tinygrad 0.10.0__py3-none-any.whl → 0.10.1__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (72) hide show
  1. tinygrad/codegen/kernel.py +114 -172
  2. tinygrad/codegen/linearize.py +211 -81
  3. tinygrad/codegen/lowerer.py +30 -35
  4. tinygrad/codegen/{uopgraph.py → rewriter.py} +69 -59
  5. tinygrad/codegen/transcendental.py +12 -13
  6. tinygrad/device.py +170 -47
  7. tinygrad/dtype.py +28 -26
  8. tinygrad/engine/jit.py +80 -63
  9. tinygrad/engine/memory.py +4 -5
  10. tinygrad/engine/multi.py +162 -0
  11. tinygrad/engine/realize.py +58 -107
  12. tinygrad/engine/schedule.py +381 -314
  13. tinygrad/engine/search.py +40 -44
  14. tinygrad/gradient.py +70 -0
  15. tinygrad/helpers.py +77 -58
  16. tinygrad/nn/__init__.py +30 -32
  17. tinygrad/nn/datasets.py +1 -2
  18. tinygrad/nn/optim.py +22 -26
  19. tinygrad/nn/state.py +89 -64
  20. tinygrad/ops.py +562 -446
  21. tinygrad/renderer/__init__.py +79 -36
  22. tinygrad/renderer/cstyle.py +70 -84
  23. tinygrad/renderer/llvmir.py +32 -20
  24. tinygrad/renderer/ptx.py +79 -99
  25. tinygrad/renderer/wgsl.py +87 -0
  26. tinygrad/runtime/autogen/amd_gpu.py +39507 -12
  27. tinygrad/runtime/autogen/comgr.py +2 -0
  28. tinygrad/runtime/autogen/kfd.py +4 -3
  29. tinygrad/runtime/autogen/kgsl.py +1 -1
  30. tinygrad/runtime/autogen/libpciaccess.py +2023 -0
  31. tinygrad/runtime/autogen/llvm.py +11379 -0
  32. tinygrad/runtime/autogen/vfio.py +891 -0
  33. tinygrad/runtime/graph/cuda.py +8 -9
  34. tinygrad/runtime/graph/hcq.py +84 -79
  35. tinygrad/runtime/graph/metal.py +19 -21
  36. tinygrad/runtime/ops_amd.py +488 -327
  37. tinygrad/runtime/ops_clang.py +15 -28
  38. tinygrad/runtime/ops_cloud.py +34 -34
  39. tinygrad/runtime/ops_cuda.py +30 -27
  40. tinygrad/runtime/ops_disk.py +62 -63
  41. tinygrad/runtime/ops_dsp.py +129 -38
  42. tinygrad/runtime/ops_gpu.py +30 -30
  43. tinygrad/runtime/ops_hip.py +29 -31
  44. tinygrad/runtime/ops_llvm.py +45 -40
  45. tinygrad/runtime/ops_metal.py +93 -73
  46. tinygrad/runtime/ops_npy.py +2 -2
  47. tinygrad/runtime/ops_nv.py +232 -270
  48. tinygrad/runtime/ops_python.py +51 -46
  49. tinygrad/runtime/ops_qcom.py +129 -157
  50. tinygrad/runtime/ops_webgpu.py +63 -0
  51. tinygrad/runtime/support/allocator.py +94 -0
  52. tinygrad/runtime/support/am/__init__.py +0 -0
  53. tinygrad/runtime/support/am/amdev.py +384 -0
  54. tinygrad/runtime/support/am/ip.py +463 -0
  55. tinygrad/runtime/support/compiler_cuda.py +4 -2
  56. tinygrad/runtime/support/elf.py +26 -4
  57. tinygrad/runtime/support/hcq.py +254 -324
  58. tinygrad/runtime/support/llvm.py +32 -0
  59. tinygrad/shape/shapetracker.py +84 -53
  60. tinygrad/shape/view.py +103 -138
  61. tinygrad/spec.py +154 -0
  62. tinygrad/tensor.py +744 -496
  63. {tinygrad-0.10.0.dist-info → tinygrad-0.10.1.dist-info}/METADATA +32 -21
  64. tinygrad-0.10.1.dist-info/RECORD +86 -0
  65. {tinygrad-0.10.0.dist-info → tinygrad-0.10.1.dist-info}/WHEEL +1 -1
  66. tinygrad/engine/lazy.py +0 -228
  67. tinygrad/function.py +0 -212
  68. tinygrad/multi.py +0 -177
  69. tinygrad/runtime/graph/clang.py +0 -39
  70. tinygrad-0.10.0.dist-info/RECORD +0 -77
  71. {tinygrad-0.10.0.dist-info → tinygrad-0.10.1.dist-info}/LICENSE +0 -0
  72. {tinygrad-0.10.0.dist-info → tinygrad-0.10.1.dist-info}/top_level.txt +0 -0
tinygrad/renderer/ptx.py CHANGED
@@ -1,11 +1,11 @@
1
- from typing import DefaultDict, Dict, List, Union, Optional, cast, Callable, Tuple
1
+ from typing import cast, Callable
2
2
  import struct
3
3
  from collections import defaultdict
4
4
  from tinygrad.ops import Ops, UOp, PatternMatcher, UPat, GroupOp
5
5
  from tinygrad.dtype import dtypes, DType, PtrDType
6
6
  from tinygrad.renderer import Renderer
7
7
  from tinygrad.renderer.cstyle import CUDARenderer
8
- from tinygrad.helpers import prod, flatten
8
+ from tinygrad.helpers import flatten, get_single_element
9
9
 
10
10
  def render_val(x, dtype):
11
11
  if dtypes.is_float(dtype):
@@ -14,30 +14,30 @@ def render_val(x, dtype):
14
14
  return "0f%02X%02X%02X%02X" % tuple(struct.pack("f",x)[::-1])
15
15
  return str(int(x)) + ("U" if dtypes.is_unsigned(dtype) else "")
16
16
 
17
- asm_for_op: Dict[Ops, Callable] = {
17
+ asm_for_op: dict[Ops, Callable] = {
18
18
  Ops.RECIP: lambda d,a,dt,name: f"rcp{'.approx' if dtypes.is_float(dt) else ''}.{name} {d}, {a};",
19
19
  Ops.EXP2: lambda d,a,dt,name: f"ex2.approx.{name} {d}, {a};", Ops.LOG2: lambda d,a,dt,name: f"lg2.approx.{name} {d}, {a};",
20
20
  Ops.SIN: lambda d,a,dt,name: f"sin.approx.{name} {d}, {a};", Ops.SQRT: lambda d,a,dt,name: f"sqrt.approx.{name} {d}, {a};",
21
21
  Ops.SHR: lambda d,a,b,dt,name: f"shr.{name} {d}, {a}, {b};", Ops.SHL: lambda d,a,b,dt,name: f"shl.b{name[1:]} {d}, {a}, {b};",
22
- Ops.ADD: lambda d,a,b,dt,name: f"{'or' if name == 'pred' else 'add'}.{name} {d}, {a}, {b};",
23
- Ops.MUL: lambda d,a,b,dt,name: ('and' if dt == dtypes.bool else 'mul') + f"{'.lo' if dtypes.is_int(dt) else ''}.{name} {d}, {a}, {b};",
24
- Ops.XOR: lambda d,a,b,dt,name: f"xor.pred {d}, {a}, {b};" if name == "pred" else f"xor.b{name[1:]} {d}, {a}, {b};",
25
- Ops.AND: lambda d,a,b,dt, name: f"and.pred {d}, {a}, {b};" if name == "pred" else f"and.b{name[1:]} {d}, {a}, {b};",
26
- Ops.OR: lambda d,a,b,dt, name: f"or.pred {d}, {a}, {b};" if name == "pred" else f"or.b{name[1:]} {d}, {a}, {b};",
27
- Ops.IDIV: lambda d,a,b,dt,name: f"div.{name} {d}, {a}, {b};",
28
- Ops.MAX: lambda d,a,b,dt,name: f"max.{name} {d}, {a}, {b};", Ops.MOD: lambda d,a,b,dt,name: f"rem.{name} {d}, {a}, {b};",
22
+ Ops.ADD: lambda d,a,b,dt,name: f"{'or' if dt == dtypes.bool else 'add'}.{name} {d}, {a}, {b};",
23
+ Ops.MUL: lambda d,a,b,dt,name: f"{'and' if dt == dtypes.bool else 'mul'}{'.lo' if dtypes.is_int(dt) else ''}.{name} {d}, {a}, {b};",
24
+ Ops.XOR: lambda d,a,b,dt,name: f"xor.pred {d}, {a}, {b};" if dt == dtypes.bool else f"xor.b{name[1:]} {d}, {a}, {b};",
25
+ Ops.AND: lambda d,a,b,dt, name: f"and.pred {d}, {a}, {b};" if dt == dtypes.bool else f"and.b{name[1:]} {d}, {a}, {b};",
26
+ Ops.OR: lambda d,a,b,dt, name: f"or.pred {d}, {a}, {b};" if dt == dtypes.bool else f"or.b{name[1:]} {d}, {a}, {b};",
27
+ Ops.IDIV: lambda d,a,b,dt,name: f"div.{name} {d}, {a}, {b};", Ops.MOD: lambda d,a,b,dt,name: f"rem.{name} {d}, {a}, {b};",
28
+ Ops.MAX: lambda d,a,b,dt,name: f"max.{name} {d}, {a}, {b};",
29
29
  Ops.CMPLT: lambda d,a,b,dt,name: f"setp.lt.{name} {d}, {a}, {b};", Ops.CMPNE: lambda d,a,b,dt,name: f"setp.ne.{name} {d}, {a}, {b};",
30
30
  Ops.MULACC: lambda d,a,b,c,dt,name: f"{'fma.rn' if dtypes.is_float(dt) else 'mad.lo'}.{name} {d}, {a}, {b}, {c};",
31
- Ops.WHERE: lambda d,a,b,c,dt,name:
32
- f"@{a} mov.{name} {d}, {b};\n@!{a} mov.{name} {d}, {c};" if name == "pred" else f"selp.{'b16' if name == 'f16' else name} {d}, {b}, {c}, {a};"
31
+ Ops.WHERE: lambda d,a,b,c,dt,name: [f"@{a} mov.{name} {d}, {b};", f"@!{a} mov.{name} {d}, {c};"] if dt == dtypes.bool else \
32
+ f"selp.{'b16' if name == 'f16' else name} {d}, {b}, {c}, {a};"
33
33
  }
34
34
 
35
- supports_half: List[Ops] = [Ops.EXP2, Ops.ADD, Ops.MUL, Ops.MAX, Ops.CMPLT, Ops.WHERE]
36
- doesnt_support_half: Tuple[Ops, ...] = tuple(op for op in asm_for_op.keys() if op not in supports_half)
35
+ supports_half = (Ops.EXP2, Ops.ADD, Ops.MUL, Ops.MAX, Ops.CMPLT, Ops.WHERE)
36
+ doesnt_support_half: tuple[Ops, ...] = tuple(op for op in asm_for_op.keys() if op not in supports_half)
37
37
  ptx_matcher = PatternMatcher([
38
38
  # bool CMPNE is XOR, bool CMPLT is XOR+AND (universal makes this slow, this is for renderer only)
39
39
  (UPat.var('x', dtype=dtypes.bool).ne(UPat.var('y')), lambda x,y: x^y),
40
- (UPat.var('x', dtype=dtypes.bool).lt(UPat.var('y')), lambda x,y: (x^True)&y),
40
+ (UPat.var('x', dtype=dtypes.bool)<UPat.var('y'), lambda x,y: (x^True)&y),
41
41
  # upcast to float32 all the ops that don't support half
42
42
  (UPat(doesnt_support_half, dtype=dtypes.half, name="x"),
43
43
  lambda x: (UOp(x.op, dtypes.float32, tuple(vv.cast(dtypes.float32) for vv in x.src), x.arg).cast(dtypes.half))),
@@ -54,46 +54,46 @@ ptx_matcher = PatternMatcher([
54
54
  (UPat.var("x") >> UPat.var("y"), lambda x,y: UOp(Ops.SHR, x.dtype, (x,y.cast(dtypes.uint))) if y.dtype != dtypes.uint else None),
55
55
  ])
56
56
 
57
- def mem_type(x: UOp): return 'shared' if x.src[0].op is Ops.DEFINE_LOCAL or any(_x.op is Ops.DEFINE_LOCAL for _x in x.src[0].parents) else 'global'
57
+ def mem_type(x: UOp): return 'shared' if any(_x.op is Ops.DEFINE_LOCAL for _x in x.src[0].toposort) else 'global'
58
58
 
59
- def render_store(ctx: "PTXRenderer", x: UOp, bidx: UOp, var: UOp, pred: Optional[UOp]=None):
60
- gate = f"@{ctx.r[pred]} " if pred is not None and pred.op is not Ops.IF else ""
61
- return [f"{gate}st.{mem_type(bidx)}.v{var.dtype.count}.{ctx.mem_types[var.dtype.scalar()]} [{ctx.r[bidx]}+0], {{{', '.join(ctx.r[var])}}};"] \
62
- if var.dtype.count > 1 else [f"{gate}st.{mem_type(bidx)}.{ctx.mem_types[var.dtype]} [{ctx.r[bidx]}+0], {ctx.r[var]};"]
63
-
64
- def render_wmma(ctx: "PTXRenderer", x: UOp):
59
+ def render_wmma(ctx: "PTXRenderer", wmma: UOp):
65
60
  assert ctx.wmma_r, "registry values for wmma must be populated"
66
- _, (N, M, K), dtype_in, _, _, _, upcast_axes, _ = x.arg
67
- n_operands = tuple(prod(sz for _, sz in upc)*dtype_in.itemsize//4 for upc in upcast_axes[:2])
68
- dt_map = { dtypes.half: "f16" }
69
- _i = 0
70
- for vv in x.src[:2]:
71
- for i in range(0, len(ctx.r[vv]), 2):
72
- yield f"mov.b32 {ctx.wmma_r[_i]}, {{{', '.join(ctx.r[vv][i:i+2])}}};"
73
- _i += 1
74
- yield f'mma.sync.aligned.m{M}n{N}k{K}.row.col.f32.{dt_map[dtype_in]}.{dt_map[dtype_in]}.f32{" "*12}' +\
75
- f'{{{", ".join(ctx.r[x])}}}, {{{", ".join(ctx.wmma_r[:n_operands[0]])}}}, {{{", ".join(ctx.wmma_r[-n_operands[1]:])}}}, ' + \
76
- f'{{{", ".join(ctx.r[x.src[2]])}}};'
61
+ (N, M, K), dtype_in, dtype_out = wmma.arg[1], wmma.arg[2], wmma.arg[3]
62
+
63
+ for src, regs in zip(wmma.src, ctx.wmma_r):
64
+ for i, reg in enumerate(regs): # pack input and acc registers
65
+ if (elems_per_reg := 4 // src.dtype.scalar().itemsize) == 1: yield f"mov.b32 {reg}, {ctx.r[src][i]};"
66
+ else: yield f"mov.b32 {reg}, {{{', '.join(ctx.r[src][i * elems_per_reg : (i+1) * elems_per_reg])}}};"
67
+
68
+ dt_map_in, dt_map_out = {dtypes.float: "tf32", dtypes.half: "f16"}, {dtypes.float: "f32"}
69
+ yield f'mma.sync.aligned.m{M}n{N}k{K}.row.col.{dt_map_out[dtype_out]}.{dt_map_in[dtype_in]}.{dt_map_in[dtype_in]}.{dt_map_out[dtype_out]}{" "*12}'+\
70
+ f'{{{", ".join(ctx.wmma_r[2])}}}, {{{", ".join(ctx.wmma_r[0])}}}, {{{", ".join(ctx.wmma_r[1])}}}, {{{", ".join(ctx.wmma_r[2])}}};'
71
+
72
+ for i, reg in enumerate(ctx.wmma_r[2]): # unpack acc registers
73
+ if (elems_per_reg := 4 // dtype_out.itemsize) == 1: yield f"mov.b32 {ctx.r[wmma][i]}, {reg};"
74
+ else: yield f"mov.b32 {{{', '.join(ctx.r[wmma][i * elems_per_reg : (i+1) * elems_per_reg])}}}, {reg};"
77
75
 
78
76
  def modifier(a: DType, b: DType): return '.rzi' if dtypes.is_int(a) and dtypes.is_float(b) else '.rn' if dtypes.is_float(a) and \
79
77
  (a.itemsize < b.itemsize or dtypes.is_int(b) or b == dtypes.bool) else ''
80
78
 
81
79
  string_rewrite = PatternMatcher([
82
- (UPat(Ops.CONST, name="x", dtype=dtypes.bool), lambda ctx, x: f"setp.ne.s16 {ctx.r[x]}, {render_val(x.arg, x.dtype)}, 0;"),
83
- (UPat(Ops.CONST, name="x"), lambda ctx, x: f"mov.b{ctx.types[x.dtype][1:]} {ctx.r[x]}, {render_val(x.arg, x.dtype)};"),
84
- (UPat(Ops.STORE, name="x", src=(UPat.var('bidx'), UPat.var("var"), UPat.var("pred")), allow_any_len=True), render_store),
80
+ (UPat.cvar("x", dtypes.bool), lambda ctx, x: f"setp.ne.s16 {ctx.r[x]}, {render_val(x.arg, x.dtype)}, 0;"),
81
+ (UPat.cvar("x"), lambda ctx, x: f"mov.b{ctx.types[x.dtype][1:]} {ctx.r[x]}, {render_val(x.arg, x.dtype)};"),
82
+ (UPat(Ops.STORE, name="x", src=(UPat.var('bidx'), UPat.var("var")), allow_any_len=True), lambda ctx, x, bidx, var: f"st.{mem_type(bidx)}" + \
83
+ f"{f'.v{cnt}' if ((cnt:=var.dtype.count)>1) else ''}.{ctx.mem_types[var.dtype.scalar()]} " + \
84
+ f"[{ctx.r[bidx]}+0], {('{' + ', '.join(ctx.r[var]) + '}') if var.dtype.count > 1 else ctx.r[var]};"),
85
85
  (UPat(Ops.SPECIAL, name="x"), lambda ctx,x: f"mov.u32 %{x.arg[0]}, %{'ctaid' if x.arg[0][0] == 'g' else 'tid'}.{chr(120+int(x.arg[0][-1]))};"),
86
86
  (UPat(Ops.DEFINE_GLOBAL, name="x"), lambda ctx, x: f"ld.param.{ctx.types[dtypes.ulong]} {ctx.r[x]}, [data{x.arg}+0];"),
87
- (UPat((Ops.CMPLT, Ops.CMPNE), name="x"),
88
- lambda ctx, x: ctx.code_for_op[x.op](ctx.r[x], *[ctx.r[v] for v in x.src], x.src[0].dtype, ctx.types[x.src[0].dtype])),
87
+ (UPat((Ops.CMPLT, Ops.CMPNE), name="x", allow_any_len=True, src=(UPat.var("src0"),)),
88
+ lambda ctx, x, src0: ctx.code_for_op[x.op](ctx.r[x], *[ctx.r[v] for v in x.src], src0.dtype, ctx.types[src0.dtype])),
89
89
  (UPat(GroupOp.ALU, name="x"), lambda ctx, x: ctx.code_for_op[x.op](ctx.r[x], *[ctx.r[v] for v in x.src], x.dtype, ctx.types[x.dtype])),
90
- (UPat(Ops.BITCAST, name="x", src=(UPat.var("a")), allow_any_len=True), lambda ctx, x, a: f"mov.b{ctx.types[x.dtype][1:]} {ctx.r[x]}, {ctx.r[a]};"),
91
- (UPat(Ops.CAST, name="x", src=(UPat(dtype=dtypes.bool, name="a"))),
90
+ (UPat(Ops.BITCAST, name="x", src=(UPat.var("a"),), allow_any_len=True), lambda ctx, x, a: f"mov.b{ctx.types[x.dtype][1:]} {ctx.r[x]}, {ctx.r[a]};"),
91
+ (UPat(Ops.CAST, name="x", src=(UPat(dtype=dtypes.bool, name="a"),)),
92
92
  lambda ctx, x, a: f"selp.b{ctx.types[x.dtype][1:]} {ctx.r[x]}, {render_val(1, x.dtype)}, {render_val(0, x.dtype)}, {ctx.r[a]};"),
93
- (UPat(Ops.CAST, name="x", dtype=dtypes.bool),
94
- lambda ctx, x: f"setp.ne.b{ctx.types[x.src[0].dtype][1:]} {ctx.r[x]}, {ctx.r[x.src[0]]}, {render_val(0, x.src[0].dtype)};"),
95
- (UPat(Ops.CAST, name="x", src=(UPat.var("a"))),
96
- lambda ctx, x, a: f"cvt{modifier(x.dtype, a.dtype)}.{ctx.types[x.dtype]}.{ctx.types[x.src[0].dtype]} {ctx.r[x]}, {ctx.r[x.src[0]]};"),
93
+ (UPat(Ops.CAST, name="x", dtype=dtypes.bool, src=(UPat.var("a"),)),
94
+ lambda ctx, x, a: f"setp.ne.b{ctx.types[a.dtype][1:]} {ctx.r[x]}, {ctx.r[a]}, {render_val(0, a.dtype)};"),
95
+ (UPat(Ops.CAST, name="x", src=(UPat.var("a"),)),
96
+ lambda ctx, x, a: f"cvt{modifier(x.dtype, a.dtype)}.{ctx.types[x.dtype]}.{ctx.types[a.dtype]} {ctx.r[x]}, {ctx.r[a]};"),
97
97
  (UPat(Ops.LOAD, name="x", src=(UPat.var('loc'), UPat(name='alt'), UPat(name="gate", op=GroupOp.ALU))), lambda ctx, x, loc, alt, gate: flatten([
98
98
  [f"mov.{ctx.mem_types[x.dtype.scalar()]} {v}, {render_val(0, x.dtype.scalar())};" for v in ctx.r[x]],
99
99
  [f"@{ctx.r[gate]} ld.{mem_type(x)}.v{x.dtype.count}.{ctx.mem_types[x.dtype.scalar()]} {{{', '.join(ctx.r[x])}}}, [{ctx.r[loc]}+0];"]
@@ -101,20 +101,11 @@ string_rewrite = PatternMatcher([
101
101
  f"@{ctx.r[gate]} ld.{mem_type(x)}.{ctx.mem_types[x.dtype.scalar()]} {ctx.r[x]}, [{ctx.r[loc]}+0];",
102
102
  f"@!{ctx.r[gate]} mov.b{ctx.types[x.dtype.scalar()][1:]} {ctx.r[x]}, {ctx.r[alt]};"]),
103
103
  (UPat(Ops.LOAD, name="x", src=(UPat.var('loc'),), allow_any_len=True),
104
- lambda ctx, x, loc: f" ld.{mem_type(x)}.v{x.dtype.count}.{ctx.mem_types[x.dtype.scalar()]} {{{', '.join(ctx.r[x])}}}, [{ctx.r[loc]}+0];" \
104
+ lambda ctx, x, loc: f"ld.{mem_type(x)}.v{x.dtype.count}.{ctx.mem_types[x.dtype.scalar()]} {{{', '.join(ctx.r[x])}}}, [{ctx.r[loc]}+0];" \
105
105
  if x.dtype.count > 1 else f"ld.{mem_type(x)}.{ctx.mem_types[x.dtype]} {ctx.r[x]}, [{ctx.r[loc]}+0];"),
106
- (UPat(Ops.DEFINE_ACC, name="x", src=(UPat(name="pred", op=Ops.VECTORIZE, dtype=dtypes.bool),), allow_any_len=True),
107
- lambda ctx, x, pred: flatten([
108
- [f"setp.ne.s16 {ctx.r[pred][i]}, {render_val(pred.src[0].arg, x.dtype.scalar())}, 0;",
109
- f"mov.b{ctx.types[x.dtype.scalar()][1:]} {uu}, {ctx.r[pred][i]};"] for i, uu in enumerate(ctx.r[x])])),
110
- (UPat(Ops.DEFINE_ACC, name="x", src=(UPat(name="pred", op=Ops.VECTORIZE, dtype=dtypes.half),), allow_any_len=True),
111
- lambda ctx, x, pred: flatten([[f"mov.b{ctx.types[x.dtype.scalar()][1:]} {ctx.r[pred][i]}, {render_val(pred.src[0].arg, x.dtype.scalar())};",
112
- f"mov.b{ctx.types[x.dtype.scalar()][1:]} {uu}, {ctx.r[pred][i]};"] for i, uu in enumerate(ctx.r[x])])),
113
- (UPat(Ops.DEFINE_ACC, name="x", src=(UPat(name="pred", op=Ops.VECTORIZE),), allow_any_len=True), lambda ctx, x, pred: [
114
- f"mov.b{ctx.types[x.dtype.scalar()][1:]} {uu}, {render_val(pred.src[0].arg, x.dtype.scalar())};" for i, uu in enumerate(ctx.r[x])]),
115
- (UPat(Ops.DEFINE_ACC, name="x", src=(UPat(name="pred", op=Ops.CONST, dtype=dtypes.bool), ), allow_any_len=True), lambda ctx, x, pred: [
106
+ (UPat(Ops.DEFINE_ACC, name="x", src=(UPat.cvar("pred", dtype=dtypes.bool),), allow_any_len=True), lambda ctx, x, pred: [
116
107
  f"setp.ne.s16 {ctx.r[pred]}, {render_val(pred.arg, pred.dtype)}, 0;", f"mov.pred {ctx.r[x]}, {ctx.r[pred]};"]),
117
- (UPat(Ops.DEFINE_ACC, name="x", src=(UPat(name="pred", op=Ops.CONST), ), allow_any_len=True),
108
+ (UPat(Ops.DEFINE_ACC, name="x", src=(UPat.cvar("pred"),), allow_any_len=True),
118
109
  lambda ctx, x, pred: f"mov.b{ctx.types[x.dtype][1:]} {ctx.r[x]}, {render_val(pred.arg, x.dtype)};"),
119
110
  (UPat(Ops.RANGE, name="x"), lambda ctx, x: [f"mov.u32 {ctx.r[x]}, {ctx.r[x.src[0]]};", "LOOP_" + f"{ctx.r[x][1:]}:"]),
120
111
  (UPat(Ops.ASSIGN, name="x", dtype=dtypes.bool), lambda ctx, x: [f"mov.pred {ctx.r[x.src[0]]}, {ctx.r[x.src[1]]};"]),
@@ -124,7 +115,7 @@ string_rewrite = PatternMatcher([
124
115
  ctx.code_for_op[Ops.CMPLT](ctx.r[x], ctx.r[x.src[0]], ctx.r[src0.src[1]], dtypes.int, ctx.types[dtypes.int]),
125
116
  f"@{ctx.r[x]} bra LOOP_{ctx.r[src0][1:]};"]),
126
117
  (UPat(Ops.DEFINE_LOCAL, name="x"),
127
- lambda ctx, x: [f".shared .align 4 .b8 {x.arg[0]}[{x.arg[1]*x.dtype.itemsize}];", f"mov.u64 {ctx.r[x]}, {x.arg[0]}[0];"]),
118
+ lambda ctx, x: [f".shared .align 4 .b8 {x.arg}[{x.dtype.size*x.dtype.itemsize}];", f"mov.u64 {ctx.r[x]}, {x.arg}[0];"]),
128
119
  (UPat(Ops.IF, name="x"), lambda ctx, x: f"@!{ctx.r[x.src[0]]} bra IF_{ctx.r[x.src[0]][1:]}_{ctx.uops.index(x)};"),
129
120
  (UPat(Ops.ENDIF, name="x"), lambda ctx, x: f"IF_{ctx.r[x.src[0].src[0]][1:]}_{ctx.uops.index(x.src[0])}:"),
130
121
  (UPat(Ops.WMMA, name="x"), lambda ctx, x: list(render_wmma(ctx, x))),
@@ -136,11 +127,12 @@ class PTXRenderer(Renderer):
136
127
  device = "CUDA"
137
128
  suffix = "PTX"
138
129
  global_max, local_max, shared_max = CUDARenderer.global_max, CUDARenderer.local_max, CUDARenderer.shared_max
139
- tensor_cores = [tc for tc in CUDARenderer.tensor_cores if tc.dtype_in == dtypes.half]
130
+ tc_sm80 = [tc for tc in CUDARenderer.tc_sm80 if tc.dtype_in in [dtypes.half, dtypes.float]]
140
131
  code_for_op = asm_for_op
141
132
  extra_matcher = ptx_matcher
142
133
  def __init__(self, arch:str, device="CUDA"):
143
- self.device, self.tensor_cores, self.arch = device, PTXRenderer.tensor_cores if int(arch[3:]) >= 80 else [], arch
134
+ self.device, self.arch = device, arch
135
+ self.tensor_cores = PTXRenderer.tc_sm80 if int(arch[3:]) >= 80 else CUDARenderer.tc_sm75 if int(arch[3:]) >= 75 else []
144
136
  def __reduce__(self): return self.__class__, (self.arch, self.device)
145
137
 
146
138
  # language options
@@ -149,33 +141,29 @@ class PTXRenderer(Renderer):
149
141
  .address_size 64
150
142
  .visible .entry"""
151
143
  barrier = "bar.sync\t0;"
152
- supports_half = supports_half
153
144
  # HACK: Use s16 and u16 for int8 and uint8 buffers. This can be wrong in cast.
154
- types: Dict[DType, str] = { dtypes.int8: "s16", dtypes.int16: "s16", dtypes.int32: "s32", dtypes.int64: "s64",
145
+ types: dict[DType, str] = { dtypes.int8: "s16", dtypes.int16: "s16", dtypes.int32: "s32", dtypes.int64: "s64",
155
146
  dtypes.uint8: "u16", dtypes.uint16: "u16", dtypes.uint32: "u32", dtypes.uint64: "u64",
156
147
  dtypes.float16: "f16", dtypes.float32: "f32", dtypes.float64: "f64", dtypes.bool: "pred" }
157
148
 
158
- mem_types: Dict[DType, str] = types.copy()
159
- mem_types.update({dtypes.int8: "s8", dtypes.uint8: "u8", dtypes.bool: "u8", dtypes.float16: "b16"})
149
+ mem_types: dict[DType, str] = {**types, dtypes.int8: "s8", dtypes.uint8: "u8", dtypes.bool: "u8", dtypes.float16: "b16"}
160
150
 
161
151
  def render_kernel(self, kernel, function_name, bufs, regs) -> str:
162
- kernel = [f".reg .{reg.split('_')[-2]} %{reg}<{cnt}>;" for reg,cnt in regs] + kernel + ["ret;"]
163
152
  def fmt(line): return line if line[0]=="$" else "\t" + line.replace(" ", "\t" if len(line.split(" ")[0]) > 7 else "\t\t", 1)
164
- return (f"{self.kernel_prefix} {function_name}(\n\t" +
165
- ',\n\t'.join([f".param .{'u64' if dtype.__class__ == PtrDType else self.types[dtype]} {name}" for name,dtype in bufs]) + "\n)\n{\n" +
166
- '\n'.join([fmt(line) for op in kernel for line in op.splitlines()]) +
167
- "\n}")
153
+ kernel = '\n'.join(map(fmt, [f".reg .{reg.split('_')[-2]} %{reg}<{cnt}>;" for reg,cnt in regs] + kernel + ["ret;"]))
154
+ params = ',\n\t'.join([f".param .{'u64' if dtype.__class__ == PtrDType else self.types[dtype]} {name}" for name,dtype in bufs])
155
+ return f"{self.kernel_prefix} {function_name}(\n\t{params}\n)\n{{\n{kernel}\n}}"
168
156
 
169
- def render(self, name:str, uops:List[UOp]) -> str:
170
- kernel:List[str] = []
157
+ def render(self, name:str, uops:list[UOp]) -> str:
158
+ kernel:list[str] = []
171
159
  bufs = []
172
160
 
173
- c: DefaultDict[str, int] = defaultdict(int)
174
- r: Dict[UOp, Union[List[str], str]] = {}
161
+ c: defaultdict[str, int] = defaultdict(int)
162
+ r: dict[UOp, list[str]|str] = {}
175
163
  self.r = r
176
164
  self.uops = uops
177
165
 
178
- def ssa(prefix:str, u:Optional[UOp]=None, dtype:Optional[str]=None) -> str:
166
+ def ssa(prefix:str, u:UOp|None=None, dtype:str|None=None) -> str:
179
167
  nonlocal c, r
180
168
  prefix += f"_{dtype if dtype is not None else self.types[cast(UOp, u).dtype]}_"
181
169
  c[prefix] += 1
@@ -186,38 +174,30 @@ class PTXRenderer(Renderer):
186
174
  r[u] = [cast(str,r[x]) for x in u.src]
187
175
  continue
188
176
  if u.op is Ops.GEP:
189
- assert len(u.arg) == 1
190
- r[u] = r[u.src[0]][u.arg[0]]
177
+ r[u] = r[u.src[0]][get_single_element(u.arg)]
178
+ continue
179
+ if u.op in {Ops.CAST, Ops.BITCAST} and (u.src[0].dtype == u.dtype or isinstance(u.src[0].dtype, PtrDType)):
180
+ r[u] = r[u.src[0]]
191
181
  continue
192
- if u.op in {Ops.CAST, Ops.BITCAST}:
193
- if u.src[0].dtype == u.dtype or isinstance(u.src[0].dtype, PtrDType):
194
- r[u] = r[u.src[0]]
195
- continue
196
- r[u] = ssa('cast', u, self.types[u.dtype])
197
- elif u.op is Ops.ENDRANGE: r[u] = ssa("pred", u, dtype="pred")
198
- elif u.op is Ops.RANGE: r[u] = ssa("ridx", u)
199
- elif u.op in GroupOp.ALU: r[u] = ssa("alu", u)
200
- elif u.op is Ops.DEFINE_ACC:
201
- if u.dtype.scalar() in [dtypes.half, dtypes.bool]:
202
- r[u.src[0]] = [ssa("const", u.src[0].src[0]) for _ in range(u.dtype.count)] if u.dtype.count > 1 else ssa("const", u.src[0])
203
- r[u] = [ssa('acc', u, dtype=self.types[u.dtype.scalar()]) for _ in range(u.dtype.count)] if u.dtype.count > 1 else ssa("acc", u)
204
- elif u.op is Ops.SPECIAL: r[u] = "%" + u.arg[0]
205
- elif u.op is Ops.DEFINE_VAR:
206
- bufs.append((u.arg[0], u.dtype))
207
- r[u] = ssa("dat", u, self.types[u.dtype])
208
- elif u.op is Ops.CONST: r[u] = ssa("const", u, dtype=self.types[u.dtype])
182
+ if u.op is Ops.SPECIAL: r[u] = "%" + u.arg[0]
183
+ elif u.op is Ops.DEFINE_VAR: bufs.append((u.arg[0], u.dtype))
209
184
  elif u.op is Ops.LOAD:
210
185
  assert u.src[0].dtype == dtypes.int64, "load isn't int64"
211
186
  r[u] = [ssa('val', dtype=self.types[u.dtype.scalar()]) for _ in range(u.dtype.count)] if u.dtype.count > 1 else ssa('val', u)
212
- elif u.op is Ops.DEFINE_LOCAL: r[u] = ssa('local', u, self.types[dtypes.ulong])
213
- elif u.op is Ops.DEFINE_GLOBAL:
214
- bufs.append((f"data{u.arg}", u.dtype))
215
- r[u] = ssa('dat', u, self.types[dtypes.ulong if u.dtype.__class__ == PtrDType else u.dtype])
187
+ elif u.op is Ops.DEFINE_GLOBAL: bufs.append((f"data{u.arg}", u.dtype))
216
188
  elif u.op is Ops.WMMA:
217
- self.wmma_r = [ssa("wmma", dtype="b32") for vv in u.src[:2] for i in range(0, len(r[vv]), 2)]
189
+ # registers for packing/unpacking input and acc
190
+ self.wmma_r = [[ssa("wmma_in", dtype="b32") for _ in range(0, len(r[u.src[0]]), 4 // u.arg[2].itemsize)],
191
+ [ssa("wmma_in", dtype="b32") for _ in range(0, len(r[u.src[1]]), 4 // u.arg[2].itemsize)],
192
+ [ssa("wmma_acc", dtype="b32") for _ in range(0, len(r[u.src[2]]), 4 // u.arg[3].itemsize)]]
218
193
  r[u] = [ssa("wmma", dtype=self.types[u.dtype.scalar()]) for _ in range(u.dtype.count)]
219
- if (l:=cast(Union[str, List[str]], string_rewrite.rewrite(u, ctx=self))) is None:
220
- raise RuntimeError(f"failed to render {u.op} with {u.dtype} srcs {[x.dtype for x in u.u.src]}")
194
+ prefix, dtype = {Ops.CAST: ("cast", None), Ops.BITCAST: ("cast", None), Ops.ENDRANGE: ("pred", "pred"), Ops.RANGE: ("ridx", None),
195
+ Ops.DEFINE_ACC: ("acc", None), Ops.DEFINE_VAR: ("dat", None), Ops.CONST: ("const", None), Ops.DEFINE_LOCAL:("local",self.types[dtypes.ulong]),
196
+ Ops.DEFINE_GLOBAL: ("dat", self.types[dtypes.ulong]), **{op: ("alu", None) for op in GroupOp.ALU}}.get(u.op, (None, None))
197
+ if prefix: r[u] = ssa(prefix, u, dtype)
198
+
199
+ if (l:=cast(str|list[str], string_rewrite.rewrite(u, ctx=self))) is None:
200
+ raise RuntimeError(f"failed to render {u.op} with {u.dtype} srcs {[x.dtype for x in u.src]}")
221
201
  kernel.extend([l] if isinstance(l, str) else l)
222
202
 
223
203
  if u.op is Ops.ASSIGN: r[u] = r[u.src[0]]
@@ -0,0 +1,87 @@
1
+ from tinygrad.dtype import DType, PtrDType, dtypes
2
+ from tinygrad.ops import UOp, Ops, PatternMatcher, UPat
3
+ from tinygrad.renderer.cstyle import CStyleLanguage, base_rewrite, extra_pm
4
+ from tinygrad.helpers import strip_parens
5
+ import math
6
+
7
+ def sign_extend(val:UOp, sext_am:int):
8
+ return (UOp.where((val >> (sext_am - 1)) > 0, UOp.const(dtypes.uint32, 0xffffffff) << sext_am, UOp.const(dtypes.uint32, 0)) \
9
+ | val.bitcast(dtypes.uint32)).bitcast(dtypes.int)
10
+
11
+ # store for char: buf[idx/4] <- (var << (idx%4)*8))
12
+ def packed_store(bidx:UOp, var:UOp):
13
+ shift_am = (bidx.src[1].cast(dtypes.uint32)%UOp.const(dtypes.uint32, 4//var.dtype.itemsize))*UOp.const(dtypes.uint32, 8*var.dtype.itemsize)
14
+ new_v = (var & (0xFF if var.dtype.itemsize == 1 else 0xFFFF)).cast(dtypes.uint32) << shift_am
15
+ mask = (((0xFF if var.dtype.itemsize == 1 else 0xFFFF) << shift_am) ^ 0xFFFFFFFF).cast(dtypes.uint32)
16
+ buf = UOp.load(UOp(Ops.INDEX, bidx.dtype, (bidx.src[0], bidx.src[1]//(4//var.dtype.itemsize))), dtype=dtypes.uint32)
17
+ return UOp.store(UOp(Ops.INDEX, bidx.dtype, (bidx.src[0], bidx.src[1]//(4//var.dtype.itemsize))), ((buf & mask) | new_v.cast(dtypes.uint32)))
18
+
19
+ # load for char: sign_extend(buf[idx/4] >> ((idx%4)*8))
20
+ def packed_load(root:UOp, bidx:UOp, dtype:DType, var:UOp|None=None):
21
+ div_idx = bidx.src[1]//(4//dtype.itemsize)
22
+ shift_am = (bidx.src[1].cast(dtypes.uint32)%UOp.const(dtypes.uint32, 4//dtype.itemsize))*UOp.const(dtypes.uint32, 8*dtype.itemsize)
23
+ if var is not None: load = UOp.load(UOp(Ops.INDEX, bidx.dtype, (bidx.src[0], div_idx)), var, root.src[2], dtype=dtypes.uint32, arg=root.arg)
24
+ else: load = UOp.load(UOp(Ops.INDEX, bidx.dtype, (bidx.src[0], div_idx)), *root.src[1:], dtype=dtypes.uint32, arg=root.arg)
25
+ val = (load.cast(dtypes.uint32) >> shift_am) & (0xFF if dtype.itemsize == 1 else 0xFFFF)
26
+ return sign_extend(val, 8*dtype.itemsize).cast(dtype) if dtype in [dtypes.char, dtypes.short] else val.cast(dtype)
27
+
28
+ wgsl_matcher = PatternMatcher([
29
+ (UPat((Ops.CMPLT, Ops.XOR), src=(UPat(name="a", dtype=dtypes.bool), UPat.var("b")), name="c"),
30
+ lambda a,b,c: a.cast(dtypes.int).alu(c.op, b.cast(dtypes.int)).cast(dtypes.bool)),
31
+ (UPat(Ops.LOAD, name="l", src=(UPat.var('b'),)), lambda l,b: packed_load(l,b,l.dtype) if l.dtype.itemsize < 4 else None),
32
+ (UPat(Ops.LOAD, name="l", src=(UPat.var('b'), UPat.var('c'), UPat())),
33
+ lambda l,b,c: packed_load(l,b,l.dtype,c.cast(dtypes.uint32)) if l.dtype.itemsize < 4 else None),
34
+ (UPat.store(UPat.var("bidx"), UPat.var("var"), allow_any_len=True), lambda bidx,var: packed_store(bidx,var) if var.dtype.itemsize < 4 else None),
35
+ # TODO: why is this needed, and only for this MUL order
36
+ (UPat(Ops.MUL, src=(UPat.var("a"), UPat.var("g").where(UPat.cvar("c1"), UPat.cvar("c2")))),
37
+ lambda a,g,c1,c2: g.where(c1, a) if math.isnan(c1.arg) and c2.arg == 1.0 else None),
38
+ ]) + extra_pm
39
+
40
+ class WGSLRenderer(CStyleLanguage):
41
+ device = "WEBGPU"
42
+ global_max = (65535, 65535, 65535)
43
+ local_max = (256, 256, 64)
44
+ code_for_workitem = {"g": lambda x: f"i32(gindex.{'xyz'[int(x)]})", "l": lambda x: f"i32(lindex.{'xyz'[int(x)]})"}
45
+ extra_matcher = wgsl_matcher
46
+ supports_float4 = False
47
+ barrier = "workgroupBarrier();"
48
+ code_for_op = {**CStyleLanguage.code_for_op, Ops.WHERE: lambda a,b,c,dtype: f"select({c},{b},{a})"}
49
+ nan = "nan()"
50
+ type_map = { dtypes.float: "f32", dtypes.uchar: "u32", dtypes.ushort: "u32", dtypes.short: "i32",
51
+ dtypes.char: "i32", dtypes.int32: "i32", dtypes.uint32: "u32", dtypes.bool: "bool" }
52
+
53
+ string_rewrite = PatternMatcher([
54
+ (UPat(Ops.CONST, dtype=dtypes.bool, name="x"), lambda ctx,x: "true" if x.arg else "false"),
55
+ (UPat(Ops.CONST, dtype=(dtypes.uchar, dtypes.ushort, dtypes.uint32), name="x"), lambda ctx,x: f"bitcast<u32>({x.arg})" \
56
+ if x.arg < 0 else f"{x.arg&0xFFFFFFFF}u"),
57
+ (UPat(Ops.DEFINE_LOCAL, name="x"), lambda ctx,x: f"var<workgroup> {ctx[x]}: array<{ctx.buf_map(x.dtype.base)}, {x.dtype.size}>;"),
58
+ (UPat(Ops.BITCAST, name="x"), lambda ctx,x: f"bitcast<{ctx.type_map[x.dtype]}>({ctx[x.src[0]]}{['&0xFF','&0xFFFF','',''][x.dtype.itemsize-1]})"),
59
+ (UPat.load(UPat.var("b"),UPat.var("v"),UPat.var("g")),lambda ctx,b,v,g:f"select({ctx[v]}, {ctx.render_load(ctx[b],b.src[0].dtype)}, {ctx[g]})"),
60
+ (UPat.load(UPat.var("b"), allow_any_len=True), lambda ctx, b: ctx.render_load(ctx[b], b.src[0].dtype)),
61
+ (UPat.index(UPat.var("b"), UPat.var("idx")), lambda ctx,b,idx: f"{ctx[b]}[{strip_parens(ctx[idx]) if idx.arg == Ops.ADD else ctx[idx]}]"),
62
+ (UPat.store(UPat.var('b'), UPat.var("v"), allow_any_len=True),lambda ctx,b,v:\
63
+ # (load & mask) | var -> mask = v.src[0].src[1], var = v.src[1]
64
+ f"atomicAnd(&{ctx[b]},{ctx[v.src[0].src[1]]});\n atomicAdd(&{ctx[b]},{ctx[v.src[1]]});" if b.src[0].dtype.itemsize < 4 \
65
+ else f"{ctx[b]} = {ctx[v]};"),
66
+ # fix nan check: 'a != a -> is_nan()'
67
+ (UPat.var("a") != UPat.var("a"), lambda ctx,a: f"is_nan({ctx[a]})"),
68
+ ]) + base_rewrite
69
+
70
+ def render_cast(self, dt:DType, val: str) -> str: return f"{self.type_map[dt]}({val})"
71
+ def render_dtype(self, dt:DType, mutable=True) -> str: return "var"
72
+ def render_load(self, x:str, dt:DType) -> str: return f"atomicLoad(&{x})" if dt.itemsize < 4 else x
73
+ def buf_map(self, dt:DType) -> str: return "atomic<u32>" if dt.itemsize < 4 else self.type_map[dt.base]
74
+ def render_kernel(self, function_name:str, kernel:list[str], bufs:list[tuple[str,tuple[DType,bool]]], uops:list[UOp], prefix=None) -> str:
75
+ local_size = [num for _, num in sorted([u.arg for u in uops if u.op is Ops.SPECIAL and u.arg[0][0] == 'l'], key=lambda x: x[0])]
76
+ if not local_size: local_size = [1]
77
+ bind_it = iter(range(len(bufs)))
78
+ external_local_bufs = [line.lstrip() for line in kernel if "var<workgroup>" in line]
79
+ kernel[:] = [line for line in kernel if "var<workgroup>" not in line]
80
+ prg = "fn nan() -> f32 { let bits = 0xffffffffu; return bitcast<f32>(bits); }\n"
81
+ # trick to obfuscate compiler so that nan is detected properly
82
+ prg += "fn is_nan(v:f32) -> bool { return min(v, 1.0) == 1.0 && max(v, -1.0) == -1.0; }\n@group(0) @binding(0)\nvar<uniform> INFINITY : f32;\n"
83
+ prg += "\n".join((external_local_bufs or [])+[f"@group(0) @binding({next(bind_it)+1})" +
84
+ f"{'var<storage,read_write>' if isinstance(dtype, PtrDType) else 'var<uniform>'}" +
85
+ f"{name}:{f'array<{self.buf_map(dtype.base)}>' if isinstance(dtype,PtrDType) else self.buf_map(dtype)};" for name,(dtype,_) in bufs])
86
+ prg += f"\n@compute @workgroup_size({','.join([str(x) for x in local_size])}) fn {function_name}(@builtin(workgroup_id) gindex: vec3<u32>,"
87
+ return prg + "@builtin(local_invocation_id) lindex: vec3<u32>) {\n" + "\n".join(kernel) + "\n}"