tinyagent-py 0.0.13__py3-none-any.whl → 0.0.15__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -0,0 +1,564 @@
1
+ import logging
2
+ import time
3
+ from typing import Dict, Any, Optional, List, Union
4
+ from dataclasses import dataclass, field
5
+ from collections import defaultdict
6
+ import json
7
+
8
+ @dataclass
9
+ class UsageStats:
10
+ """Represents usage statistics for LLM calls."""
11
+ prompt_tokens: int = 0
12
+ completion_tokens: int = 0
13
+ total_tokens: int = 0
14
+ cost: float = 0.0
15
+ call_count: int = 0
16
+ # Additional fields that LiteLLM might provide
17
+ thinking_tokens: int = 0
18
+ reasoning_tokens: int = 0
19
+ cache_creation_input_tokens: int = 0
20
+ cache_read_input_tokens: int = 0
21
+
22
+ def __add__(self, other: 'UsageStats') -> 'UsageStats':
23
+ """Add two UsageStats together."""
24
+ return UsageStats(
25
+ prompt_tokens=self.prompt_tokens + other.prompt_tokens,
26
+ completion_tokens=self.completion_tokens + other.completion_tokens,
27
+ total_tokens=self.total_tokens + other.total_tokens,
28
+ cost=self.cost + other.cost,
29
+ call_count=self.call_count + other.call_count,
30
+ thinking_tokens=self.thinking_tokens + other.thinking_tokens,
31
+ reasoning_tokens=self.reasoning_tokens + other.reasoning_tokens,
32
+ cache_creation_input_tokens=self.cache_creation_input_tokens + other.cache_creation_input_tokens,
33
+ cache_read_input_tokens=self.cache_read_input_tokens + other.cache_read_input_tokens,
34
+ )
35
+
36
+ def to_dict(self) -> Dict[str, Any]:
37
+ """Convert to dictionary."""
38
+ return {
39
+ "prompt_tokens": self.prompt_tokens,
40
+ "completion_tokens": self.completion_tokens,
41
+ "total_tokens": self.total_tokens,
42
+ "cost": self.cost,
43
+ "call_count": self.call_count,
44
+ "thinking_tokens": self.thinking_tokens,
45
+ "reasoning_tokens": self.reasoning_tokens,
46
+ "cache_creation_input_tokens": self.cache_creation_input_tokens,
47
+ "cache_read_input_tokens": self.cache_read_input_tokens,
48
+ }
49
+
50
+ @classmethod
51
+ def from_dict(cls, data: Dict[str, Any]) -> 'UsageStats':
52
+ """Create from dictionary."""
53
+ return cls(**{k: v for k, v in data.items() if k in cls.__dataclass_fields__})
54
+
55
+ class TokenTracker:
56
+ """
57
+ A comprehensive token and cost tracker that integrates with TinyAgent's hook system.
58
+
59
+ Features:
60
+ - Accurate tracking using LiteLLM's usage data
61
+ - Hierarchical tracking for agents with sub-agents
62
+ - Per-model and per-provider breakdown
63
+ - Real-time cost calculation
64
+ - Hook-based integration with TinyAgent
65
+ """
66
+
67
+ def __init__(
68
+ self,
69
+ name: str = "default",
70
+ parent_tracker: Optional['TokenTracker'] = None,
71
+ logger: Optional[logging.Logger] = None,
72
+ enable_detailed_logging: bool = True,
73
+ track_per_model: bool = True,
74
+ track_per_provider: bool = True
75
+ ):
76
+ """
77
+ Initialize the TokenTracker.
78
+
79
+ Args:
80
+ name: Name identifier for this tracker
81
+ parent_tracker: Parent tracker for hierarchical tracking
82
+ logger: Optional logger instance
83
+ enable_detailed_logging: Whether to log detailed usage information
84
+ track_per_model: Whether to track usage per model
85
+ track_per_provider: Whether to track usage per provider
86
+ """
87
+ self.name = name
88
+ self.parent_tracker = parent_tracker
89
+ self.logger = logger or logging.getLogger(__name__)
90
+ self.enable_detailed_logging = enable_detailed_logging
91
+ self.track_per_model = track_per_model
92
+ self.track_per_provider = track_per_provider
93
+
94
+ # Overall usage statistics
95
+ self.total_usage = UsageStats()
96
+
97
+ # Per-model tracking
98
+ self.model_usage: Dict[str, UsageStats] = defaultdict(UsageStats)
99
+
100
+ # Per-provider tracking (extracted from model names)
101
+ self.provider_usage: Dict[str, UsageStats] = defaultdict(UsageStats)
102
+
103
+ # Child trackers for hierarchical tracking
104
+ self.child_trackers: List['TokenTracker'] = []
105
+
106
+ # Session tracking
107
+ self.session_start_time = time.time()
108
+ self.last_call_time: Optional[float] = None
109
+
110
+ # Register with parent if provided
111
+ if self.parent_tracker:
112
+ self.parent_tracker.add_child_tracker(self)
113
+
114
+ def add_child_tracker(self, child_tracker: 'TokenTracker') -> None:
115
+ """Add a child tracker for hierarchical tracking."""
116
+ if child_tracker not in self.child_trackers:
117
+ self.child_trackers.append(child_tracker)
118
+ self.logger.debug(f"Added child tracker '{child_tracker.name}' to '{self.name}'")
119
+
120
+ def remove_child_tracker(self, child_tracker: 'TokenTracker') -> None:
121
+ """Remove a child tracker."""
122
+ if child_tracker in self.child_trackers:
123
+ self.child_trackers.remove(child_tracker)
124
+ self.logger.debug(f"Removed child tracker '{child_tracker.name}' from '{self.name}'")
125
+
126
+ def _extract_provider_from_model(self, model: str) -> str:
127
+ """Extract provider name from model string."""
128
+ # Handle common provider prefixes
129
+ if "/" in model:
130
+ return model.split("/")[0]
131
+ elif model.startswith(("gpt-", "o1", "o3", "o4")):
132
+ return "openai"
133
+ elif model.startswith(("claude-", "anthropic/")):
134
+ return "anthropic"
135
+ elif model.startswith(("gemini-", "google/")):
136
+ return "google"
137
+ elif model.startswith("cohere/"):
138
+ return "cohere"
139
+ else:
140
+ return "unknown"
141
+
142
+ def _extract_usage_from_response(self, response: Any) -> Dict[str, Any]:
143
+ """Extract usage data from LiteLLM response."""
144
+ usage_data = {}
145
+
146
+ if not response or not hasattr(response, 'usage'):
147
+ return usage_data
148
+
149
+ usage = response.usage
150
+
151
+ # Handle both dict and object usage formats
152
+ if isinstance(usage, dict):
153
+ usage_data.update(usage)
154
+ else:
155
+ # Convert object to dict
156
+ for attr in dir(usage):
157
+ if not attr.startswith('_'):
158
+ value = getattr(usage, attr)
159
+ if isinstance(value, (int, float)):
160
+ usage_data[attr] = value
161
+
162
+ # Extract cost from LiteLLM response (multiple methods)
163
+ cost = 0.0
164
+
165
+ # Method 1: Check response._hidden_params["response_cost"]
166
+ try:
167
+ if hasattr(response, '_hidden_params') and isinstance(response._hidden_params, dict):
168
+ cost = response._hidden_params.get("response_cost", 0.0)
169
+ if cost > 0:
170
+ self.logger.debug(f"Found cost in _hidden_params: ${cost:.6f}")
171
+ except Exception as e:
172
+ self.logger.debug(f"Could not extract cost from _hidden_params: {e}")
173
+
174
+ # Method 2: Try litellm.completion_cost() as fallback
175
+ if cost == 0.0:
176
+ try:
177
+ import litellm
178
+ if hasattr(litellm, 'completion_cost'):
179
+ cost = litellm.completion_cost(completion_response=response)
180
+ if cost > 0:
181
+ self.logger.debug(f"Calculated cost using litellm.completion_cost: ${cost:.6f}")
182
+ except Exception as e:
183
+ self.logger.debug(f"Could not calculate cost using litellm.completion_cost: {e}")
184
+
185
+ # Method 3: Check if cost is already in usage data
186
+ if cost == 0.0 and 'cost' in usage_data:
187
+ cost = usage_data.get('cost', 0.0)
188
+ if cost > 0:
189
+ self.logger.debug(f"Found cost in usage data: ${cost:.6f}")
190
+
191
+ # Add the cost to usage_data
192
+ usage_data['cost'] = cost
193
+
194
+ return usage_data
195
+
196
+ def track_llm_call(
197
+ self,
198
+ model: str,
199
+ response: Any,
200
+ **kwargs
201
+ ) -> None:
202
+ """
203
+ Track a single LLM call using LiteLLM response data.
204
+
205
+ Args:
206
+ model: The model name used
207
+ response: LiteLLM response object
208
+ **kwargs: Additional context data
209
+ """
210
+ self.last_call_time = time.time()
211
+
212
+ # Extract usage data from LiteLLM response
213
+ usage_data = self._extract_usage_from_response(response)
214
+
215
+ if not usage_data:
216
+ self.logger.warning(f"No usage data found in response for model {model}")
217
+ return
218
+
219
+ # Create usage stats from response data
220
+ call_usage = UsageStats(
221
+ prompt_tokens=usage_data.get('prompt_tokens', 0),
222
+ completion_tokens=usage_data.get('completion_tokens', 0),
223
+ total_tokens=usage_data.get('total_tokens', 0),
224
+ cost=usage_data.get('cost', 0.0),
225
+ call_count=1,
226
+ thinking_tokens=usage_data.get('thinking_tokens', 0),
227
+ reasoning_tokens=usage_data.get('reasoning_tokens', 0),
228
+ cache_creation_input_tokens=usage_data.get('cache_creation_input_tokens', 0),
229
+ cache_read_input_tokens=usage_data.get('cache_read_input_tokens', 0),
230
+ )
231
+
232
+ # Update total usage
233
+ self.total_usage += call_usage
234
+
235
+ # Track per-model usage
236
+ if self.track_per_model:
237
+ self.model_usage[model] += call_usage
238
+
239
+ # Track per-provider usage
240
+ if self.track_per_provider:
241
+ provider = self._extract_provider_from_model(model)
242
+ self.provider_usage[provider] += call_usage
243
+
244
+ # Log detailed information if enabled
245
+ if self.enable_detailed_logging:
246
+ self.logger.info(
247
+ f"TokenTracker '{self.name}': {model} call - "
248
+ f"Tokens: {call_usage.prompt_tokens}+{call_usage.completion_tokens}={call_usage.total_tokens}, "
249
+ f"Cost: ${call_usage.cost:.6f}"
250
+ )
251
+
252
+ # Log additional token types if present
253
+ if call_usage.thinking_tokens > 0:
254
+ self.logger.info(f" Thinking tokens: {call_usage.thinking_tokens}")
255
+ if call_usage.reasoning_tokens > 0:
256
+ self.logger.info(f" Reasoning tokens: {call_usage.reasoning_tokens}")
257
+ if call_usage.cache_creation_input_tokens > 0:
258
+ self.logger.info(f" Cache creation tokens: {call_usage.cache_creation_input_tokens}")
259
+ if call_usage.cache_read_input_tokens > 0:
260
+ self.logger.info(f" Cache read tokens: {call_usage.cache_read_input_tokens}")
261
+
262
+ def get_total_usage(self, include_children: bool = False) -> UsageStats:
263
+ """
264
+ Get total usage statistics.
265
+
266
+ Args:
267
+ include_children: Whether to include usage from child trackers
268
+
269
+ Returns:
270
+ UsageStats object with total usage
271
+ """
272
+ total = UsageStats(
273
+ prompt_tokens=self.total_usage.prompt_tokens,
274
+ completion_tokens=self.total_usage.completion_tokens,
275
+ total_tokens=self.total_usage.total_tokens,
276
+ cost=self.total_usage.cost,
277
+ call_count=self.total_usage.call_count,
278
+ thinking_tokens=self.total_usage.thinking_tokens,
279
+ reasoning_tokens=self.total_usage.reasoning_tokens,
280
+ cache_creation_input_tokens=self.total_usage.cache_creation_input_tokens,
281
+ cache_read_input_tokens=self.total_usage.cache_read_input_tokens,
282
+ )
283
+
284
+ if include_children:
285
+ for child in self.child_trackers:
286
+ child_usage = child.get_total_usage(include_children=True)
287
+ total += child_usage
288
+
289
+ return total
290
+
291
+ def get_model_breakdown(self, include_children: bool = False) -> Dict[str, UsageStats]:
292
+ """Get usage breakdown by model."""
293
+ breakdown = {model: UsageStats(
294
+ prompt_tokens=stats.prompt_tokens,
295
+ completion_tokens=stats.completion_tokens,
296
+ total_tokens=stats.total_tokens,
297
+ cost=stats.cost,
298
+ call_count=stats.call_count,
299
+ thinking_tokens=stats.thinking_tokens,
300
+ reasoning_tokens=stats.reasoning_tokens,
301
+ cache_creation_input_tokens=stats.cache_creation_input_tokens,
302
+ cache_read_input_tokens=stats.cache_read_input_tokens,
303
+ ) for model, stats in self.model_usage.items()}
304
+
305
+ if include_children:
306
+ for child in self.child_trackers:
307
+ child_breakdown = child.get_model_breakdown(include_children=True)
308
+ for model, stats in child_breakdown.items():
309
+ if model in breakdown:
310
+ breakdown[model] += stats
311
+ else:
312
+ breakdown[model] = stats
313
+
314
+ return breakdown
315
+
316
+ def get_provider_breakdown(self, include_children: bool = False) -> Dict[str, UsageStats]:
317
+ """Get usage breakdown by provider."""
318
+ breakdown = {provider: UsageStats(
319
+ prompt_tokens=stats.prompt_tokens,
320
+ completion_tokens=stats.completion_tokens,
321
+ total_tokens=stats.total_tokens,
322
+ cost=stats.cost,
323
+ call_count=stats.call_count,
324
+ thinking_tokens=stats.thinking_tokens,
325
+ reasoning_tokens=stats.reasoning_tokens,
326
+ cache_creation_input_tokens=stats.cache_creation_input_tokens,
327
+ cache_read_input_tokens=stats.cache_read_input_tokens,
328
+ ) for provider, stats in self.provider_usage.items()}
329
+
330
+ if include_children:
331
+ for child in self.child_trackers:
332
+ child_breakdown = child.get_provider_breakdown(include_children=True)
333
+ for provider, stats in child_breakdown.items():
334
+ if provider in breakdown:
335
+ breakdown[provider] += stats
336
+ else:
337
+ breakdown[provider] = stats
338
+
339
+ return breakdown
340
+
341
+ def get_session_duration(self) -> float:
342
+ """Get session duration in seconds."""
343
+ return time.time() - self.session_start_time
344
+
345
+ def get_detailed_report(self, include_children: bool = True) -> Dict[str, Any]:
346
+ """
347
+ Generate a detailed usage report.
348
+
349
+ Args:
350
+ include_children: Whether to include child tracker data
351
+
352
+ Returns:
353
+ Dictionary containing comprehensive usage information
354
+ """
355
+ total_usage = self.get_total_usage(include_children=include_children)
356
+ model_breakdown = self.get_model_breakdown(include_children=include_children)
357
+ provider_breakdown = self.get_provider_breakdown(include_children=include_children)
358
+
359
+ report = {
360
+ "tracker_name": self.name,
361
+ "session_duration_seconds": self.get_session_duration(),
362
+ "total_usage": total_usage.to_dict(),
363
+ "model_breakdown": {model: stats.to_dict() for model, stats in model_breakdown.items()},
364
+ "provider_breakdown": {provider: stats.to_dict() for provider, stats in provider_breakdown.items()},
365
+ "child_trackers": []
366
+ }
367
+
368
+ if include_children:
369
+ for child in self.child_trackers:
370
+ child_report = child.get_detailed_report(include_children=True)
371
+ report["child_trackers"].append(child_report)
372
+
373
+ return report
374
+
375
+ def print_summary(self, include_children: bool = True, detailed: bool = False) -> None:
376
+ """Print a summary of usage statistics."""
377
+ total_usage = self.get_total_usage(include_children=include_children)
378
+
379
+ print(f"\n📊 Token Tracker Summary: '{self.name}'")
380
+ print("=" * 50)
381
+ print(f"Total Tokens: {total_usage.total_tokens:,}")
382
+ print(f" • Prompt: {total_usage.prompt_tokens:,}")
383
+ print(f" • Completion: {total_usage.completion_tokens:,}")
384
+ if total_usage.thinking_tokens > 0:
385
+ print(f" • Thinking: {total_usage.thinking_tokens:,}")
386
+ if total_usage.reasoning_tokens > 0:
387
+ print(f" • Reasoning: {total_usage.reasoning_tokens:,}")
388
+ if total_usage.cache_creation_input_tokens > 0:
389
+ print(f" • Cache Creation: {total_usage.cache_creation_input_tokens:,}")
390
+ if total_usage.cache_read_input_tokens > 0:
391
+ print(f" • Cache Read: {total_usage.cache_read_input_tokens:,}")
392
+
393
+ print(f"Total Cost: ${total_usage.cost:.6f}")
394
+ print(f"API Calls: {total_usage.call_count}")
395
+ print(f"Session Duration: {self.get_session_duration():.1f}s")
396
+
397
+ if detailed:
398
+ model_breakdown = self.get_model_breakdown(include_children=include_children)
399
+ if model_breakdown:
400
+ print(f"\n📈 Model Breakdown:")
401
+ for model, stats in sorted(model_breakdown.items(), key=lambda x: x[1].cost, reverse=True):
402
+ print(f" {model}: {stats.total_tokens:,} tokens, ${stats.cost:.6f}, {stats.call_count} calls")
403
+
404
+ provider_breakdown = self.get_provider_breakdown(include_children=include_children)
405
+ if provider_breakdown:
406
+ print(f"\n🏢 Provider Breakdown:")
407
+ for provider, stats in sorted(provider_breakdown.items(), key=lambda x: x[1].cost, reverse=True):
408
+ print(f" {provider}: {stats.total_tokens:,} tokens, ${stats.cost:.6f}, {stats.call_count} calls")
409
+
410
+ if include_children and self.child_trackers:
411
+ print(f"\n👥 Child Trackers: {len(self.child_trackers)}")
412
+ for child in self.child_trackers:
413
+ child_usage = child.get_total_usage(include_children=True)
414
+ print(f" • {child.name}: {child_usage.total_tokens:,} tokens, ${child_usage.cost:.6f}")
415
+
416
+ def reset_stats(self, reset_children: bool = False) -> None:
417
+ """Reset all statistics."""
418
+ self.total_usage = UsageStats()
419
+ self.model_usage.clear()
420
+ self.provider_usage.clear()
421
+ self.session_start_time = time.time()
422
+ self.last_call_time = None
423
+
424
+ if reset_children:
425
+ for child in self.child_trackers:
426
+ child.reset_stats(reset_children=True)
427
+
428
+ self.logger.info(f"Reset statistics for tracker '{self.name}'")
429
+
430
+ def export_to_json(self, include_children: bool = True) -> str:
431
+ """Export tracker data to JSON string."""
432
+ report = self.get_detailed_report(include_children=include_children)
433
+ return json.dumps(report, indent=2)
434
+
435
+ def save_to_file(self, filepath: str, include_children: bool = True) -> None:
436
+ """Save tracker data to a JSON file."""
437
+ report = self.get_detailed_report(include_children=include_children)
438
+ with open(filepath, 'w') as f:
439
+ json.dump(report, f, indent=2)
440
+ self.logger.info(f"Saved tracker report to {filepath}")
441
+
442
+ # Hook methods for TinyAgent integration
443
+ async def __call__(self, event_name: str, agent: Any, **kwargs) -> None:
444
+ """
445
+ Main hook method that integrates with TinyAgent's callback system.
446
+
447
+ Args:
448
+ event_name: The event name from TinyAgent
449
+ agent: The TinyAgent instance
450
+ **kwargs: Event-specific data
451
+ """
452
+ if event_name == "llm_end":
453
+ response = kwargs.get("response")
454
+ if response:
455
+ # Extract model from agent or response
456
+ model = getattr(agent, 'model', 'unknown')
457
+
458
+ # Remove 'response' from kwargs to avoid duplicate argument error
459
+ filtered_kwargs = {k: v for k, v in kwargs.items() if k != 'response'}
460
+ self.track_llm_call(model, response, **filtered_kwargs)
461
+
462
+ elif event_name == "agent_start":
463
+ self.logger.debug(f"Agent '{self.name}' started new conversation")
464
+
465
+ elif event_name == "agent_end":
466
+ if self.enable_detailed_logging:
467
+ total_usage = self.get_total_usage()
468
+ self.logger.info(
469
+ f"Agent '{self.name}' completed - "
470
+ f"Total: {total_usage.total_tokens} tokens, ${total_usage.cost:.6f}"
471
+ )
472
+
473
+ def create_token_tracker(
474
+ name: str = "main",
475
+ parent_tracker: Optional[TokenTracker] = None,
476
+ logger: Optional[logging.Logger] = None,
477
+ **kwargs
478
+ ) -> TokenTracker:
479
+ """
480
+ Convenience function to create a TokenTracker instance.
481
+
482
+ Args:
483
+ name: Name for the tracker
484
+ parent_tracker: Parent tracker for hierarchical tracking
485
+ logger: Logger instance
486
+ **kwargs: Additional arguments for TokenTracker
487
+
488
+ Returns:
489
+ TokenTracker instance
490
+ """
491
+ return TokenTracker(
492
+ name=name,
493
+ parent_tracker=parent_tracker,
494
+ logger=logger,
495
+ **kwargs
496
+ )
497
+
498
+ # Example usage
499
+ async def run_example():
500
+ """Example usage of TokenTracker with TinyAgent."""
501
+ import sys
502
+ from tinyagent import TinyAgent
503
+ from tinyagent.hooks.logging_manager import LoggingManager
504
+ import os
505
+
506
+ # Set up logging
507
+ log_manager = LoggingManager(default_level=logging.INFO)
508
+ console_handler = logging.StreamHandler(sys.stdout)
509
+ log_manager.configure_handler(
510
+ console_handler,
511
+ format_string='%(asctime)s - %(name)s - %(levelname)s - %(message)s',
512
+ level=logging.INFO
513
+ )
514
+
515
+ # Create main token tracker
516
+ main_tracker = create_token_tracker(
517
+ name="main_agent",
518
+ logger=log_manager.get_logger('token_tracker.main'),
519
+ enable_detailed_logging=True
520
+ )
521
+
522
+ # Create child tracker for sub-agent
523
+ sub_tracker = create_token_tracker(
524
+ name="sub_agent",
525
+ parent_tracker=main_tracker,
526
+ logger=log_manager.get_logger('token_tracker.sub'),
527
+ enable_detailed_logging=True
528
+ )
529
+
530
+ # Create main agent with token tracking
531
+ main_agent = TinyAgent(
532
+ model="gpt-4o-mini",
533
+ api_key=os.environ.get("OPENAI_API_KEY"),
534
+ logger=log_manager.get_logger('main_agent')
535
+ )
536
+ main_agent.add_callback(main_tracker)
537
+
538
+ # Create sub-agent with different model
539
+ sub_agent = TinyAgent(
540
+ model="claude-3-haiku-20240307",
541
+ api_key=os.environ.get("ANTHROPIC_API_KEY"),
542
+ logger=log_manager.get_logger('sub_agent')
543
+ )
544
+ sub_agent.add_callback(sub_tracker)
545
+
546
+ # Run some tasks
547
+ await main_agent.run("What is the capital of France?")
548
+ await sub_agent.run("Explain quantum computing in simple terms.")
549
+ await main_agent.run("Now tell me about the history of Paris.")
550
+
551
+ # Print comprehensive summary
552
+ main_tracker.print_summary(include_children=True, detailed=True)
553
+
554
+ # Export report
555
+ report_json = main_tracker.export_to_json(include_children=True)
556
+ print(f"\n📄 JSON Report:\n{report_json}")
557
+
558
+ # Clean up
559
+ await main_agent.close()
560
+ await sub_agent.close()
561
+
562
+ if __name__ == "__main__":
563
+ import asyncio
564
+ asyncio.run(run_example())
@@ -0,0 +1,96 @@
1
+ user_prompt: |-
2
+ Your task is to create a detailed summary of the conversation so far, paying close attention to the users explicit requests and your previous actions.\n" +
3
+ This summary should be thorough in capturing technical details, code patterns, and architectural decisions that would be essential for continuing development work without losing context.
4
+
5
+ "Before providing your final summary, wrap your analysis in <analysis> tags to organize your thoughts and ensure youve covered all necessary points. In your analysis process:\n" +
6
+
7
+ 1. Chronologically analyze each message and section of the conversation. For each section thoroughly identify:
8
+ " - The users explicit requests and intents\n" +
9
+ " - Your approach to addressing the users requests\n" +
10
+ - Key decisions, technical concepts and code patterns
11
+ - Specific details like:
12
+ - file names
13
+ - full code snippets
14
+ - function signatures
15
+ - file edits
16
+ - Errors that you ran into and how you fixed them
17
+ - Pay special attention to specific user feedback that you received, especially if the user told you to do something differently.
18
+ 2. Double-check for technical accuracy and completeness, addressing each required element thoroughly.
19
+
20
+ Your summary should include the following sections:
21
+
22
+ "1. Primary Request and Intent: Capture all of the users explicit requests and intents in detail\n" +
23
+ 2. Key Technical Concepts: List all important technical concepts, technologies, and frameworks discussed.
24
+ 3. Files and Code Sections: Enumerate specific files and code sections examined, modified, or created. Pay special attention to the most recent messages and include full code snippets where applicable and include a summary of why this file read or edit is important.
25
+ 4. Errors and fixes: List all errors that you ran into, and how you fixed them. Pay special attention to specific user feedback that you received, especially if the user told you to do something differently.
26
+ 5. Problem Solving: Document problems solved and any ongoing troubleshooting efforts.
27
+ "6. All user messages: List ALL user messages that are not tool results. These are critical for understanding the users feedback and changing intent.\n" +
28
+ 6. Pending Tasks: Outline any pending tasks that you have explicitly been asked to work on.
29
+ 7. Current Work: Describe in detail precisely what was being worked on immediately before this summary request, paying special attention to the most recent messages from both user and assistant. Include file names and code snippets where applicable.
30
+ "8. Optional Next Step: List the next step that you will take that is related to the most recent work you were doing. IMPORTANT: ensure that this step is DIRECTLY in line with the users explicit requests, and the task you were working on immediately before this summary request. If your last task was concluded, then only list next steps if they are explicitly in line with the users request. Do not start on tangential requests without confirming with the user first.\n" +
31
+ " If there is a next step, include direct quotes from the most recent conversation showing exactly what task you were working on and where you left off. This should be verbatim to ensure theres no drift in task interpretation.\n" +
32
+
33
+ "Heres an example of how your output should be structured:\n" +
34
+
35
+ <example>
36
+ <analysis>
37
+ [Your thought process, ensuring all points are covered thoroughly and accurately]
38
+ </analysis>
39
+
40
+ <summary>
41
+ 1. Primary Request and Intent:
42
+ [Detailed description]
43
+
44
+ 2. Key Technical Concepts:
45
+ - [Concept 1]
46
+ - [Concept 2]
47
+ - [...]
48
+
49
+ 3. Files and Code Sections:
50
+ - [File Name 1]
51
+ - [Summary of why this file is important]
52
+ - [Summary of the changes made to this file, if any]
53
+ - [Important Code Snippet]
54
+ - [File Name 2]
55
+ - [Important Code Snippet]
56
+ - [...]
57
+
58
+ 4. Errors and fixes:
59
+ - [Detailed description of error 1]:
60
+ - [How you fixed the error]
61
+ - [User feedback on the error if any]
62
+ - [...]
63
+
64
+ 5. Problem Solving:
65
+ [Description of solved problems and ongoing troubleshooting]
66
+
67
+ 6. All user messages:
68
+ - [Detailed non tool use user message]
69
+ - [...]
70
+
71
+ 7. Pending Tasks:
72
+ - [Task 1]
73
+ - [Task 2]
74
+ - [...]
75
+
76
+ 8. Current Work:
77
+ [Precise description of current work]
78
+
79
+ 9. Optional Next Step:
80
+ [Optional Next step to take]
81
+
82
+ </summary>
83
+ </example>
84
+
85
+ Please provide your summary based on the conversation so far, following this structure and ensuring precision and thoroughness in your response.
86
+
87
+ There may be additional summarization instructions provided in the included context. If so, remember to follow these instructions when creating the above summary. Examples of instructions include:
88
+ <example>
89
+ ## Compact Instructions
90
+ When summarizing the conversation focus on typescript code changes and also remember the mistakes you made and how you fixed them.
91
+ </example>
92
+
93
+ <example>
94
+ # Summary instructions
95
+ When you are using compact - please focus on test output and code changes. Include file reads verbatim.
96
+ </example>