titans-pytorch 0.3.2__py3-none-any.whl → 0.3.4__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -3,18 +3,39 @@ from typing import Callable
3
3
 
4
4
  import torch
5
5
  from torch import Tensor
6
+ from torch.nn import Module
6
7
  import torch.nn.functional as F
7
8
 
9
+ from einops import rearrange, repeat, reduce, pack, unpack
10
+
8
11
  # taken from S5-pytorch repository
9
12
  # https://github.com/i404788/s5-pytorch/blob/74e2fdae00b915a62c914bf3615c0b8a4279eb84/s5/jax_compat.py#L51-L134
10
13
 
11
14
  # helper functions
12
15
 
16
+ def exists(v):
17
+ return v is not None
18
+
19
+ def default(*args):
20
+ for arg in args:
21
+ if exists(arg):
22
+ return arg
23
+ return None
24
+
13
25
  def pad_at_dim(t, pad, dim = -1, value = 0.):
14
26
  dims_from_right = (- dim - 1) if dim < 0 else (t.ndim - dim - 1)
15
27
  zeros = ((0, 0) * dims_from_right)
16
28
  return F.pad(t, (*zeros, *pad), value = value)
17
29
 
30
+ def pack_one_with_inverse(t, pattern):
31
+ packed, packed_shape = pack([t], pattern)
32
+
33
+ def inverse(out, inv_pattern = None):
34
+ inv_pattern = default(inv_pattern, pattern)
35
+ return unpack(out, packed_shape, inv_pattern)[0]
36
+
37
+ return packed, inverse
38
+
18
39
  # the operator that is needed
19
40
 
20
41
  @torch.jit.script
@@ -88,3 +109,69 @@ def _interleave(a, b):
88
109
  interleaved = torch.flatten(stacked, start_dim=1, end_dim=2)
89
110
 
90
111
  return interleaved[:, :output_axis_len]
112
+
113
+ # associative scan wrapper around naive and accelerated version
114
+
115
+ class AssocScan(Module):
116
+ def __init__(
117
+ self,
118
+ use_accelerated = False
119
+ ):
120
+ super().__init__()
121
+ self.use_accelerated = use_accelerated
122
+
123
+ def forward(
124
+ self,
125
+ gates,
126
+ inputs,
127
+ prev = None,
128
+ remove_prev = None
129
+ ):
130
+ remove_prev = default(remove_prev, exists(prev))
131
+
132
+ inputs, inverse_pack_weight_shape = pack_one_with_inverse(inputs, 'b n *')
133
+ gates, _ = pack_one_with_inverse(gates, 'b n *')
134
+
135
+ if exists(prev):
136
+ prev, _ = pack_one_with_inverse(prev, 'b *')
137
+
138
+ if exists(prev):
139
+ inputs, _ = pack([prev, inputs], 'b * d')
140
+ gates = pad_at_dim(gates, (1, 0), value = 1., dim = -2)
141
+
142
+ if not self.use_accelerated:
143
+ _, out = associative_scan(binary_operator, (gates, inputs))
144
+
145
+ if remove_prev:
146
+ out = out[:, 1:]
147
+
148
+ return inverse_pack_weight_shape(out)
149
+
150
+ from accelerated_scan.triton import scan as triton_scan
151
+ from accelerated_scan.warp import scan as warp_scan
152
+
153
+ scan = triton_scan if gates.is_cuda else warp_scan
154
+
155
+ def accelerate_scan_fn(gates, inputs):
156
+ gates = gates.expand_as(inputs)
157
+ gates, inputs = tuple(rearrange(t, 'b n d -> b d n') for t in (gates, inputs))
158
+
159
+ seq_len = gates.shape[-1]
160
+ next_power_two_seq_len = 2 ** max(5, int(math.ceil(math.log2(seq_len))))
161
+
162
+ gates = F.pad(gates, (0, next_power_two_seq_len - seq_len))
163
+ inputs = F.pad(inputs, (0, next_power_two_seq_len - seq_len))
164
+
165
+ outputs = scan(gates.contiguous(), inputs.contiguous())
166
+
167
+ outputs = outputs[..., :seq_len]
168
+ outputs = rearrange(outputs, 'b d n -> b n d')
169
+
170
+ return outputs
171
+
172
+ out = accelerate_scan_fn(gates, inputs)
173
+
174
+ if remove_prev:
175
+ out = out[:, 1:]
176
+
177
+ return inverse_pack_weight_shape(out)
@@ -37,7 +37,7 @@ class MemoryMLP(Module):
37
37
  self,
38
38
  dim,
39
39
  depth,
40
- expansion_factor = 4.
40
+ expansion_factor = 2.
41
41
  ):
42
42
  super().__init__()
43
43
  dim_hidden = int(dim * expansion_factor)
@@ -8,16 +8,12 @@ from collections import namedtuple
8
8
  import torch
9
9
  from torch import nn, cat, tensor, Tensor
10
10
  import torch.nn.functional as F
11
- from torch.nn import Linear, Module, Parameter, ParameterList
11
+ from torch.nn import Linear, Module, Parameter, ParameterList, ParameterDict
12
12
  from torch.func import functional_call, vmap, grad
13
13
 
14
14
  from tensordict import TensorDict
15
15
 
16
- from titans_pytorch.associative_scan import (
17
- associative_scan,
18
- binary_operator,
19
- pad_at_dim
20
- )
16
+ from titans_pytorch.associative_scan import AssocScan
21
17
 
22
18
  from titans_pytorch.memory_models import(
23
19
  MemoryMLP
@@ -79,8 +75,8 @@ def safe_cat(inputs, dim = -2):
79
75
  def is_empty_tensor(t):
80
76
  return t.numel() == 0
81
77
 
82
- def dict_get_shape(td):
83
- return {k: v.shape for k, v in td.items()}
78
+ def dict_get_value_shapes(td):
79
+ return [v.shape for k, v in td.items()]
84
80
 
85
81
  def rearrange_dict_values(td, pattern, **kwargs):
86
82
  return td.apply(lambda t: rearrange(t, pattern, **kwargs))
@@ -97,6 +93,11 @@ def round_down_multiple(seq, mult):
97
93
  def round_up_multiple(seq, mult):
98
94
  return math.ceil(seq / mult) * mult
99
95
 
96
+ def pad_at_dim(t, pad, dim = -1, value = 0.):
97
+ dims_from_right = (- dim - 1) if dim < 0 else (t.ndim - dim - 1)
98
+ zeros = ((0, 0) * dims_from_right)
99
+ return F.pad(t, (*zeros, *pad), value = value)
100
+
100
101
  def pack_one_with_inverse(t, pattern):
101
102
  packed, packed_shape = pack([t], pattern)
102
103
 
@@ -197,72 +198,6 @@ class AttentionPool(Module):
197
198
 
198
199
  return reduce(x * attn, 'b n c d -> b n d', 'sum')
199
200
 
200
- # associative scan wrapper
201
-
202
- class AssocScan(Module):
203
- def __init__(
204
- self,
205
- use_accelerated = False
206
- ):
207
- super().__init__()
208
- self.use_accelerated = use_accelerated
209
-
210
- def forward(
211
- self,
212
- gates,
213
- inputs,
214
- prev = None,
215
- remove_prev = None
216
- ):
217
- remove_prev = default(remove_prev, exists(prev))
218
-
219
- inputs, inverse_pack_weight_shape = pack_one_with_inverse(inputs, 'b n *')
220
- gates, _ = pack_one_with_inverse(gates, 'b n *')
221
-
222
- if exists(prev):
223
- prev, _ = pack_one_with_inverse(prev, 'b *')
224
-
225
- if exists(prev):
226
- inputs, _ = pack([prev, inputs], 'b * d')
227
- gates = pad_at_dim(gates, (1, 0), value = 1., dim = -2)
228
-
229
- if not self.use_accelerated:
230
- _, out = associative_scan(binary_operator, (gates, inputs))
231
-
232
- if remove_prev:
233
- out = out[:, 1:]
234
-
235
- return inverse_pack_weight_shape(out)
236
-
237
- from accelerated_scan.triton import scan as triton_scan
238
- from accelerated_scan.warp import scan as warp_scan
239
-
240
- scan = triton_scan if gates.is_cuda else warp_scan
241
-
242
- def accelerate_scan_fn(gates, inputs):
243
- gates = gates.expand_as(inputs)
244
- gates, inputs = tuple(rearrange(t, 'b n d -> b d n') for t in (gates, inputs))
245
-
246
- seq_len = gates.shape[-1]
247
- next_power_two_seq_len = 2 ** max(5, int(math.ceil(math.log2(seq_len))))
248
-
249
- gates = F.pad(gates, (0, next_power_two_seq_len - seq_len))
250
- inputs = F.pad(inputs, (0, next_power_two_seq_len - seq_len))
251
-
252
- outputs = scan(gates.contiguous(), inputs.contiguous())
253
-
254
- outputs = outputs[..., :seq_len]
255
- outputs = rearrange(outputs, 'b d n -> b n d')
256
-
257
- return outputs
258
-
259
- out = accelerate_scan_fn(gates, inputs)
260
-
261
- if remove_prev:
262
- out = out[:, 1:]
263
-
264
- return inverse_pack_weight_shape(out)
265
-
266
201
  # main neural memory
267
202
 
268
203
  def default_adaptive_step_transform(adaptive_step, max_lr = 1e-2):
@@ -285,6 +220,7 @@ class NeuralMemory(Module):
285
220
  default_step_transform_max_lr = 1.,
286
221
  per_parameter_lr_modulation = False, # allow outer network to control learning rate per weight matrix of memory network
287
222
  max_mem_layer_modulation = 1., # max of 10.
223
+ per_head_learned_parameters = True,
288
224
  attn_pool_chunks = False,
289
225
  momentum = True,
290
226
  pre_rmsnorm = True,
@@ -370,9 +306,21 @@ class NeuralMemory(Module):
370
306
 
371
307
  self.memory_model = model
372
308
 
373
- self.num_memory_parameter_tensors = len(set(model.parameters()))
309
+ mem_model_params = dict(model.named_parameters())
310
+
311
+ self.num_memory_parameter_tensors = len(mem_model_params)
312
+
313
+ self.memory_model_parameter_names = [*mem_model_params.keys()]
314
+
315
+ memory_model_parameters = [*mem_model_params.values()]
316
+
317
+ if per_head_learned_parameters:
318
+ memory_model_parameters = [repeat(p, '... -> h ...', h = heads) for p in memory_model_parameters]
319
+
320
+ self.init_weight_shape = [p.shape for p in memory_model_parameters]
374
321
 
375
- self.init_weight_shape = dict_get_shape(dict(model.named_parameters()))
322
+ self.memory_model_parameters = ParameterList(memory_model_parameters)
323
+ self.per_head_learned_parameters = per_head_learned_parameters
376
324
 
377
325
  # the chunk size within the paper where adaptive step, momentum, weight decay are shared
378
326
 
@@ -488,21 +436,32 @@ class NeuralMemory(Module):
488
436
 
489
437
  self.register_buffer('zero', torch.tensor(0.), persistent = False)
490
438
 
439
+ @property
440
+ def memory_model_parameter_dict(self):
441
+ return TensorDict(dict(zip(self.memory_model_parameter_names, self.memory_model_parameters)))
442
+
491
443
  def init_weights(
492
444
  self,
493
445
  batch,
494
446
  ):
495
- weights = TensorDict(dict(self.memory_model.named_parameters()))
496
- weights = repeat_dict_values(weights, '... -> bh ...', bh = batch * self.heads)
447
+ if self.per_head_learned_parameters:
448
+ weights = repeat_dict_values(self.memory_model_parameter_dict, 'h ... -> (b h) ...', b = batch)
449
+ else:
450
+ weights = repeat_dict_values(self.memory_model_parameter_dict, '... -> bh ...', bh = batch * self.heads)
451
+
497
452
  return weights
498
453
 
499
454
  def init_momentum(
500
455
  self,
501
456
  batch,
502
457
  ):
503
- weights = TensorDict(dict(self.memory_model.named_parameters()))
504
- zeros = weights.clone().zero_()
505
- zeros = repeat_dict_values(zeros, '... -> bh ...', bh = batch * self.heads)
458
+ zeros = self.memory_model_parameter_dict.clone().zero_()
459
+
460
+ if self.per_head_learned_parameters:
461
+ zeros = repeat_dict_values(zeros, 'h ... -> (b h) ...', b = batch)
462
+ else:
463
+ zeros = repeat_dict_values(zeros, '... -> bh ...', bh = batch * self.heads)
464
+
506
465
  return zeros
507
466
 
508
467
  def store_memories(
@@ -690,16 +649,27 @@ class NeuralMemory(Module):
690
649
  def retrieve_memories(
691
650
  self,
692
651
  seq,
693
- past_weights: dict[str, Tensor],
694
- chunk_size = None,
695
- need_pad = True
652
+ weights: dict[str, Tensor],
696
653
  ):
697
- chunk_size = default(chunk_size, self.retrieve_chunk_size)
654
+ chunk_size = self.retrieve_chunk_size
655
+
656
+ weights_have_expanded_shape = dict_get_value_shapes(weights) != self.init_weight_shape
657
+
698
658
  batch, seq_len = seq.shape[:2]
699
659
 
700
- seq = self.retrieve_norm(seq)
660
+ # auto infer single token decoding, if there are only 1 set of weights and 1 token
661
+
662
+ is_one_token = seq_len == 1
663
+ is_one_weight = (not weights_have_expanded_shape) or next(iter(weights.values())).shape[1] == 1
664
+
665
+ is_single_token_decode = is_one_token and is_one_weight
701
666
 
702
- need_pad = need_pad or chunk_size > 1
667
+ if is_single_token_decode:
668
+ chunk_size = 1
669
+
670
+ # padding related, for chunked processing
671
+
672
+ need_pad = chunk_size > 1 or not is_one_weight
703
673
 
704
674
  if need_pad:
705
675
  seq = pad_at_dim(seq, (1, 0), dim = 1)
@@ -714,7 +684,11 @@ class NeuralMemory(Module):
714
684
  # the parameters of the memory model stores the memories of the key / values
715
685
  # when the MLP has only 1 weight matrix, it is equivalent to `kv` fast weight memories from linear attention literature (recall fetching of memories is q @ (kv)) / schmidhuber's paper
716
686
 
717
- curr_weights = TensorDict(past_weights)
687
+ weights = TensorDict(weights)
688
+
689
+ # pre norm
690
+
691
+ seq = self.retrieve_norm(seq)
718
692
 
719
693
  # sequence Float['b n d'] to queries
720
694
 
@@ -730,14 +704,14 @@ class NeuralMemory(Module):
730
704
 
731
705
  # fetch values from memory model
732
706
 
733
- if dict_get_shape(curr_weights) != self.init_weight_shape:
734
- curr_weights = rearrange_dict_values(curr_weights, 'b n ... -> (b n) ...')
707
+ if weights_have_expanded_shape:
708
+ weights = rearrange_dict_values(weights, 'b n ... -> (b n) ...')
735
709
 
736
710
  queries = rearrange(queries, 'b h (n c) d -> (b h n) c d', c = chunk_size)
737
711
 
738
712
  # forward functional call
739
713
 
740
- values = functional_call(self.memory_model, dict(curr_weights), queries)
714
+ values = functional_call(self.memory_model, dict(weights), queries)
741
715
 
742
716
  # reconstitute batch dimension
743
717
 
@@ -885,22 +859,13 @@ class NeuralMemory(Module):
885
859
 
886
860
  # retrieve
887
861
 
888
- need_pad = True
889
- retrieve_chunk_size = None
890
-
891
862
  if is_single_token:
892
- retrieve_chunk_size = 1
893
- need_pad = False
894
-
895
863
  last_update, _ = next_neural_mem_state.states
896
-
897
864
  updates = rearrange_dict_values(last_update, 'b ... -> b 1 ...')
898
865
 
899
866
  retrieved = self.retrieve_memories(
900
867
  seq,
901
- updates,
902
- chunk_size = retrieve_chunk_size,
903
- need_pad = need_pad,
868
+ updates
904
869
  )
905
870
 
906
871
  return retrieved, next_neural_mem_state
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: titans-pytorch
3
- Version: 0.3.2
3
+ Version: 0.3.4
4
4
  Summary: Titans
5
5
  Project-URL: Homepage, https://pypi.org/project/titans-pytorch/
6
6
  Project-URL: Repository, https://github.com/lucidrains/titans-pytorch
@@ -0,0 +1,9 @@
1
+ titans_pytorch/__init__.py,sha256=Y3m_ZlpEqYwp-Md1ARhNGJxq8bQp8ty1o039nZOOJo0,276
2
+ titans_pytorch/associative_scan.py,sha256=CEPXaZ2fEPWF8ZBe5wihCqPSGi8PNyL0uVSgvY7eV-s,5147
3
+ titans_pytorch/mac_transformer.py,sha256=5rO4GQxSyFWWEc3pc3xNyG0sK5EXE7MmxKI-_kEMl2M,24941
4
+ titans_pytorch/memory_models.py,sha256=0KLHZN-y_7lwrhWSnFRaYJ3GiUV3tzVjxS9CxIx_eI8,4843
5
+ titans_pytorch/neural_memory.py,sha256=9eyeEvYsP5OFlwLDRyVut99uVYGvXAElFPabVoZnGJw,27063
6
+ titans_pytorch-0.3.4.dist-info/METADATA,sha256=2ZD_DovSYkVejsTWHq7_IOTN-Je0of1f-HOiojaQBhQ,6815
7
+ titans_pytorch-0.3.4.dist-info/WHEEL,sha256=qtCwoSJWgHk21S1Kb4ihdzI2rlJ1ZKaIurTj_ngOhyQ,87
8
+ titans_pytorch-0.3.4.dist-info/licenses/LICENSE,sha256=1yCiA9b5nhslTavxPjsQAO-wpOnwJR9-l8LTVi7GJuk,1066
9
+ titans_pytorch-0.3.4.dist-info/RECORD,,
@@ -1,9 +0,0 @@
1
- titans_pytorch/__init__.py,sha256=Y3m_ZlpEqYwp-Md1ARhNGJxq8bQp8ty1o039nZOOJo0,276
2
- titans_pytorch/associative_scan.py,sha256=Y-iYqmFuG-NoCKu6kgql1mhowXTeJfyawi3eUIXamp0,2650
3
- titans_pytorch/mac_transformer.py,sha256=5rO4GQxSyFWWEc3pc3xNyG0sK5EXE7MmxKI-_kEMl2M,24941
4
- titans_pytorch/memory_models.py,sha256=TJl7b9Rd5BP8aQXK8itap5YN3DyomUVxCRJDgPuRGBk,4843
5
- titans_pytorch/neural_memory.py,sha256=QiEnHnZfQ8ptuXNVy4NZf9-XMbMOl2_1PT_YIG1GQBc,27739
6
- titans_pytorch-0.3.2.dist-info/METADATA,sha256=Ar1OdcY09w-q3RlVKlxcgrtcVzZE6cRKqnjwQ4F-9Z8,6815
7
- titans_pytorch-0.3.2.dist-info/WHEEL,sha256=qtCwoSJWgHk21S1Kb4ihdzI2rlJ1ZKaIurTj_ngOhyQ,87
8
- titans_pytorch-0.3.2.dist-info/licenses/LICENSE,sha256=1yCiA9b5nhslTavxPjsQAO-wpOnwJR9-l8LTVi7GJuk,1066
9
- titans_pytorch-0.3.2.dist-info/RECORD,,