|
+
for node, theta in _iter_theta_pairs(G.nodes(data=True)):
|
|
201
|
+
checksums[node] = _theta_checksum(theta)
|
|
202
|
+
return checksums
|