tnfr 4.5.2__py3-none-any.whl → 6.0.0__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- tnfr/__init__.py +228 -49
- tnfr/__init__.pyi +40 -0
- tnfr/_compat.py +11 -0
- tnfr/_version.py +7 -0
- tnfr/_version.pyi +7 -0
- tnfr/alias.py +106 -21
- tnfr/alias.pyi +140 -0
- tnfr/cache.py +666 -512
- tnfr/cache.pyi +232 -0
- tnfr/callback_utils.py +2 -9
- tnfr/callback_utils.pyi +105 -0
- tnfr/cli/__init__.py +21 -7
- tnfr/cli/__init__.pyi +47 -0
- tnfr/cli/arguments.py +42 -20
- tnfr/cli/arguments.pyi +33 -0
- tnfr/cli/execution.py +54 -20
- tnfr/cli/execution.pyi +80 -0
- tnfr/cli/utils.py +0 -2
- tnfr/cli/utils.pyi +8 -0
- tnfr/config/__init__.py +12 -0
- tnfr/config/__init__.pyi +8 -0
- tnfr/config/constants.py +104 -0
- tnfr/config/constants.pyi +12 -0
- tnfr/{config.py → config/init.py} +11 -7
- tnfr/config/init.pyi +8 -0
- tnfr/config/operator_names.py +106 -0
- tnfr/config/operator_names.pyi +28 -0
- tnfr/config/presets.py +104 -0
- tnfr/config/presets.pyi +7 -0
- tnfr/constants/__init__.py +78 -24
- tnfr/constants/__init__.pyi +104 -0
- tnfr/constants/core.py +1 -2
- tnfr/constants/core.pyi +17 -0
- tnfr/constants/init.pyi +12 -0
- tnfr/constants/metric.py +4 -12
- tnfr/constants/metric.pyi +19 -0
- tnfr/constants_glyphs.py +9 -91
- tnfr/constants_glyphs.pyi +12 -0
- tnfr/dynamics/__init__.py +112 -634
- tnfr/dynamics/__init__.pyi +83 -0
- tnfr/dynamics/adaptation.py +201 -0
- tnfr/dynamics/aliases.py +22 -0
- tnfr/dynamics/coordination.py +343 -0
- tnfr/dynamics/dnfr.py +1936 -354
- tnfr/dynamics/dnfr.pyi +33 -0
- tnfr/dynamics/integrators.py +369 -75
- tnfr/dynamics/integrators.pyi +35 -0
- tnfr/dynamics/runtime.py +521 -0
- tnfr/dynamics/sampling.py +8 -5
- tnfr/dynamics/sampling.pyi +7 -0
- tnfr/dynamics/selectors.py +680 -0
- tnfr/execution.py +56 -41
- tnfr/execution.pyi +65 -0
- tnfr/flatten.py +7 -7
- tnfr/flatten.pyi +28 -0
- tnfr/gamma.py +54 -37
- tnfr/gamma.pyi +40 -0
- tnfr/glyph_history.py +85 -38
- tnfr/glyph_history.pyi +53 -0
- tnfr/grammar.py +19 -338
- tnfr/grammar.pyi +13 -0
- tnfr/helpers/__init__.py +110 -30
- tnfr/helpers/__init__.pyi +66 -0
- tnfr/helpers/numeric.py +1 -0
- tnfr/helpers/numeric.pyi +12 -0
- tnfr/immutable.py +55 -19
- tnfr/immutable.pyi +37 -0
- tnfr/initialization.py +12 -10
- tnfr/initialization.pyi +73 -0
- tnfr/io.py +99 -34
- tnfr/io.pyi +11 -0
- tnfr/locking.pyi +7 -0
- tnfr/metrics/__init__.pyi +20 -0
- tnfr/metrics/coherence.py +934 -294
- tnfr/metrics/common.py +1 -3
- tnfr/metrics/common.pyi +15 -0
- tnfr/metrics/core.py +192 -34
- tnfr/metrics/core.pyi +13 -0
- tnfr/metrics/diagnosis.py +707 -101
- tnfr/metrics/diagnosis.pyi +89 -0
- tnfr/metrics/export.py +27 -13
- tnfr/metrics/glyph_timing.py +218 -38
- tnfr/metrics/reporting.py +22 -18
- tnfr/metrics/reporting.pyi +12 -0
- tnfr/metrics/sense_index.py +199 -25
- tnfr/metrics/sense_index.pyi +9 -0
- tnfr/metrics/trig.py +53 -18
- tnfr/metrics/trig.pyi +12 -0
- tnfr/metrics/trig_cache.py +3 -7
- tnfr/metrics/trig_cache.pyi +10 -0
- tnfr/node.py +148 -125
- tnfr/node.pyi +161 -0
- tnfr/observers.py +44 -30
- tnfr/observers.pyi +46 -0
- tnfr/ontosim.py +14 -13
- tnfr/ontosim.pyi +33 -0
- tnfr/operators/__init__.py +84 -52
- tnfr/operators/__init__.pyi +31 -0
- tnfr/operators/definitions.py +181 -0
- tnfr/operators/definitions.pyi +92 -0
- tnfr/operators/jitter.py +86 -23
- tnfr/operators/jitter.pyi +11 -0
- tnfr/operators/registry.py +80 -0
- tnfr/operators/registry.pyi +15 -0
- tnfr/operators/remesh.py +141 -57
- tnfr/presets.py +9 -54
- tnfr/presets.pyi +7 -0
- tnfr/py.typed +0 -0
- tnfr/rng.py +259 -73
- tnfr/rng.pyi +14 -0
- tnfr/selector.py +24 -17
- tnfr/selector.pyi +19 -0
- tnfr/sense.py +55 -43
- tnfr/sense.pyi +30 -0
- tnfr/structural.py +44 -267
- tnfr/structural.pyi +46 -0
- tnfr/telemetry/__init__.py +13 -0
- tnfr/telemetry/verbosity.py +37 -0
- tnfr/tokens.py +3 -2
- tnfr/tokens.pyi +41 -0
- tnfr/trace.py +272 -82
- tnfr/trace.pyi +68 -0
- tnfr/types.py +345 -6
- tnfr/types.pyi +145 -0
- tnfr/utils/__init__.py +158 -0
- tnfr/utils/__init__.pyi +133 -0
- tnfr/utils/cache.py +755 -0
- tnfr/utils/cache.pyi +156 -0
- tnfr/{collections_utils.py → utils/data.py} +57 -90
- tnfr/utils/data.pyi +73 -0
- tnfr/utils/graph.py +87 -0
- tnfr/utils/graph.pyi +10 -0
- tnfr/utils/init.py +746 -0
- tnfr/utils/init.pyi +85 -0
- tnfr/{json_utils.py → utils/io.py} +13 -18
- tnfr/utils/io.pyi +10 -0
- tnfr/utils/validators.py +130 -0
- tnfr/utils/validators.pyi +19 -0
- tnfr/validation/__init__.py +25 -0
- tnfr/validation/__init__.pyi +17 -0
- tnfr/validation/compatibility.py +59 -0
- tnfr/validation/compatibility.pyi +8 -0
- tnfr/validation/grammar.py +149 -0
- tnfr/validation/grammar.pyi +11 -0
- tnfr/validation/rules.py +194 -0
- tnfr/validation/rules.pyi +18 -0
- tnfr/validation/syntax.py +151 -0
- tnfr/validation/syntax.pyi +7 -0
- tnfr-6.0.0.dist-info/METADATA +135 -0
- tnfr-6.0.0.dist-info/RECORD +157 -0
- tnfr/graph_utils.py +0 -84
- tnfr/import_utils.py +0 -228
- tnfr/logging_utils.py +0 -116
- tnfr/validators.py +0 -84
- tnfr/value_utils.py +0 -59
- tnfr-4.5.2.dist-info/METADATA +0 -379
- tnfr-4.5.2.dist-info/RECORD +0 -67
- {tnfr-4.5.2.dist-info → tnfr-6.0.0.dist-info}/WHEEL +0 -0
- {tnfr-4.5.2.dist-info → tnfr-6.0.0.dist-info}/entry_points.txt +0 -0
- {tnfr-4.5.2.dist-info → tnfr-6.0.0.dist-info}/licenses/LICENSE.md +0 -0
- {tnfr-4.5.2.dist-info → tnfr-6.0.0.dist-info}/top_level.txt +0 -0
tnfr/dynamics/dnfr.pyi
ADDED
|
@@ -0,0 +1,33 @@
|
|
|
1
|
+
from typing import Any
|
|
2
|
+
|
|
3
|
+
from tnfr.types import DeltaNFRHook, TNFRGraph
|
|
4
|
+
|
|
5
|
+
__all__: tuple[str, ...]
|
|
6
|
+
|
|
7
|
+
def default_compute_delta_nfr(
|
|
8
|
+
G: TNFRGraph,
|
|
9
|
+
*,
|
|
10
|
+
cache_size: int | None = ...,
|
|
11
|
+
n_jobs: int | None = ...,
|
|
12
|
+
) -> None: ...
|
|
13
|
+
|
|
14
|
+
|
|
15
|
+
def dnfr_epi_vf_mixed(G: TNFRGraph, *, n_jobs: int | None = ...) -> None: ...
|
|
16
|
+
|
|
17
|
+
|
|
18
|
+
def dnfr_laplacian(G: TNFRGraph, *, n_jobs: int | None = ...) -> None: ...
|
|
19
|
+
|
|
20
|
+
|
|
21
|
+
def dnfr_phase_only(G: TNFRGraph, *, n_jobs: int | None = ...) -> None: ...
|
|
22
|
+
|
|
23
|
+
|
|
24
|
+
def set_delta_nfr_hook(
|
|
25
|
+
G: TNFRGraph,
|
|
26
|
+
func: DeltaNFRHook,
|
|
27
|
+
*,
|
|
28
|
+
name: str | None = ...,
|
|
29
|
+
note: str | None = ...,
|
|
30
|
+
) -> None: ...
|
|
31
|
+
|
|
32
|
+
|
|
33
|
+
def __getattr__(name: str) -> Any: ...
|
tnfr/dynamics/integrators.py
CHANGED
|
@@ -1,17 +1,23 @@
|
|
|
1
1
|
from __future__ import annotations
|
|
2
2
|
|
|
3
3
|
import math
|
|
4
|
-
from
|
|
5
|
-
from
|
|
4
|
+
from abc import ABC, abstractmethod
|
|
5
|
+
from collections.abc import Iterable, Mapping
|
|
6
|
+
from concurrent.futures import ProcessPoolExecutor
|
|
7
|
+
from multiprocessing import get_context
|
|
8
|
+
from typing import Any, Literal, cast
|
|
6
9
|
|
|
7
|
-
import networkx as nx
|
|
10
|
+
import networkx as nx
|
|
8
11
|
|
|
9
12
|
from ..constants import (
|
|
10
13
|
DEFAULTS,
|
|
11
14
|
get_aliases,
|
|
12
15
|
)
|
|
13
16
|
from ..gamma import _get_gamma_spec, eval_gamma
|
|
14
|
-
from ..alias import get_attr, get_attr_str, set_attr, set_attr_str
|
|
17
|
+
from ..alias import collect_attr, get_attr, get_attr_str, set_attr, set_attr_str
|
|
18
|
+
from ..utils import get_numpy
|
|
19
|
+
from ..types import NodeId, TNFRGraph
|
|
20
|
+
from .._compat import TypeAlias
|
|
15
21
|
|
|
16
22
|
ALIAS_VF = get_aliases("VF")
|
|
17
23
|
ALIAS_DNFR = get_aliases("DNFR")
|
|
@@ -21,17 +27,130 @@ ALIAS_EPI_KIND = get_aliases("EPI_KIND")
|
|
|
21
27
|
ALIAS_D2EPI = get_aliases("D2EPI")
|
|
22
28
|
|
|
23
29
|
__all__ = (
|
|
30
|
+
"AbstractIntegrator",
|
|
31
|
+
"DefaultIntegrator",
|
|
24
32
|
"prepare_integration_params",
|
|
25
33
|
"update_epi_via_nodal_equation",
|
|
26
34
|
)
|
|
27
35
|
|
|
28
36
|
|
|
37
|
+
GammaMap: TypeAlias = dict[NodeId, float]
|
|
38
|
+
"""Γ evaluation cache keyed by node identifier."""
|
|
39
|
+
|
|
40
|
+
NodeIncrements: TypeAlias = dict[NodeId, tuple[float, ...]]
|
|
41
|
+
"""Mapping of nodes to staged integration increments."""
|
|
42
|
+
|
|
43
|
+
NodalUpdate: TypeAlias = dict[NodeId, tuple[float, float, float]]
|
|
44
|
+
"""Mapping of nodes to ``(EPI, dEPI/dt, ∂²EPI/∂t²)`` tuples."""
|
|
45
|
+
|
|
46
|
+
IntegratorMethod: TypeAlias = Literal["euler", "rk4"]
|
|
47
|
+
"""Supported explicit integration schemes for nodal updates."""
|
|
48
|
+
|
|
49
|
+
|
|
50
|
+
_PARALLEL_GRAPH: TNFRGraph | None = None
|
|
51
|
+
|
|
52
|
+
|
|
53
|
+
def _gamma_worker_init(graph: TNFRGraph) -> None:
|
|
54
|
+
"""Initialise process-local graph reference for Γ evaluation."""
|
|
55
|
+
|
|
56
|
+
global _PARALLEL_GRAPH
|
|
57
|
+
_PARALLEL_GRAPH = graph
|
|
58
|
+
|
|
59
|
+
|
|
60
|
+
def _gamma_worker(task: tuple[list[NodeId], float]) -> list[tuple[NodeId, float]]:
|
|
61
|
+
"""Evaluate Γ for ``task`` chunk using process-local graph."""
|
|
62
|
+
|
|
63
|
+
chunk, t = task
|
|
64
|
+
if _PARALLEL_GRAPH is None:
|
|
65
|
+
raise RuntimeError("Parallel Γ worker initialised without graph reference")
|
|
66
|
+
return [
|
|
67
|
+
(node, float(eval_gamma(_PARALLEL_GRAPH, node, t))) for node in chunk
|
|
68
|
+
]
|
|
69
|
+
|
|
70
|
+
|
|
71
|
+
def _normalise_jobs(n_jobs: int | None, total: int) -> int | None:
|
|
72
|
+
"""Return an effective worker count respecting serial fallbacks."""
|
|
73
|
+
|
|
74
|
+
if n_jobs is None:
|
|
75
|
+
return None
|
|
76
|
+
try:
|
|
77
|
+
workers = int(n_jobs)
|
|
78
|
+
except (TypeError, ValueError):
|
|
79
|
+
return None
|
|
80
|
+
if workers <= 1 or total <= 1:
|
|
81
|
+
return None
|
|
82
|
+
return max(1, min(workers, total))
|
|
83
|
+
|
|
84
|
+
|
|
85
|
+
def _chunk_nodes(nodes: list[NodeId], chunk_size: int) -> Iterable[list[NodeId]]:
|
|
86
|
+
"""Yield deterministic chunks from ``nodes`` respecting insertion order."""
|
|
87
|
+
|
|
88
|
+
for idx in range(0, len(nodes), chunk_size):
|
|
89
|
+
yield nodes[idx:idx + chunk_size]
|
|
90
|
+
|
|
91
|
+
|
|
92
|
+
def _apply_increment_chunk(
|
|
93
|
+
chunk: list[tuple[NodeId, float, float, tuple[float, ...]]],
|
|
94
|
+
dt_step: float,
|
|
95
|
+
method: str,
|
|
96
|
+
) -> list[tuple[NodeId, tuple[float, float, float]]]:
|
|
97
|
+
"""Compute updated states for ``chunk`` using scalar arithmetic."""
|
|
98
|
+
|
|
99
|
+
results: list[tuple[NodeId, tuple[float, float, float]]] = []
|
|
100
|
+
dt_nonzero = dt_step != 0
|
|
101
|
+
|
|
102
|
+
for node, epi_i, dEPI_prev, ks in chunk:
|
|
103
|
+
if method == "rk4":
|
|
104
|
+
k1, k2, k3, k4 = ks
|
|
105
|
+
epi = epi_i + (dt_step / 6.0) * (k1 + 2 * k2 + 2 * k3 + k4)
|
|
106
|
+
dEPI_dt = k4
|
|
107
|
+
else:
|
|
108
|
+
(k1,) = ks
|
|
109
|
+
epi = epi_i + dt_step * k1
|
|
110
|
+
dEPI_dt = k1
|
|
111
|
+
d2epi = (dEPI_dt - dEPI_prev) / dt_step if dt_nonzero else 0.0
|
|
112
|
+
results.append((node, (float(epi), float(dEPI_dt), float(d2epi))))
|
|
113
|
+
|
|
114
|
+
return results
|
|
115
|
+
|
|
116
|
+
|
|
117
|
+
def _evaluate_gamma_map(
|
|
118
|
+
G: TNFRGraph,
|
|
119
|
+
nodes: list[NodeId],
|
|
120
|
+
t: float,
|
|
121
|
+
*,
|
|
122
|
+
n_jobs: int | None = None,
|
|
123
|
+
) -> GammaMap:
|
|
124
|
+
"""Return Γ evaluations for ``nodes`` at time ``t`` respecting parallelism."""
|
|
125
|
+
|
|
126
|
+
workers = _normalise_jobs(n_jobs, len(nodes))
|
|
127
|
+
if workers is None:
|
|
128
|
+
return {n: float(eval_gamma(G, n, t)) for n in nodes}
|
|
129
|
+
|
|
130
|
+
chunk_size = max(1, math.ceil(len(nodes) / (workers * 4)))
|
|
131
|
+
mp_ctx = get_context("spawn")
|
|
132
|
+
tasks = ((chunk, t) for chunk in _chunk_nodes(nodes, chunk_size))
|
|
133
|
+
|
|
134
|
+
results: GammaMap = {}
|
|
135
|
+
with ProcessPoolExecutor(
|
|
136
|
+
max_workers=workers,
|
|
137
|
+
mp_context=mp_ctx,
|
|
138
|
+
initializer=_gamma_worker_init,
|
|
139
|
+
initargs=(G,),
|
|
140
|
+
) as executor:
|
|
141
|
+
futures = [executor.submit(_gamma_worker, task) for task in tasks]
|
|
142
|
+
for fut in futures:
|
|
143
|
+
for node, value in fut.result():
|
|
144
|
+
results[node] = value
|
|
145
|
+
return results
|
|
146
|
+
|
|
147
|
+
|
|
29
148
|
def prepare_integration_params(
|
|
30
|
-
G,
|
|
149
|
+
G: TNFRGraph,
|
|
31
150
|
dt: float | None = None,
|
|
32
151
|
t: float | None = None,
|
|
33
152
|
method: Literal["euler", "rk4"] | None = None,
|
|
34
|
-
):
|
|
153
|
+
) -> tuple[float, int, float, Literal["euler", "rk4"]]:
|
|
35
154
|
"""Validate and normalise ``dt``, ``t`` and ``method`` for integration.
|
|
36
155
|
|
|
37
156
|
Returns ``(dt_step, steps, t0, method)`` where ``dt_step`` is the
|
|
@@ -52,13 +171,13 @@ def prepare_integration_params(
|
|
|
52
171
|
else:
|
|
53
172
|
t = float(t)
|
|
54
173
|
|
|
55
|
-
|
|
174
|
+
method_value = (
|
|
56
175
|
method
|
|
57
176
|
or G.graph.get(
|
|
58
177
|
"INTEGRATOR_METHOD", DEFAULTS.get("INTEGRATOR_METHOD", "euler")
|
|
59
178
|
)
|
|
60
179
|
).lower()
|
|
61
|
-
if
|
|
180
|
+
if method_value not in ("euler", "rk4"):
|
|
62
181
|
raise ValueError("method must be 'euler' or 'rk4'")
|
|
63
182
|
|
|
64
183
|
dt_min = float(G.graph.get("DT_MIN", DEFAULTS.get("DT_MIN", 0.0)))
|
|
@@ -69,43 +188,108 @@ def prepare_integration_params(
|
|
|
69
188
|
# ``steps`` is guaranteed to be ≥1 at this point
|
|
70
189
|
dt_step = dt / steps
|
|
71
190
|
|
|
72
|
-
return dt_step, steps, t,
|
|
191
|
+
return dt_step, steps, t, cast(Literal["euler", "rk4"], method_value)
|
|
73
192
|
|
|
74
193
|
|
|
75
194
|
def _apply_increments(
|
|
76
|
-
G:
|
|
195
|
+
G: TNFRGraph,
|
|
77
196
|
dt_step: float,
|
|
78
|
-
increments:
|
|
197
|
+
increments: NodeIncrements,
|
|
79
198
|
*,
|
|
80
199
|
method: str,
|
|
81
|
-
|
|
200
|
+
n_jobs: int | None = None,
|
|
201
|
+
) -> NodalUpdate:
|
|
82
202
|
"""Combine precomputed increments to update node states."""
|
|
83
203
|
|
|
84
|
-
|
|
85
|
-
|
|
86
|
-
|
|
87
|
-
|
|
204
|
+
nodes: list[NodeId] = list(G.nodes)
|
|
205
|
+
if not nodes:
|
|
206
|
+
return {}
|
|
207
|
+
|
|
208
|
+
np = get_numpy()
|
|
209
|
+
|
|
210
|
+
epi_initial: list[float] = []
|
|
211
|
+
dEPI_prev: list[float] = []
|
|
212
|
+
ordered_increments: list[tuple[float, ...]] = []
|
|
213
|
+
|
|
214
|
+
for node in nodes:
|
|
215
|
+
nd = G.nodes[node]
|
|
216
|
+
_, _, dEPI_dt_prev, epi_i = _node_state(nd)
|
|
217
|
+
epi_initial.append(float(epi_i))
|
|
218
|
+
dEPI_prev.append(float(dEPI_dt_prev))
|
|
219
|
+
ordered_increments.append(increments[node])
|
|
220
|
+
|
|
221
|
+
if np is not None:
|
|
222
|
+
epi_arr = np.asarray(epi_initial, dtype=float)
|
|
223
|
+
dEPI_prev_arr = np.asarray(dEPI_prev, dtype=float)
|
|
224
|
+
k_arr = np.asarray(ordered_increments, dtype=float)
|
|
225
|
+
|
|
88
226
|
if method == "rk4":
|
|
89
|
-
|
|
90
|
-
|
|
91
|
-
|
|
227
|
+
if k_arr.ndim != 2 or k_arr.shape[1] != 4:
|
|
228
|
+
raise ValueError("rk4 increments require four staged values")
|
|
229
|
+
dt_factor = dt_step / 6.0
|
|
230
|
+
k1 = k_arr[:, 0]
|
|
231
|
+
k2 = k_arr[:, 1]
|
|
232
|
+
k3 = k_arr[:, 2]
|
|
233
|
+
k4 = k_arr[:, 3]
|
|
234
|
+
epi = epi_arr + dt_factor * (k1 + 2 * k2 + 2 * k3 + k4)
|
|
92
235
|
dEPI_dt = k4
|
|
93
236
|
else:
|
|
94
|
-
|
|
95
|
-
|
|
96
|
-
|
|
237
|
+
if k_arr.ndim == 1:
|
|
238
|
+
k1 = k_arr
|
|
239
|
+
else:
|
|
240
|
+
k1 = k_arr[:, 0]
|
|
241
|
+
epi = epi_arr + dt_step * k1
|
|
97
242
|
dEPI_dt = k1
|
|
98
|
-
|
|
99
|
-
|
|
100
|
-
|
|
243
|
+
|
|
244
|
+
if dt_step != 0:
|
|
245
|
+
d2epi = (dEPI_dt - dEPI_prev_arr) / dt_step
|
|
246
|
+
else:
|
|
247
|
+
d2epi = np.zeros_like(dEPI_dt)
|
|
248
|
+
|
|
249
|
+
results: NodalUpdate = {}
|
|
250
|
+
for idx, node in enumerate(nodes):
|
|
251
|
+
results[node] = (
|
|
252
|
+
float(epi[idx]),
|
|
253
|
+
float(dEPI_dt[idx]),
|
|
254
|
+
float(d2epi[idx]),
|
|
255
|
+
)
|
|
256
|
+
return results
|
|
257
|
+
|
|
258
|
+
payload: list[tuple[NodeId, float, float, tuple[float, ...]]] = list(
|
|
259
|
+
zip(nodes, epi_initial, dEPI_prev, ordered_increments)
|
|
260
|
+
)
|
|
261
|
+
|
|
262
|
+
workers = _normalise_jobs(n_jobs, len(nodes))
|
|
263
|
+
if workers is None:
|
|
264
|
+
return dict(_apply_increment_chunk(payload, dt_step, method))
|
|
265
|
+
|
|
266
|
+
chunk_size = max(1, math.ceil(len(nodes) / (workers * 4)))
|
|
267
|
+
mp_ctx = get_context("spawn")
|
|
268
|
+
|
|
269
|
+
results: NodalUpdate = {}
|
|
270
|
+
with ProcessPoolExecutor(max_workers=workers, mp_context=mp_ctx) as executor:
|
|
271
|
+
futures = [
|
|
272
|
+
executor.submit(
|
|
273
|
+
_apply_increment_chunk,
|
|
274
|
+
chunk,
|
|
275
|
+
dt_step,
|
|
276
|
+
method,
|
|
277
|
+
)
|
|
278
|
+
for chunk in _chunk_nodes(payload, chunk_size)
|
|
279
|
+
]
|
|
280
|
+
for fut in futures:
|
|
281
|
+
for node, value in fut.result():
|
|
282
|
+
results[node] = value
|
|
283
|
+
|
|
284
|
+
return {node: results[node] for node in nodes}
|
|
101
285
|
|
|
102
286
|
|
|
103
287
|
def _collect_nodal_increments(
|
|
104
|
-
G:
|
|
105
|
-
gamma_maps: tuple[
|
|
288
|
+
G: TNFRGraph,
|
|
289
|
+
gamma_maps: tuple[GammaMap, ...],
|
|
106
290
|
*,
|
|
107
291
|
method: str,
|
|
108
|
-
) ->
|
|
292
|
+
) -> NodeIncrements:
|
|
109
293
|
"""Combine node base state with staged Γ contributions.
|
|
110
294
|
|
|
111
295
|
``gamma_maps`` must contain one entry for Euler integration and four for
|
|
@@ -113,38 +297,71 @@ def _collect_nodal_increments(
|
|
|
113
297
|
with the supplied Γ evaluations.
|
|
114
298
|
"""
|
|
115
299
|
|
|
116
|
-
|
|
117
|
-
|
|
300
|
+
nodes: list[NodeId] = list(G.nodes())
|
|
301
|
+
if not nodes:
|
|
302
|
+
return {}
|
|
303
|
+
|
|
304
|
+
if method == "rk4":
|
|
305
|
+
expected_maps = 4
|
|
306
|
+
elif method == "euler":
|
|
307
|
+
expected_maps = 1
|
|
308
|
+
else:
|
|
309
|
+
raise ValueError("method must be 'euler' or 'rk4'")
|
|
310
|
+
|
|
311
|
+
if len(gamma_maps) != expected_maps:
|
|
312
|
+
raise ValueError(f"{method} integration requires {expected_maps} gamma maps")
|
|
313
|
+
|
|
314
|
+
np = get_numpy()
|
|
315
|
+
if np is not None:
|
|
316
|
+
vf = collect_attr(G, nodes, ALIAS_VF, 0.0, np=np)
|
|
317
|
+
dnfr = collect_attr(G, nodes, ALIAS_DNFR, 0.0, np=np)
|
|
318
|
+
base = vf * dnfr
|
|
319
|
+
|
|
320
|
+
gamma_arrays = [
|
|
321
|
+
np.fromiter((gm.get(n, 0.0) for n in nodes), float, count=len(nodes))
|
|
322
|
+
for gm in gamma_maps
|
|
323
|
+
]
|
|
324
|
+
if gamma_arrays:
|
|
325
|
+
gamma_stack = np.stack(gamma_arrays, axis=1)
|
|
326
|
+
combined = base[:, None] + gamma_stack
|
|
327
|
+
else:
|
|
328
|
+
combined = base[:, None]
|
|
329
|
+
|
|
330
|
+
return {
|
|
331
|
+
node: tuple(float(value) for value in combined[idx])
|
|
332
|
+
for idx, node in enumerate(nodes)
|
|
333
|
+
}
|
|
334
|
+
|
|
335
|
+
increments: NodeIncrements = {}
|
|
336
|
+
for node in nodes:
|
|
337
|
+
nd = G.nodes[node]
|
|
118
338
|
vf, dnfr, *_ = _node_state(nd)
|
|
119
339
|
base = vf * dnfr
|
|
120
|
-
gammas = [gm.get(
|
|
340
|
+
gammas = [gm.get(node, 0.0) for gm in gamma_maps]
|
|
121
341
|
|
|
122
342
|
if method == "rk4":
|
|
123
|
-
if len(gammas) != 4:
|
|
124
|
-
raise ValueError("rk4 integration requires four gamma maps")
|
|
125
343
|
k1, k2, k3, k4 = gammas
|
|
126
|
-
increments[
|
|
344
|
+
increments[node] = (
|
|
127
345
|
base + k1,
|
|
128
346
|
base + k2,
|
|
129
347
|
base + k3,
|
|
130
348
|
base + k4,
|
|
131
349
|
)
|
|
132
350
|
else:
|
|
133
|
-
if len(gammas) != 1:
|
|
134
|
-
raise ValueError("euler integration requires one gamma map")
|
|
135
351
|
(k1,) = gammas
|
|
136
|
-
increments[
|
|
352
|
+
increments[node] = (base + k1,)
|
|
137
353
|
|
|
138
354
|
return increments
|
|
139
355
|
|
|
140
356
|
|
|
141
357
|
def _build_gamma_increments(
|
|
142
|
-
G:
|
|
358
|
+
G: TNFRGraph,
|
|
143
359
|
dt_step: float,
|
|
144
360
|
t_local: float,
|
|
145
361
|
*,
|
|
146
362
|
method: str,
|
|
147
|
-
|
|
363
|
+
n_jobs: int | None = None,
|
|
364
|
+
) -> NodeIncrements:
|
|
148
365
|
"""Evaluate Γ contributions and merge them with ``νf·ΔNFR`` base terms."""
|
|
149
366
|
|
|
150
367
|
if method == "rk4":
|
|
@@ -163,50 +380,146 @@ def _build_gamma_increments(
|
|
|
163
380
|
gamma_type = str(gamma_spec.get("type", "")).lower()
|
|
164
381
|
|
|
165
382
|
if gamma_type == "none":
|
|
166
|
-
gamma_maps
|
|
383
|
+
gamma_maps: tuple[GammaMap, ...] = tuple(
|
|
384
|
+
cast(GammaMap, {}) for _ in range(gamma_count)
|
|
385
|
+
)
|
|
386
|
+
return _collect_nodal_increments(G, gamma_maps, method=method)
|
|
387
|
+
|
|
388
|
+
nodes: list[NodeId] = list(G.nodes)
|
|
389
|
+
if not nodes:
|
|
390
|
+
gamma_maps = tuple(cast(GammaMap, {}) for _ in range(gamma_count))
|
|
167
391
|
return _collect_nodal_increments(G, gamma_maps, method=method)
|
|
168
392
|
|
|
169
393
|
if method == "rk4":
|
|
170
394
|
t_mid = t_local + dt_step / 2.0
|
|
171
395
|
t_end = t_local + dt_step
|
|
172
|
-
g1_map =
|
|
173
|
-
g_mid_map =
|
|
174
|
-
g4_map =
|
|
396
|
+
g1_map = _evaluate_gamma_map(G, nodes, t_local, n_jobs=n_jobs)
|
|
397
|
+
g_mid_map = _evaluate_gamma_map(G, nodes, t_mid, n_jobs=n_jobs)
|
|
398
|
+
g4_map = _evaluate_gamma_map(G, nodes, t_end, n_jobs=n_jobs)
|
|
175
399
|
gamma_maps = (g1_map, g_mid_map, g_mid_map, g4_map)
|
|
176
400
|
else: # method == "euler"
|
|
177
|
-
gamma_maps = (
|
|
401
|
+
gamma_maps = (
|
|
402
|
+
_evaluate_gamma_map(G, nodes, t_local, n_jobs=n_jobs),
|
|
403
|
+
)
|
|
178
404
|
|
|
179
405
|
return _collect_nodal_increments(G, gamma_maps, method=method)
|
|
180
406
|
|
|
181
407
|
|
|
182
|
-
def _integrate_euler(
|
|
408
|
+
def _integrate_euler(
|
|
409
|
+
G: TNFRGraph,
|
|
410
|
+
dt_step: float,
|
|
411
|
+
t_local: float,
|
|
412
|
+
*,
|
|
413
|
+
n_jobs: int | None = None,
|
|
414
|
+
) -> NodalUpdate:
|
|
183
415
|
"""One explicit Euler integration step."""
|
|
184
416
|
increments = _build_gamma_increments(
|
|
185
417
|
G,
|
|
186
418
|
dt_step,
|
|
187
419
|
t_local,
|
|
188
420
|
method="euler",
|
|
421
|
+
n_jobs=n_jobs,
|
|
422
|
+
)
|
|
423
|
+
return _apply_increments(
|
|
424
|
+
G,
|
|
425
|
+
dt_step,
|
|
426
|
+
increments,
|
|
427
|
+
method="euler",
|
|
428
|
+
n_jobs=n_jobs,
|
|
189
429
|
)
|
|
190
|
-
return _apply_increments(G, dt_step, increments, method="euler")
|
|
191
430
|
|
|
192
431
|
|
|
193
|
-
def _integrate_rk4(
|
|
432
|
+
def _integrate_rk4(
|
|
433
|
+
G: TNFRGraph,
|
|
434
|
+
dt_step: float,
|
|
435
|
+
t_local: float,
|
|
436
|
+
*,
|
|
437
|
+
n_jobs: int | None = None,
|
|
438
|
+
) -> NodalUpdate:
|
|
194
439
|
"""One Runge–Kutta order-4 integration step."""
|
|
195
440
|
increments = _build_gamma_increments(
|
|
196
441
|
G,
|
|
197
442
|
dt_step,
|
|
198
443
|
t_local,
|
|
199
444
|
method="rk4",
|
|
445
|
+
n_jobs=n_jobs,
|
|
200
446
|
)
|
|
201
|
-
return _apply_increments(
|
|
447
|
+
return _apply_increments(
|
|
448
|
+
G,
|
|
449
|
+
dt_step,
|
|
450
|
+
increments,
|
|
451
|
+
method="rk4",
|
|
452
|
+
n_jobs=n_jobs,
|
|
453
|
+
)
|
|
454
|
+
|
|
455
|
+
|
|
456
|
+
class AbstractIntegrator(ABC):
|
|
457
|
+
"""Abstract base class encapsulating nodal equation integration."""
|
|
458
|
+
|
|
459
|
+
@abstractmethod
|
|
460
|
+
def integrate(
|
|
461
|
+
self,
|
|
462
|
+
graph: TNFRGraph,
|
|
463
|
+
*,
|
|
464
|
+
dt: float | None,
|
|
465
|
+
t: float | None,
|
|
466
|
+
method: str | None,
|
|
467
|
+
n_jobs: int | None,
|
|
468
|
+
) -> None:
|
|
469
|
+
"""Advance ``graph`` coherence states according to the nodal equation."""
|
|
470
|
+
|
|
471
|
+
|
|
472
|
+
class DefaultIntegrator(AbstractIntegrator):
|
|
473
|
+
"""Explicit integrator combining Euler and RK4 step implementations."""
|
|
474
|
+
|
|
475
|
+
def integrate(
|
|
476
|
+
self,
|
|
477
|
+
graph: TNFRGraph,
|
|
478
|
+
*,
|
|
479
|
+
dt: float | None,
|
|
480
|
+
t: float | None,
|
|
481
|
+
method: str | None,
|
|
482
|
+
n_jobs: int | None,
|
|
483
|
+
) -> None:
|
|
484
|
+
if not isinstance(
|
|
485
|
+
graph, (nx.Graph, nx.DiGraph, nx.MultiGraph, nx.MultiDiGraph)
|
|
486
|
+
):
|
|
487
|
+
raise TypeError("G must be a networkx graph instance")
|
|
488
|
+
|
|
489
|
+
dt_step, steps, t0, resolved_method = prepare_integration_params(
|
|
490
|
+
graph, dt, t, cast(IntegratorMethod | None, method)
|
|
491
|
+
)
|
|
492
|
+
|
|
493
|
+
t_local = t0
|
|
494
|
+
for _ in range(steps):
|
|
495
|
+
if resolved_method == "rk4":
|
|
496
|
+
updates: NodalUpdate = _integrate_rk4(
|
|
497
|
+
graph, dt_step, t_local, n_jobs=n_jobs
|
|
498
|
+
)
|
|
499
|
+
else:
|
|
500
|
+
updates = _integrate_euler(graph, dt_step, t_local, n_jobs=n_jobs)
|
|
501
|
+
|
|
502
|
+
for n, (epi, dEPI_dt, d2epi) in updates.items():
|
|
503
|
+
nd = graph.nodes[n]
|
|
504
|
+
epi_kind = get_attr_str(nd, ALIAS_EPI_KIND, "")
|
|
505
|
+
set_attr(nd, ALIAS_EPI, epi)
|
|
506
|
+
if epi_kind:
|
|
507
|
+
set_attr_str(nd, ALIAS_EPI_KIND, epi_kind)
|
|
508
|
+
set_attr(nd, ALIAS_DEPI, dEPI_dt)
|
|
509
|
+
set_attr(nd, ALIAS_D2EPI, d2epi)
|
|
510
|
+
|
|
511
|
+
t_local += dt_step
|
|
512
|
+
|
|
513
|
+
graph.graph["_t"] = t_local
|
|
202
514
|
|
|
203
515
|
|
|
204
516
|
def update_epi_via_nodal_equation(
|
|
205
|
-
G,
|
|
517
|
+
G: TNFRGraph,
|
|
206
518
|
*,
|
|
207
519
|
dt: float | None = None,
|
|
208
520
|
t: float | None = None,
|
|
209
521
|
method: Literal["euler", "rk4"] | None = None,
|
|
522
|
+
n_jobs: int | None = None,
|
|
210
523
|
) -> None:
|
|
211
524
|
"""TNFR nodal equation.
|
|
212
525
|
|
|
@@ -224,32 +537,13 @@ def update_epi_via_nodal_equation(
|
|
|
224
537
|
TNFR references: nodal equation (manual), νf/ΔNFR/EPI glossary, Γ operator.
|
|
225
538
|
Side effects: caches dEPI and updates EPI via explicit integration.
|
|
226
539
|
"""
|
|
227
|
-
|
|
228
|
-
G,
|
|
229
|
-
|
|
230
|
-
|
|
231
|
-
|
|
232
|
-
|
|
233
|
-
|
|
234
|
-
t_local = t0
|
|
235
|
-
for _ in range(steps):
|
|
236
|
-
if method == "rk4":
|
|
237
|
-
updates = _integrate_rk4(G, dt_step, t_local)
|
|
238
|
-
else:
|
|
239
|
-
updates = _integrate_euler(G, dt_step, t_local)
|
|
240
|
-
|
|
241
|
-
for n, (epi, dEPI_dt, d2epi) in updates.items():
|
|
242
|
-
nd = G.nodes[n]
|
|
243
|
-
epi_kind = get_attr_str(nd, ALIAS_EPI_KIND, "")
|
|
244
|
-
set_attr(nd, ALIAS_EPI, epi)
|
|
245
|
-
if epi_kind:
|
|
246
|
-
set_attr_str(nd, ALIAS_EPI_KIND, epi_kind)
|
|
247
|
-
set_attr(nd, ALIAS_DEPI, dEPI_dt)
|
|
248
|
-
set_attr(nd, ALIAS_D2EPI, d2epi)
|
|
249
|
-
|
|
250
|
-
t_local += dt_step
|
|
251
|
-
|
|
252
|
-
G.graph["_t"] = t_local
|
|
540
|
+
DefaultIntegrator().integrate(
|
|
541
|
+
G,
|
|
542
|
+
dt=dt,
|
|
543
|
+
t=t,
|
|
544
|
+
method=method,
|
|
545
|
+
n_jobs=n_jobs,
|
|
546
|
+
)
|
|
253
547
|
|
|
254
548
|
|
|
255
549
|
def _node_state(nd: dict[str, Any]) -> tuple[float, float, float, float]:
|
|
@@ -0,0 +1,35 @@
|
|
|
1
|
+
from typing import Literal
|
|
2
|
+
|
|
3
|
+
from tnfr.types import TNFRGraph
|
|
4
|
+
|
|
5
|
+
__all__: tuple[str, ...]
|
|
6
|
+
|
|
7
|
+
class AbstractIntegrator:
|
|
8
|
+
def integrate(
|
|
9
|
+
self,
|
|
10
|
+
graph: TNFRGraph,
|
|
11
|
+
*,
|
|
12
|
+
dt: float | None = ...,
|
|
13
|
+
t: float | None = ...,
|
|
14
|
+
method: str | None = ...,
|
|
15
|
+
n_jobs: int | None = ...,
|
|
16
|
+
) -> None: ...
|
|
17
|
+
|
|
18
|
+
class DefaultIntegrator(AbstractIntegrator):
|
|
19
|
+
def __init__(self) -> None: ...
|
|
20
|
+
|
|
21
|
+
def prepare_integration_params(
|
|
22
|
+
G: TNFRGraph,
|
|
23
|
+
dt: float | None = ...,
|
|
24
|
+
t: float | None = ...,
|
|
25
|
+
method: Literal["euler", "rk4"] | None = ...,
|
|
26
|
+
) -> tuple[float, int, float, Literal["euler", "rk4"]]: ...
|
|
27
|
+
|
|
28
|
+
def update_epi_via_nodal_equation(
|
|
29
|
+
G: TNFRGraph,
|
|
30
|
+
*,
|
|
31
|
+
dt: float | None = ...,
|
|
32
|
+
t: float | None = ...,
|
|
33
|
+
method: Literal["euler", "rk4"] | None = ...,
|
|
34
|
+
n_jobs: int | None = ...,
|
|
35
|
+
) -> None: ...
|