tmnt 0.7.44b20240126__py3-none-any.whl → 0.7.44b20240127__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
tmnt/modeling.py CHANGED
@@ -595,11 +595,11 @@ class MetricSeqBowVED(BaseSeqBowVED):
595
595
  elbo = elbo1 + elbo2
596
596
  rec_loss = rec_loss1 + rec_loss2
597
597
  KL_loss = KL_loss1 + KL_loss2
598
- #z_mu1 = self.latent_distribution.get_mu_encoding(enc2)
599
- #z_mu2 = self.latent_distribution.get_mu_encoding(enc2)
598
+ z_mu1 = self.latent_distribution.get_mu_encoding(enc2)
599
+ z_mu2 = self.latent_distribution.get_mu_encoding(enc2)
600
600
  redundancy_loss = entropy_loss1 + entropy_loss2 #self.get_redundancy_penalty()
601
- #return elbo, rec_loss, KL_loss, redundancy_loss, z_mu1, z_mu2
602
- return elbo, rec_loss, KL_loss, redundancy_loss, enc1, enc2
601
+ return elbo, rec_loss, KL_loss, redundancy_loss, z_mu1, z_mu2
602
+ #return elbo, rec_loss, KL_loss, redundancy_loss, enc1, enc2
603
603
 
604
604
 
605
605
  class GeneralizedSDMLLoss(_Loss):
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: tmnt
3
- Version: 0.7.44b20240126
3
+ Version: 0.7.44b20240127
4
4
  Summary: Topic modeling neural toolkit
5
5
  Home-page: https://github.com/mitre/tmnt.git
6
6
  Author: The MITRE Corporation
@@ -5,7 +5,7 @@ tmnt/distribution.py,sha256=Pmyc5gwDd_-jP7vLVb0vdNQaSSvF1EuiTZEWg3KfmI8,10866
5
5
  tmnt/estimator.py,sha256=kQZ42MfOBBZuF0TQVdd9vBlw101ZlXk77mlws2ZvAS4,78014
6
6
  tmnt/eval_npmi.py,sha256=ODRDMsBgDM__iCNEX399ck7bAhl7ydvgDqmpfR7Y-q4,5048
7
7
  tmnt/inference.py,sha256=Sw7GO7QiWVEtbPJKBjFB7AiKRmUOZbFZn3tCrsStzWw,17845
8
- tmnt/modeling.py,sha256=372eAVcnI5xcBYRwSO8N0XK_ECWHwRw7KfuIB8uz3RA,33018
8
+ tmnt/modeling.py,sha256=-fvmbT-KXr8luhELnCAOyZ-DUbTUd65cKRNRaH49EKI,33016
9
9
  tmnt/preprocess/__init__.py,sha256=gwMejkQrnqKS05i0JVsUru2hDUR5jE1hKC10dL934GU,170
10
10
  tmnt/preprocess/tokenizer.py,sha256=-ZgowfbHrM040vbNTktZM_hdl6HDTqxSJ4mDAxq3dUs,14050
11
11
  tmnt/preprocess/vectorizer.py,sha256=RkdivqP76qAJDianV09lONad9NbfBVWLZgIbU_P1-zo,15796
@@ -17,9 +17,9 @@ tmnt/utils/ngram_helpers.py,sha256=VrIzou2oQHCLBLSWODDeikN3PYat1NqqvEeYQj_GhbA,1
17
17
  tmnt/utils/pubmed_utils.py,sha256=3sHwoun7vxb0GV-arhpXLMUbAZne0huAh9xQNy6H40E,1274
18
18
  tmnt/utils/random.py,sha256=qY75WG3peWoMh9pUyCPBEo6q8IvkF6VRjeb5CqJOBF8,327
19
19
  tmnt/utils/recalibrate.py,sha256=TmpB8An8bslICZ13UTJfIvr8VoqiSedtpHxec4n8CHk,1439
20
- tmnt-0.7.44b20240126.dist-info/LICENSE,sha256=qFZJrfJ7Zi4IXDiyiGVrHWic_l1h2tc36tI8Z7rK9bs,11356
21
- tmnt-0.7.44b20240126.dist-info/METADATA,sha256=0MCgY6kov5ji5IrnhU4Eru5DAqcsgdD3_rqFc_9JXyE,1403
22
- tmnt-0.7.44b20240126.dist-info/NOTICE,sha256=p0kYIVAkReTFaGb4C-qPa7h5ztze6hGzOpjCMMbOipU,425
23
- tmnt-0.7.44b20240126.dist-info/WHEEL,sha256=oiQVh_5PnQM0E3gPdiz09WCNmwiHDMaGer_elqB3coM,92
24
- tmnt-0.7.44b20240126.dist-info/top_level.txt,sha256=RpYgUl187sXnqmiwKjZZdcDlHz2AALs6bGdUcukyd_E,5
25
- tmnt-0.7.44b20240126.dist-info/RECORD,,
20
+ tmnt-0.7.44b20240127.dist-info/LICENSE,sha256=qFZJrfJ7Zi4IXDiyiGVrHWic_l1h2tc36tI8Z7rK9bs,11356
21
+ tmnt-0.7.44b20240127.dist-info/METADATA,sha256=RNb_SRd6cyvKGKSJT1NKTDdjjVVUfhDXqRuFIxmy2dE,1403
22
+ tmnt-0.7.44b20240127.dist-info/NOTICE,sha256=p0kYIVAkReTFaGb4C-qPa7h5ztze6hGzOpjCMMbOipU,425
23
+ tmnt-0.7.44b20240127.dist-info/WHEEL,sha256=oiQVh_5PnQM0E3gPdiz09WCNmwiHDMaGer_elqB3coM,92
24
+ tmnt-0.7.44b20240127.dist-info/top_level.txt,sha256=RpYgUl187sXnqmiwKjZZdcDlHz2AALs6bGdUcukyd_E,5
25
+ tmnt-0.7.44b20240127.dist-info/RECORD,,