tiny-recursive-model 0.0.1__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- tiny_recursive_model/__init__.py +4 -0
- tiny_recursive_model/mlp_mixer_1d.py +46 -0
- tiny_recursive_model/trm.py +232 -0
- tiny_recursive_model-0.0.1.dist-info/METADATA +70 -0
- tiny_recursive_model-0.0.1.dist-info/RECORD +7 -0
- tiny_recursive_model-0.0.1.dist-info/WHEEL +4 -0
- tiny_recursive_model-0.0.1.dist-info/licenses/LICENSE +21 -0
@@ -0,0 +1,46 @@
|
|
1
|
+
from functools import partial
|
2
|
+
|
3
|
+
from torch import nn
|
4
|
+
from torch.nn import Module, LayerNorm
|
5
|
+
from einops.layers.torch import Rearrange, Reduce
|
6
|
+
|
7
|
+
pair = lambda x: x if isinstance(x, tuple) else (x, x)
|
8
|
+
|
9
|
+
class PreNormResidual(Module):
|
10
|
+
def __init__(self, dim, fn):
|
11
|
+
super().__init__()
|
12
|
+
self.fn = fn
|
13
|
+
self.norm = LayerNorm(dim, bias = False)
|
14
|
+
|
15
|
+
def forward(self, x):
|
16
|
+
return self.fn(self.norm(x)) + x
|
17
|
+
|
18
|
+
def FeedForward(dim, dim_hidden, dropout = 0., dense = nn.Linear):
|
19
|
+
return nn.Sequential(
|
20
|
+
dense(dim, dim_hidden),
|
21
|
+
nn.GELU(),
|
22
|
+
nn.Dropout(dropout),
|
23
|
+
dense(dim_hidden, dim),
|
24
|
+
nn.Dropout(dropout)
|
25
|
+
)
|
26
|
+
|
27
|
+
def MLPMixer1D(*, dim, depth, seq_len, expansion_factor = 4, expansion_factor_token = 0.5, dropout = 0.):
|
28
|
+
chan_first, chan_last = partial(nn.Conv1d, kernel_size = 1), nn.Linear
|
29
|
+
|
30
|
+
return nn.Sequential(
|
31
|
+
*[nn.Sequential(
|
32
|
+
PreNormResidual(dim, FeedForward(seq_len, int(expansion_factor * dim), dropout, chan_first)),
|
33
|
+
PreNormResidual(dim, FeedForward(dim, int(expansion_factor_token * dim), dropout, chan_last))
|
34
|
+
) for _ in range(depth)],
|
35
|
+
LayerNorm(dim, bias = False)
|
36
|
+
)
|
37
|
+
|
38
|
+
# quick test
|
39
|
+
|
40
|
+
if __name__ == '__main__':
|
41
|
+
|
42
|
+
import torch
|
43
|
+
tokens = torch.randn(1, 1024, 512)
|
44
|
+
mixer = MLPMixer1D(dim = 512, depth = 4, seq_len = 1024)
|
45
|
+
|
46
|
+
assert mixer(tokens).shape == tokens.shape
|
@@ -0,0 +1,232 @@
|
|
1
|
+
from __future__ import annotations
|
2
|
+
from contextlib import nullcontext
|
3
|
+
|
4
|
+
import torch
|
5
|
+
from torch import nn
|
6
|
+
import torch.nn.functional as F
|
7
|
+
from torch.nn import Module, ModuleList
|
8
|
+
from torch.optim import AdamW
|
9
|
+
from torch.utils.data import Dataset, DataLoader
|
10
|
+
|
11
|
+
from einops import rearrange, repeat
|
12
|
+
from einops.layers.torch import Reduce, Rearrange
|
13
|
+
|
14
|
+
# network related
|
15
|
+
|
16
|
+
from x_transformers import Encoder
|
17
|
+
from tiny_recursive_model.mlp_mixer_1d import MLPMixer1D
|
18
|
+
|
19
|
+
# ema - apparently greatly helped with results
|
20
|
+
|
21
|
+
from ema_pytorch import EMA
|
22
|
+
|
23
|
+
# helpers
|
24
|
+
|
25
|
+
def exists(v):
|
26
|
+
return v is not None
|
27
|
+
|
28
|
+
def default(v, d):
|
29
|
+
return v if exists(v) else d
|
30
|
+
|
31
|
+
def range_from_one(n):
|
32
|
+
return range(1, n + 1)
|
33
|
+
|
34
|
+
def is_empty(t):
|
35
|
+
return t.numel() == 0
|
36
|
+
|
37
|
+
# classes
|
38
|
+
|
39
|
+
class TinyRecursiveModel(Module):
|
40
|
+
def __init__(
|
41
|
+
self,
|
42
|
+
*,
|
43
|
+
dim,
|
44
|
+
num_tokens,
|
45
|
+
network: Module,
|
46
|
+
num_refinement_blocks = 3, # T in paper
|
47
|
+
num_latent_refinements = 6, # n in paper - 1 output refinement per N latent refinements
|
48
|
+
halt_loss_weight = 1.
|
49
|
+
):
|
50
|
+
super().__init__()
|
51
|
+
assert num_refinement_blocks > 1
|
52
|
+
|
53
|
+
self.input_embed = nn.Embedding(num_tokens, dim)
|
54
|
+
self.output_init_embed = nn.Parameter(torch.randn(dim) * 1e-2)
|
55
|
+
self.latent_init_embed = nn.Parameter(torch.randn(dim) * 1e-2)
|
56
|
+
|
57
|
+
self.network = network
|
58
|
+
|
59
|
+
self.num_latent_refinements = num_latent_refinements
|
60
|
+
self.num_refinement_blocks = num_refinement_blocks
|
61
|
+
|
62
|
+
# prediction heads
|
63
|
+
|
64
|
+
self.to_pred = nn.Linear(dim, num_tokens, bias = False)
|
65
|
+
|
66
|
+
self.to_halt_pred = nn.Sequential(
|
67
|
+
Reduce('b n d -> b d', 'mean'),
|
68
|
+
nn.Linear(dim, 1, bias = False),
|
69
|
+
nn.Sigmoid(),
|
70
|
+
Rearrange('... 1 -> ...')
|
71
|
+
)
|
72
|
+
|
73
|
+
self.halt_loss_weight = halt_loss_weight
|
74
|
+
|
75
|
+
def refine_latent_then_output_once(
|
76
|
+
self,
|
77
|
+
inputs, # (b n d)
|
78
|
+
outputs, # (b n d)
|
79
|
+
latents, # (b n d)
|
80
|
+
):
|
81
|
+
|
82
|
+
# so it seems for this work, they use only one network
|
83
|
+
# the network learns to refine the latents if input is passed in, otherwise it refines the output
|
84
|
+
|
85
|
+
for _ in range(self.num_latent_refinements):
|
86
|
+
|
87
|
+
latents = self.network(outputs + latents + inputs)
|
88
|
+
|
89
|
+
outputs = self.network(outputs + latents)
|
90
|
+
|
91
|
+
return outputs, latents
|
92
|
+
|
93
|
+
def get_initial(self):
|
94
|
+
outputs = self.output_init_embed
|
95
|
+
latents = self.latent_init_embed
|
96
|
+
|
97
|
+
return outputs, latents
|
98
|
+
|
99
|
+
def deep_refinement(
|
100
|
+
self,
|
101
|
+
inputs, # (b n d)
|
102
|
+
outputs, # (b n d)
|
103
|
+
latents, # (b n d)
|
104
|
+
):
|
105
|
+
|
106
|
+
for i in range(self.num_refinement_blocks):
|
107
|
+
|
108
|
+
# only last round of refinement receives gradients
|
109
|
+
|
110
|
+
is_last = i == (self.num_refinement_blocks - 1)
|
111
|
+
context = torch.no_grad if not is_last else nullcontext
|
112
|
+
|
113
|
+
with context():
|
114
|
+
outputs, latents = self.refine_latent_then_output_once(inputs, outputs, latents)
|
115
|
+
|
116
|
+
return outputs, latents
|
117
|
+
|
118
|
+
def forward(
|
119
|
+
self,
|
120
|
+
seq,
|
121
|
+
outputs,
|
122
|
+
latents,
|
123
|
+
labels = None
|
124
|
+
):
|
125
|
+
inputs = self.input_embed(seq)
|
126
|
+
|
127
|
+
outputs, latents = self.deep_refinement(inputs, outputs, latents)
|
128
|
+
|
129
|
+
pred = self.to_pred(outputs)
|
130
|
+
|
131
|
+
should_halt = self.to_halt_pred(outputs)
|
132
|
+
|
133
|
+
outputs, latents = outputs.detach(), latents.detach()
|
134
|
+
|
135
|
+
return_package = (outputs, latents, pred, should_halt)
|
136
|
+
|
137
|
+
if not exists(labels):
|
138
|
+
return return_package
|
139
|
+
|
140
|
+
# calculate loss if labels passed in
|
141
|
+
|
142
|
+
loss = F.cross_entropy(rearrange(pred, 'b n l -> b l n'), labels)
|
143
|
+
|
144
|
+
is_all_correct = (pred.argmax(dim = -1) == labels).all(dim = -1)
|
145
|
+
|
146
|
+
halt_loss = F.binary_cross_entropy(should_halt, is_all_correct.float())
|
147
|
+
|
148
|
+
# total loss and loss breakdown
|
149
|
+
|
150
|
+
total_loss = loss + halt_loss * self.halt_loss_weight
|
151
|
+
losses = (loss, halt_loss)
|
152
|
+
|
153
|
+
return (total_loss, losses, *return_package)
|
154
|
+
|
155
|
+
# trainer
|
156
|
+
|
157
|
+
class Trainer(Module):
|
158
|
+
def __init__(
|
159
|
+
self,
|
160
|
+
model: TinyRecursiveModel | Module,
|
161
|
+
dataset: Dataset,
|
162
|
+
optim_klass = AdamW,
|
163
|
+
learning_rate = 1e-4,
|
164
|
+
weight_decay = 1.,
|
165
|
+
batch_size = 16,
|
166
|
+
epochs = 2,
|
167
|
+
halt_prob_thres = 0.5,
|
168
|
+
max_recurrent_steps = 12,
|
169
|
+
ema_decay_rate = 0.999,
|
170
|
+
ema_update_model_with_ema_every = 10000
|
171
|
+
):
|
172
|
+
super().__init__()
|
173
|
+
|
174
|
+
self.batch_size = batch_size
|
175
|
+
self.epochs = epochs
|
176
|
+
|
177
|
+
self.dataset = dataset
|
178
|
+
self.dataloader = dataloader = DataLoader(self.dataset, batch_size = self.batch_size, shuffle = True)
|
179
|
+
|
180
|
+
self.optim = optim_klass(
|
181
|
+
model.parameters(),
|
182
|
+
lr = learning_rate,
|
183
|
+
weight_decay = weight_decay
|
184
|
+
)
|
185
|
+
|
186
|
+
self.model = model
|
187
|
+
|
188
|
+
self.ema_model = EMA(
|
189
|
+
model,
|
190
|
+
beta = ema_decay_rate,
|
191
|
+
update_model_with_ema_every = ema_update_model_with_ema_every
|
192
|
+
)
|
193
|
+
|
194
|
+
self.halt_prob_thres = halt_prob_thres
|
195
|
+
|
196
|
+
self.max_recurrent_steps = max_recurrent_steps
|
197
|
+
|
198
|
+
def forward(self):
|
199
|
+
|
200
|
+
for epoch in range_from_one(self.epochs):
|
201
|
+
|
202
|
+
for dataset_input, dataset_output in self.dataloader:
|
203
|
+
|
204
|
+
outputs, latents = self.model.get_initial()
|
205
|
+
|
206
|
+
for recurrent_step in range_from_one(self.max_recurrent_steps):
|
207
|
+
|
208
|
+
loss, (main_loss, halt_loss), outputs, latents, pred, halt = self.model(dataset_input, outputs, latents, labels = dataset_output)
|
209
|
+
|
210
|
+
print(f'[{epoch} ({recurrent_step} / {self.max_recurrent_steps})] loss: {main_loss.item():.3f} | halt loss: {halt_loss.item():.3f}')
|
211
|
+
|
212
|
+
loss.backward()
|
213
|
+
|
214
|
+
self.optim.step()
|
215
|
+
self.optim.zero_grad()
|
216
|
+
|
217
|
+
self.ema_model.update()
|
218
|
+
|
219
|
+
# handle halting
|
220
|
+
|
221
|
+
halt_mask = halt >= self.halt_prob_thres
|
222
|
+
|
223
|
+
if not halt_mask.any():
|
224
|
+
continue
|
225
|
+
|
226
|
+
outputs = outputs[~halt_mask]
|
227
|
+
latents = latents[~halt_mask]
|
228
|
+
dataset_input = dataset_input[~halt_mask]
|
229
|
+
dataset_output = dataset_output[~halt_mask]
|
230
|
+
|
231
|
+
if is_empty(outputs):
|
232
|
+
break
|
@@ -0,0 +1,70 @@
|
|
1
|
+
Metadata-Version: 2.4
|
2
|
+
Name: tiny-recursive-model
|
3
|
+
Version: 0.0.1
|
4
|
+
Summary: Tiny Recursive Model
|
5
|
+
Project-URL: Homepage, https://pypi.org/project/tiny-recursive-model/
|
6
|
+
Project-URL: Repository, https://github.com/lucidrains/tiny-recursive-model
|
7
|
+
Author-email: Phil Wang <lucidrains@gmail.com>
|
8
|
+
License: MIT License
|
9
|
+
|
10
|
+
Copyright (c) 2025 Phil Wang
|
11
|
+
|
12
|
+
Permission is hereby granted, free of charge, to any person obtaining a copy
|
13
|
+
of this software and associated documentation files (the "Software"), to deal
|
14
|
+
in the Software without restriction, including without limitation the rights
|
15
|
+
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
16
|
+
copies of the Software, and to permit persons to whom the Software is
|
17
|
+
furnished to do so, subject to the following conditions:
|
18
|
+
|
19
|
+
The above copyright notice and this permission notice shall be included in all
|
20
|
+
copies or substantial portions of the Software.
|
21
|
+
|
22
|
+
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
23
|
+
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
24
|
+
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
25
|
+
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
26
|
+
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
27
|
+
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
28
|
+
SOFTWARE.
|
29
|
+
License-File: LICENSE
|
30
|
+
Keywords: artificial intelligence,deep learning,reasoning
|
31
|
+
Classifier: Development Status :: 4 - Beta
|
32
|
+
Classifier: Intended Audience :: Developers
|
33
|
+
Classifier: License :: OSI Approved :: MIT License
|
34
|
+
Classifier: Programming Language :: Python :: 3.9
|
35
|
+
Classifier: Topic :: Scientific/Engineering :: Artificial Intelligence
|
36
|
+
Requires-Python: >=3.9
|
37
|
+
Requires-Dist: accelerate
|
38
|
+
Requires-Dist: einops>=0.8.1
|
39
|
+
Requires-Dist: ema-pytorch
|
40
|
+
Requires-Dist: torch>=2.4
|
41
|
+
Requires-Dist: x-transformers
|
42
|
+
Provides-Extra: examples
|
43
|
+
Provides-Extra: test
|
44
|
+
Requires-Dist: pytest; extra == 'test'
|
45
|
+
Description-Content-Type: text/markdown
|
46
|
+
|
47
|
+
|
48
|
+
<img width="300" alt="trm-fig1" src="https://github.com/user-attachments/assets/950db79e-5f9c-4fec-a4e4-7b9355b39ce8" />
|
49
|
+
|
50
|
+
## Tiny Recursive Model (TRM) wip
|
51
|
+
|
52
|
+
Implementation of [Tiny Recursive Model](https://arxiv.org/abs/2510.04871) (TRM), improvement to [HRM](https://github.com/lucidrains/hrm) from Sapient AI, by [Alexia Jolicoeur-Martineau](https://ajolicoeur.wordpress.com/about/)
|
53
|
+
|
54
|
+
Official repository is [here](https://github.com/SamsungSAILMontreal/TinyRecursiveModels)
|
55
|
+
|
56
|
+
<img width="300" alt="trm-fig3" src="https://github.com/user-attachments/assets/bfe3dd2a-e859-492a-84d5-faf37339f534" />
|
57
|
+
|
58
|
+
## Citations
|
59
|
+
|
60
|
+
```bibtex
|
61
|
+
@misc{jolicoeurmartineau2025morerecursivereasoningtiny,
|
62
|
+
title = {Less is More: Recursive Reasoning with Tiny Networks},
|
63
|
+
author = {Alexia Jolicoeur-Martineau},
|
64
|
+
year = {2025},
|
65
|
+
eprint = {2510.04871},
|
66
|
+
archivePrefix = {arXiv},
|
67
|
+
primaryClass = {cs.LG},
|
68
|
+
url = {https://arxiv.org/abs/2510.04871},
|
69
|
+
}
|
70
|
+
```
|
@@ -0,0 +1,7 @@
|
|
1
|
+
tiny_recursive_model/__init__.py,sha256=UufV6--ilPn4quRWyhvaFRMKRfHvfLsAmF9RU-L31rM,77
|
2
|
+
tiny_recursive_model/mlp_mixer_1d.py,sha256=6ivDK9dgHdVl1axg2ayifJ7H5QI3hXptHnb6lfNrno0,1398
|
3
|
+
tiny_recursive_model/trm.py,sha256=YwzTod4CeeXlbAiM-TBB7rEEHWsxnPxavaGiVCTPMEM,6350
|
4
|
+
tiny_recursive_model-0.0.1.dist-info/METADATA,sha256=G-cM7okuLAiOxhofXoRh2Ih-bwYifcA3AAhmYmKo-v4,3107
|
5
|
+
tiny_recursive_model-0.0.1.dist-info/WHEEL,sha256=qtCwoSJWgHk21S1Kb4ihdzI2rlJ1ZKaIurTj_ngOhyQ,87
|
6
|
+
tiny_recursive_model-0.0.1.dist-info/licenses/LICENSE,sha256=1yCiA9b5nhslTavxPjsQAO-wpOnwJR9-l8LTVi7GJuk,1066
|
7
|
+
tiny_recursive_model-0.0.1.dist-info/RECORD,,
|
@@ -0,0 +1,21 @@
|
|
1
|
+
MIT License
|
2
|
+
|
3
|
+
Copyright (c) 2025 Phil Wang
|
4
|
+
|
5
|
+
Permission is hereby granted, free of charge, to any person obtaining a copy
|
6
|
+
of this software and associated documentation files (the "Software"), to deal
|
7
|
+
in the Software without restriction, including without limitation the rights
|
8
|
+
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
9
|
+
copies of the Software, and to permit persons to whom the Software is
|
10
|
+
furnished to do so, subject to the following conditions:
|
11
|
+
|
12
|
+
The above copyright notice and this permission notice shall be included in all
|
13
|
+
copies or substantial portions of the Software.
|
14
|
+
|
15
|
+
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
16
|
+
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
17
|
+
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
18
|
+
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
19
|
+
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
20
|
+
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
21
|
+
SOFTWARE.
|