titans-pytorch 0.0.30__py3-none-any.whl → 0.0.32__py3-none-any.whl
Sign up to get free protection for your applications and to get access to all the features.
Potentially problematic release.
This version of titans-pytorch might be problematic. Click here for more details.
- titans_pytorch/mac_transformer.py +82 -34
- {titans_pytorch-0.0.30.dist-info → titans_pytorch-0.0.32.dist-info}/METADATA +1 -1
- {titans_pytorch-0.0.30.dist-info → titans_pytorch-0.0.32.dist-info}/RECORD +5 -5
- {titans_pytorch-0.0.30.dist-info → titans_pytorch-0.0.32.dist-info}/WHEEL +0 -0
- {titans_pytorch-0.0.30.dist-info → titans_pytorch-0.0.32.dist-info}/licenses/LICENSE +0 -0
@@ -17,6 +17,10 @@ from hyper_connections import get_init_and_expand_reduce_stream_functions
|
|
17
17
|
from axial_positional_embedding import ContinuousAxialPositionalEmbedding
|
18
18
|
from rotary_embedding_torch import RotaryEmbedding
|
19
19
|
|
20
|
+
# proposed neural memory
|
21
|
+
|
22
|
+
from titans_pytorch.titans import NeuralMemory
|
23
|
+
|
20
24
|
# constants
|
21
25
|
|
22
26
|
LinearNoBias = partial(Linear, bias = False)
|
@@ -29,9 +33,33 @@ def exists(v):
|
|
29
33
|
def default(v, d):
|
30
34
|
return v if exists(v) else d
|
31
35
|
|
36
|
+
def identity(t):
|
37
|
+
return t
|
38
|
+
|
32
39
|
def round_up_multiple(seq, mult):
|
33
40
|
return ceil(seq / mult) * mult
|
34
41
|
|
42
|
+
def pad_and_segment_with_inverse(seq, segment_len):
|
43
|
+
batch, seq_len = seq.shape[:2]
|
44
|
+
|
45
|
+
need_segment = seq_len >= segment_len
|
46
|
+
|
47
|
+
if not need_segment:
|
48
|
+
return seq, identity
|
49
|
+
|
50
|
+
next_seq_len_mult = round_up_multiple(seq_len, segment_len)
|
51
|
+
|
52
|
+
padding = next_seq_len_mult - seq_len
|
53
|
+
seq = F.pad(seq, (0, 0, 0, padding))
|
54
|
+
|
55
|
+
seq = rearrange(seq, 'b (w n) d -> (b w) n d', n = segment_len)
|
56
|
+
|
57
|
+
def inverse(out):
|
58
|
+
out = rearrange(out, '(b w) n d -> b (w n) d', b = batch)
|
59
|
+
return out[:, :-padding]
|
60
|
+
|
61
|
+
return seq, inverse
|
62
|
+
|
35
63
|
# feedforward and attention
|
36
64
|
|
37
65
|
class GEGLU(Module):
|
@@ -77,9 +105,6 @@ class SegmentedAttention(Module):
|
|
77
105
|
self.split_heads = Rearrange('b n (h d) -> b h n d', h = heads)
|
78
106
|
self.merge_heads = Rearrange('b h n d -> b n (h d)')
|
79
107
|
|
80
|
-
self.segment_seq = Rearrange('b (n w) d -> (b n) w d', n = total_segment_len)
|
81
|
-
self.merge_seq_back = Rearrange('(b n) w d -> b (n w) d', n = total_segment_len)
|
82
|
-
|
83
108
|
self.persistent_memory = nn.Parameter(torch.zeros(2, heads, num_persist_mem_tokens, dim_head))
|
84
109
|
|
85
110
|
def forward(self, seq):
|
@@ -91,16 +116,7 @@ class SegmentedAttention(Module):
|
|
91
116
|
# auto pad to multiple
|
92
117
|
# todo - get rid of logic with flex attention
|
93
118
|
|
94
|
-
|
95
|
-
|
96
|
-
if need_segment:
|
97
|
-
next_seq_len = round_up_multiple(seq_len, total_segment_len)
|
98
|
-
padding = next_seq_len - seq_len
|
99
|
-
|
100
|
-
if padding > 0:
|
101
|
-
seq = F.pad(seq, (0, 0, 0, padding))
|
102
|
-
|
103
|
-
seq = self.segment_seq(seq)
|
119
|
+
seq, inverse_segment = pad_and_segment_with_inverse(seq, total_segment_len)
|
104
120
|
|
105
121
|
# attention
|
106
122
|
|
@@ -130,10 +146,9 @@ class SegmentedAttention(Module):
|
|
130
146
|
|
131
147
|
out = self.to_out(out)
|
132
148
|
|
133
|
-
|
134
|
-
out = self.merge_seq_back(out)
|
149
|
+
out = inverse_segment(out)
|
135
150
|
|
136
|
-
return out
|
151
|
+
return out
|
137
152
|
|
138
153
|
# MAC transformer
|
139
154
|
|
@@ -150,7 +165,9 @@ class MemoryAsContextTransformer(Module):
|
|
150
165
|
dim_head = 64,
|
151
166
|
heads = 8,
|
152
167
|
ff_mult = 4,
|
153
|
-
num_residual_streams = 4
|
168
|
+
num_residual_streams = 4,
|
169
|
+
neural_memory_kwargs: dict = dict(),
|
170
|
+
neural_memory_layers: tuple[int, ...] | None = None,
|
154
171
|
):
|
155
172
|
super().__init__()
|
156
173
|
|
@@ -170,8 +187,25 @@ class MemoryAsContextTransformer(Module):
|
|
170
187
|
init_hyper_conn, self.expand_streams, self.reduce_streams = get_init_and_expand_reduce_stream_functions(num_residual_streams, disable = num_residual_streams == 1)
|
171
188
|
|
172
189
|
self.layers = ModuleList([])
|
190
|
+
self.neural_mem_layers = ModuleList([])
|
191
|
+
|
192
|
+
layers = tuple(range(1, depth + 1))
|
193
|
+
neural_memory_layers = set(default(neural_memory_layers, layers))
|
194
|
+
|
195
|
+
for layer in layers:
|
196
|
+
|
197
|
+
# neural memory
|
198
|
+
|
199
|
+
mem = None
|
200
|
+
|
201
|
+
if num_longterm_mem_tokens > 0 and layer in neural_memory_layers:
|
202
|
+
mem = NeuralMemory(dim = dim, chunk_size = num_longterm_mem_tokens)
|
203
|
+
mem = init_hyper_conn(dim = dim, branch = mem)
|
204
|
+
|
205
|
+
self.neural_mem_layers.append(mem)
|
206
|
+
|
207
|
+
# attention and feedforward
|
173
208
|
|
174
|
-
for _ in range(depth):
|
175
209
|
attn = SegmentedAttention(
|
176
210
|
dim = dim,
|
177
211
|
dim_head = dim_head,
|
@@ -207,40 +241,54 @@ class MemoryAsContextTransformer(Module):
|
|
207
241
|
|
208
242
|
# intersperse longterm memory
|
209
243
|
|
210
|
-
|
211
|
-
|
212
|
-
if need_segment:
|
213
|
-
next_seq_len = round_up_multiple(seq_len, segment_len)
|
214
|
-
padding = next_seq_len - seq_len
|
215
|
-
|
216
|
-
if padding > 0:
|
217
|
-
x = F.pad(x, (0, 0, 0, padding))
|
218
|
-
|
219
|
-
x = rearrange(x, 'b (w n) d -> (b w) n d', n = segment_len)
|
244
|
+
x, inverse_segment = pad_and_segment_with_inverse(x, segment_len)
|
220
245
|
|
221
246
|
mems = repeat(self.longterm_mems, 'n d -> b n d', b = x.shape[0])
|
222
|
-
x =
|
247
|
+
x = cat((mems, x), dim = -2)
|
223
248
|
|
224
|
-
|
225
|
-
x = rearrange(x, '(b w) n d -> b (w n) d', b = batch)
|
226
|
-
x = x[:, :seq_len]
|
249
|
+
x = inverse_segment(x)
|
227
250
|
|
228
251
|
# apply axial positional embedding
|
229
252
|
# so intra and inter segment can be more easily discerned by the network
|
230
253
|
|
231
254
|
pos_emb = self.axial_pos_emb((windows, total_segment_len), flatten = True)
|
232
|
-
x = x + pos_emb[:
|
255
|
+
x = x + pos_emb[:x.shape[-2]]
|
233
256
|
|
234
257
|
# expand and reduce streams for hyper connections
|
235
258
|
|
236
259
|
x = self.expand_streams(x)
|
237
260
|
|
238
|
-
for attn, ff in self.layers:
|
261
|
+
for (attn, ff), maybe_neural_mem in zip(self.layers, self.neural_mem_layers):
|
262
|
+
|
263
|
+
if exists(maybe_neural_mem):
|
264
|
+
batch_streams = x.shape[0]
|
265
|
+
x, inverse_segment = pad_and_segment_with_inverse(x, total_segment_len)
|
266
|
+
|
267
|
+
longterm_mems, x = x[:, :num_longterm_mem_tokens], x[:, num_longterm_mem_tokens:]
|
268
|
+
|
269
|
+
longterm_mems = rearrange(longterm_mems, '(b w) n d -> b (w n) d', b = batch_streams)
|
270
|
+
|
271
|
+
longterm_mems = maybe_neural_mem(longterm_mems)
|
272
|
+
|
273
|
+
longterm_mems = rearrange(longterm_mems, 'b (w n) d -> (b w) n d', n = num_longterm_mem_tokens)
|
274
|
+
|
275
|
+
x = cat((longterm_mems, x), dim = -2)
|
276
|
+
|
277
|
+
x = inverse_segment(x)
|
278
|
+
|
239
279
|
x = attn(x)
|
240
280
|
x = ff(x)
|
241
281
|
|
242
282
|
x = self.reduce_streams(x)
|
243
283
|
|
284
|
+
# excise out the memories
|
285
|
+
|
286
|
+
x, inverse_segment = pad_and_segment_with_inverse(x, total_segment_len)
|
287
|
+
|
288
|
+
x = x[:, num_longterm_mem_tokens:]
|
289
|
+
|
290
|
+
x = inverse_segment(x)
|
291
|
+
|
244
292
|
# to logits
|
245
293
|
|
246
294
|
x = self.norm(x)
|
@@ -1,9 +1,9 @@
|
|
1
1
|
titans_pytorch/__init__.py,sha256=nB0873FZ_OyCda3qFeWTdpO4LbbrXDEvtAefVLzh6g0,71
|
2
2
|
titans_pytorch/associative_scan.py,sha256=Y-iYqmFuG-NoCKu6kgql1mhowXTeJfyawi3eUIXamp0,2650
|
3
|
-
titans_pytorch/mac_transformer.py,sha256=
|
3
|
+
titans_pytorch/mac_transformer.py,sha256=ohZWVhMBtpm0Iz3w5g7pD3WXSXrvhwzZvfRplwhe1Qo,8149
|
4
4
|
titans_pytorch/titans.py,sha256=Kx_tl_QkeDccvkMwPZ0xQ_saYjZfbKzDNPTTSHNWYcA,14304
|
5
5
|
titans_pytorch/titans_attn_memory.py,sha256=Rwx_-riGeISBefZg5Kjic8jzmmRRys-u93D2Kgb7Mos,12691
|
6
|
-
titans_pytorch-0.0.
|
7
|
-
titans_pytorch-0.0.
|
8
|
-
titans_pytorch-0.0.
|
9
|
-
titans_pytorch-0.0.
|
6
|
+
titans_pytorch-0.0.32.dist-info/METADATA,sha256=9X9nWfgIVS-9XIeLHQY53HXSMA6rMemPfyVC2bRrJOQ,3938
|
7
|
+
titans_pytorch-0.0.32.dist-info/WHEEL,sha256=qtCwoSJWgHk21S1Kb4ihdzI2rlJ1ZKaIurTj_ngOhyQ,87
|
8
|
+
titans_pytorch-0.0.32.dist-info/licenses/LICENSE,sha256=1yCiA9b5nhslTavxPjsQAO-wpOnwJR9-l8LTVi7GJuk,1066
|
9
|
+
titans_pytorch-0.0.32.dist-info/RECORD,,
|
File without changes
|
File without changes
|