tmnt 0.7.53__py3-none-any.whl → 0.7.54__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
tmnt/estimator.py CHANGED
@@ -993,7 +993,6 @@ class SeqBowEstimator(BaseEstimator):
993
993
  n_labels = config.get('n_labels', n_labels),
994
994
  latent_distribution = latent_distribution,
995
995
  batch_size = int(config['batch_size']),
996
- redundancy_reg_penalty = 0.0,
997
996
  warmup_ratio = config['warmup_ratio'],
998
997
  classifier_dropout = config['classifier_dropout'],
999
998
  epochs = int(config['epochs']),
@@ -1060,7 +1059,6 @@ class SeqBowEstimator(BaseEstimator):
1060
1059
  config['epochs'] = self.epochs
1061
1060
  #config['embedding_source'] = self.embedding_source
1062
1061
  config['gamma'] = self.gamma
1063
- config['redundancy_reg_penalty'] = self.redundancy_reg_penalty
1064
1062
  config['warmup_ratio'] = self.warmup_ratio
1065
1063
  config['llm_model_name'] = self.llm_model_name
1066
1064
  config['classifier_dropout'] = self.classifier_dropout
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: tmnt
3
- Version: 0.7.53
3
+ Version: 0.7.54
4
4
  Summary: Topic modeling neural toolkit
5
5
  Home-page: https://github.com/mitre/tmnt.git
6
6
  Author: The MITRE Corporation
@@ -37,7 +37,7 @@ Requires-Dist: torchtext >=0.13.0
37
37
  The Topic Modeling Neural Toolkit (TMNT) is a software library that enables training
38
38
  topic models as neural network-based variational auto-encoders.
39
39
 
40
- Current stable version is: 0.7.53
40
+ Current stable version is: 0.7.54
41
41
 
42
42
  Documentation can be found here: https://tmnt.readthedocs.io/en/stable/
43
43
 
@@ -2,7 +2,7 @@ tmnt/__init__.py,sha256=EPNq1H7UMyMewWT_zTGBaC7ZouvCywX_gMX4G1dtmvw,250
2
2
  tmnt/configuration.py,sha256=P8PEhzVPKO5xG0FrdTLRQ60OYWigbzPY-OSx_hzQlrY,10054
3
3
  tmnt/data_loading.py,sha256=A0tsM6x61BGhYBV6rAYdryz2NwbR__8EAYj_Q4Z-DCs,18736
4
4
  tmnt/distribution.py,sha256=Pmyc5gwDd_-jP7vLVb0vdNQaSSvF1EuiTZEWg3KfmI8,10866
5
- tmnt/estimator.py,sha256=2RUfX9BRnDgrFAR6sr1uzDs0OYbdg9xdfPj2bckvKgQ,69220
5
+ tmnt/estimator.py,sha256=bPyLx4rmVe4mC9ciEq7uluONTD2y1enUluAkmw-TPBI,69095
6
6
  tmnt/eval_npmi.py,sha256=DTW9dNHVe6H57gndQIZ4gX9EghuBstwznA3YBqILJk0,5820
7
7
  tmnt/inference.py,sha256=da8qAnjTDTuWQfPEOQewOfgikqE00XT1xGMiO2mckI4,15679
8
8
  tmnt/modeling.py,sha256=O1V7ppU7J6pvESTvdEoV9BXbEF4Z-J1OHnRtszuagaA,29956
@@ -17,9 +17,9 @@ tmnt/utils/ngram_helpers.py,sha256=VrIzou2oQHCLBLSWODDeikN3PYat1NqqvEeYQj_GhbA,1
17
17
  tmnt/utils/pubmed_utils.py,sha256=3sHwoun7vxb0GV-arhpXLMUbAZne0huAh9xQNy6H40E,1274
18
18
  tmnt/utils/random.py,sha256=qY75WG3peWoMh9pUyCPBEo6q8IvkF6VRjeb5CqJOBF8,327
19
19
  tmnt/utils/recalibrate.py,sha256=TmpB8An8bslICZ13UTJfIvr8VoqiSedtpHxec4n8CHk,1439
20
- tmnt-0.7.53.dist-info/LICENSE,sha256=qFZJrfJ7Zi4IXDiyiGVrHWic_l1h2tc36tI8Z7rK9bs,11356
21
- tmnt-0.7.53.dist-info/METADATA,sha256=ncWhLX2-Vzg5pLzr4bQrEmVQKAlah8LvThs2L9jw1RI,1452
22
- tmnt-0.7.53.dist-info/NOTICE,sha256=p0kYIVAkReTFaGb4C-qPa7h5ztze6hGzOpjCMMbOipU,425
23
- tmnt-0.7.53.dist-info/WHEEL,sha256=GJ7t_kWBFywbagK5eo9IoUwLW6oyOeTKmQ-9iHFVNxQ,92
24
- tmnt-0.7.53.dist-info/top_level.txt,sha256=RpYgUl187sXnqmiwKjZZdcDlHz2AALs6bGdUcukyd_E,5
25
- tmnt-0.7.53.dist-info/RECORD,,
20
+ tmnt-0.7.54.dist-info/LICENSE,sha256=qFZJrfJ7Zi4IXDiyiGVrHWic_l1h2tc36tI8Z7rK9bs,11356
21
+ tmnt-0.7.54.dist-info/METADATA,sha256=fIvBQh5-zKuH85Ilbkqc3lDMcrh5HZKv8xaUova15Lo,1452
22
+ tmnt-0.7.54.dist-info/NOTICE,sha256=p0kYIVAkReTFaGb4C-qPa7h5ztze6hGzOpjCMMbOipU,425
23
+ tmnt-0.7.54.dist-info/WHEEL,sha256=GJ7t_kWBFywbagK5eo9IoUwLW6oyOeTKmQ-9iHFVNxQ,92
24
+ tmnt-0.7.54.dist-info/top_level.txt,sha256=RpYgUl187sXnqmiwKjZZdcDlHz2AALs6bGdUcukyd_E,5
25
+ tmnt-0.7.54.dist-info/RECORD,,
File without changes
File without changes
File without changes