tigramite-fast 5.2.10.1__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- tigramite/__init__.py +0 -0
- tigramite/causal_effects.py +1525 -0
- tigramite/causal_mediation.py +1592 -0
- tigramite/data_processing.py +1574 -0
- tigramite/graphs.py +1509 -0
- tigramite/independence_tests/LBFGS.py +1114 -0
- tigramite/independence_tests/__init__.py +0 -0
- tigramite/independence_tests/cmiknn.py +661 -0
- tigramite/independence_tests/cmiknn_mixed.py +1397 -0
- tigramite/independence_tests/cmisymb.py +286 -0
- tigramite/independence_tests/gpdc.py +664 -0
- tigramite/independence_tests/gpdc_torch.py +820 -0
- tigramite/independence_tests/gsquared.py +190 -0
- tigramite/independence_tests/independence_tests_base.py +1310 -0
- tigramite/independence_tests/oracle_conditional_independence.py +1582 -0
- tigramite/independence_tests/pairwise_CI.py +383 -0
- tigramite/independence_tests/parcorr.py +369 -0
- tigramite/independence_tests/parcorr_mult.py +485 -0
- tigramite/independence_tests/parcorr_wls.py +451 -0
- tigramite/independence_tests/regressionCI.py +403 -0
- tigramite/independence_tests/robust_parcorr.py +403 -0
- tigramite/jpcmciplus.py +966 -0
- tigramite/lpcmci.py +3649 -0
- tigramite/models.py +2257 -0
- tigramite/pcmci.py +3935 -0
- tigramite/pcmci_base.py +1218 -0
- tigramite/plotting.py +4735 -0
- tigramite/rpcmci.py +467 -0
- tigramite/toymodels/__init__.py +0 -0
- tigramite/toymodels/context_model.py +261 -0
- tigramite/toymodels/non_additive.py +1231 -0
- tigramite/toymodels/structural_causal_processes.py +1201 -0
- tigramite/toymodels/surrogate_generator.py +319 -0
- tigramite_fast-5.2.10.1.dist-info/METADATA +182 -0
- tigramite_fast-5.2.10.1.dist-info/RECORD +38 -0
- tigramite_fast-5.2.10.1.dist-info/WHEEL +5 -0
- tigramite_fast-5.2.10.1.dist-info/licenses/license.txt +621 -0
- tigramite_fast-5.2.10.1.dist-info/top_level.txt +1 -0
|
@@ -0,0 +1,664 @@
|
|
|
1
|
+
"""Tigramite causal discovery for time series."""
|
|
2
|
+
|
|
3
|
+
# Author: Jakob Runge <jakob@jakob-runge.com>
|
|
4
|
+
#
|
|
5
|
+
# License: GNU General Public License v3.0
|
|
6
|
+
|
|
7
|
+
from __future__ import print_function
|
|
8
|
+
import json, warnings, os, pathlib
|
|
9
|
+
import numpy as np
|
|
10
|
+
import dcor
|
|
11
|
+
from sklearn import gaussian_process
|
|
12
|
+
from .independence_tests_base import CondIndTest
|
|
13
|
+
|
|
14
|
+
class GaussProcReg():
|
|
15
|
+
r"""Gaussian processes abstract base class.
|
|
16
|
+
|
|
17
|
+
GP is estimated with scikit-learn and allows to flexibly specify kernels and
|
|
18
|
+
hyperparameters or let them be optimized automatically. The kernel specifies
|
|
19
|
+
the covariance function of the GP. Parameters can be passed on to
|
|
20
|
+
``GaussianProcessRegressor`` using the gp_params dictionary. If None is
|
|
21
|
+
passed, the kernel '1.0 * RBF(1.0) + WhiteKernel()' is used with alpha=0 as
|
|
22
|
+
default. Note that the kernel's hyperparameters are optimized during
|
|
23
|
+
fitting.
|
|
24
|
+
|
|
25
|
+
When the null distribution is not analytically available, but can be
|
|
26
|
+
precomputed with the function generate_and_save_nulldists(...) which saves
|
|
27
|
+
a \*.npz file containing the null distribution for different sample sizes.
|
|
28
|
+
This file can then be supplied as null_dist_filename.
|
|
29
|
+
|
|
30
|
+
Assumes one-dimensional X, Y. But can be combined with PairwiseMultCI to
|
|
31
|
+
obtain a test for multivariate X, Y.
|
|
32
|
+
|
|
33
|
+
Parameters
|
|
34
|
+
----------
|
|
35
|
+
null_samples : int
|
|
36
|
+
Number of null samples to use
|
|
37
|
+
|
|
38
|
+
cond_ind_test : CondIndTest
|
|
39
|
+
Conditional independence test that this Gaussian Process Regressor will
|
|
40
|
+
calculate the null distribution for. This is used to grab the
|
|
41
|
+
get_dependence_measure function.
|
|
42
|
+
|
|
43
|
+
gp_params : dictionary, optional (default: None)
|
|
44
|
+
Dictionary with parameters for ``GaussianProcessRegressor``.
|
|
45
|
+
|
|
46
|
+
null_dist_filename : str, otional (default: None)
|
|
47
|
+
Path to file containing null distribution.
|
|
48
|
+
|
|
49
|
+
verbosity : int, optional (default: 0)
|
|
50
|
+
Level of verbosity.
|
|
51
|
+
"""
|
|
52
|
+
def __init__(self,
|
|
53
|
+
null_samples,
|
|
54
|
+
cond_ind_test,
|
|
55
|
+
gp_params=None,
|
|
56
|
+
null_dist_filename=None,
|
|
57
|
+
verbosity=0):
|
|
58
|
+
# Set the dependence measure function
|
|
59
|
+
self.cond_ind_test = cond_ind_test
|
|
60
|
+
# Set member variables
|
|
61
|
+
self.gp_params = gp_params
|
|
62
|
+
self.verbosity = verbosity
|
|
63
|
+
# Set the null distribution defaults
|
|
64
|
+
self.null_samples = null_samples
|
|
65
|
+
self.null_dists = {}
|
|
66
|
+
self.null_dist_filename = null_dist_filename
|
|
67
|
+
# Check if we are loading a null distrubtion from a cached file
|
|
68
|
+
if self.null_dist_filename is not None:
|
|
69
|
+
self.null_dists, self.null_samples = \
|
|
70
|
+
self._load_nulldist(self.null_dist_filename)
|
|
71
|
+
|
|
72
|
+
def _load_nulldist(self, filename):
|
|
73
|
+
r"""
|
|
74
|
+
Load a precomputed null distribution from a \*.npz file. This
|
|
75
|
+
distribution can be calculated using generate_and_save_nulldists(...).
|
|
76
|
+
|
|
77
|
+
Parameters
|
|
78
|
+
----------
|
|
79
|
+
filename : strng
|
|
80
|
+
Path to the \*.npz file
|
|
81
|
+
|
|
82
|
+
Returns
|
|
83
|
+
-------
|
|
84
|
+
null_dists, null_samples : dict, int
|
|
85
|
+
The null distirbution as a dictionary of distributions keyed by
|
|
86
|
+
sample size, the number of null samples in total.
|
|
87
|
+
"""
|
|
88
|
+
null_dist_file = np.load(filename)
|
|
89
|
+
null_dists = dict(zip(null_dist_file['T'],
|
|
90
|
+
null_dist_file['exact_dist']))
|
|
91
|
+
null_samples = len(null_dist_file['exact_dist'][0])
|
|
92
|
+
return null_dists, null_samples
|
|
93
|
+
|
|
94
|
+
def _generate_nulldist(self, df,
|
|
95
|
+
add_to_null_dists=True):
|
|
96
|
+
"""Generates null distribution for pairwise independence tests.
|
|
97
|
+
|
|
98
|
+
Generates the null distribution for sample size df. Assumes pairwise
|
|
99
|
+
samples transformed to uniform marginals. Uses get_dependence_measure
|
|
100
|
+
available in class and generates self.sig_samples random samples. Adds
|
|
101
|
+
the null distributions to self.null_dists.
|
|
102
|
+
|
|
103
|
+
Parameters
|
|
104
|
+
----------
|
|
105
|
+
df : int
|
|
106
|
+
Degrees of freedom / sample size to generate null distribution for.
|
|
107
|
+
add_to_null_dists : bool, optional (default: True)
|
|
108
|
+
Whether to add the null dist to the dictionary of null dists or
|
|
109
|
+
just return it.
|
|
110
|
+
|
|
111
|
+
Returns
|
|
112
|
+
-------
|
|
113
|
+
null_dist : array of shape [df,]
|
|
114
|
+
Only returned,if add_to_null_dists is False.
|
|
115
|
+
"""
|
|
116
|
+
|
|
117
|
+
if self.verbosity > 0:
|
|
118
|
+
print("Generating null distribution for df = %d. " % df)
|
|
119
|
+
if add_to_null_dists:
|
|
120
|
+
print("For faster computations, run function "
|
|
121
|
+
"generate_and_save_nulldists(...) to "
|
|
122
|
+
"precompute null distribution and load *.npz file with "
|
|
123
|
+
"argument null_dist_filename")
|
|
124
|
+
|
|
125
|
+
xyz = np.array([0,1])
|
|
126
|
+
|
|
127
|
+
null_dist = np.zeros(self.null_samples)
|
|
128
|
+
for i in range(self.null_samples):
|
|
129
|
+
array = self.cond_ind_test.random_state.random((2, df))
|
|
130
|
+
null_dist[i] = self.cond_ind_test.get_dependence_measure(array, xyz)
|
|
131
|
+
|
|
132
|
+
null_dist.sort()
|
|
133
|
+
if add_to_null_dists:
|
|
134
|
+
self.null_dists[df] = null_dist
|
|
135
|
+
return null_dist
|
|
136
|
+
|
|
137
|
+
def _generate_and_save_nulldists(self, sample_sizes, null_dist_filename):
|
|
138
|
+
"""Generates and saves null distribution for pairwise independence
|
|
139
|
+
tests.
|
|
140
|
+
|
|
141
|
+
Generates the null distribution for different sample sizes. Calls
|
|
142
|
+
generate_nulldist. Null dists are saved to disk as
|
|
143
|
+
self.null_dist_filename.npz. Also adds the null distributions to
|
|
144
|
+
self.null_dists.
|
|
145
|
+
|
|
146
|
+
Parameters
|
|
147
|
+
----------
|
|
148
|
+
sample_sizes : list
|
|
149
|
+
List of sample sizes.
|
|
150
|
+
|
|
151
|
+
null_dist_filename : str
|
|
152
|
+
Name to save file containing null distributions.
|
|
153
|
+
"""
|
|
154
|
+
|
|
155
|
+
self.null_dist_filename = null_dist_filename
|
|
156
|
+
|
|
157
|
+
null_dists = np.zeros((len(sample_sizes), self.null_samples))
|
|
158
|
+
|
|
159
|
+
for iT, T in enumerate(sample_sizes):
|
|
160
|
+
null_dists[iT] = self._generate_nulldist(T, add_to_null_dists=False)
|
|
161
|
+
self.null_dists[T] = null_dists[iT]
|
|
162
|
+
|
|
163
|
+
np.savez("%s" % null_dist_filename,
|
|
164
|
+
exact_dist=null_dists,
|
|
165
|
+
T=np.array(sample_sizes))
|
|
166
|
+
|
|
167
|
+
def _get_single_residuals(self, array, target_var,
|
|
168
|
+
return_means=False,
|
|
169
|
+
standardize=True,
|
|
170
|
+
return_likelihood=False):
|
|
171
|
+
"""Returns residuals of Gaussian process regression.
|
|
172
|
+
|
|
173
|
+
Performs a GP regression of the variable indexed by target_var on the
|
|
174
|
+
conditions Z. Here array is assumed to contain X and Y as the first two
|
|
175
|
+
rows with the remaining rows (if present) containing the conditions Z.
|
|
176
|
+
Optionally returns the estimated mean and the likelihood.
|
|
177
|
+
|
|
178
|
+
Parameters
|
|
179
|
+
----------
|
|
180
|
+
array : array-like
|
|
181
|
+
data array with X, Y, Z in rows and observations in columns
|
|
182
|
+
|
|
183
|
+
target_var : {0, 1}
|
|
184
|
+
Variable to regress out conditions from.
|
|
185
|
+
|
|
186
|
+
standardize : bool, optional (default: True)
|
|
187
|
+
Whether to standardize the array beforehand.
|
|
188
|
+
|
|
189
|
+
return_means : bool, optional (default: False)
|
|
190
|
+
Whether to return the estimated regression line.
|
|
191
|
+
|
|
192
|
+
return_likelihood : bool, optional (default: False)
|
|
193
|
+
Whether to return the log_marginal_likelihood of the fitted GP
|
|
194
|
+
|
|
195
|
+
Returns
|
|
196
|
+
-------
|
|
197
|
+
resid [, mean, likelihood] : array-like
|
|
198
|
+
The residual of the regression and optionally the estimated mean
|
|
199
|
+
and/or the likelihood.
|
|
200
|
+
"""
|
|
201
|
+
dim, T = array.shape
|
|
202
|
+
|
|
203
|
+
if self.gp_params is None:
|
|
204
|
+
self.gp_params = {}
|
|
205
|
+
|
|
206
|
+
if dim <= 2:
|
|
207
|
+
if return_likelihood:
|
|
208
|
+
return array[target_var, :], -np.inf
|
|
209
|
+
return array[target_var, :]
|
|
210
|
+
|
|
211
|
+
# Standardize
|
|
212
|
+
if standardize:
|
|
213
|
+
array -= array.mean(axis=1).reshape(dim, 1)
|
|
214
|
+
std = array.std(axis=1)
|
|
215
|
+
for i in range(dim):
|
|
216
|
+
if std[i] != 0.:
|
|
217
|
+
array[i] /= std[i]
|
|
218
|
+
if np.any(std == 0.) and self.verbosity > 0:
|
|
219
|
+
warnings.warn("Possibly constant array!")
|
|
220
|
+
# array /= array.std(axis=1).reshape(dim, 1)
|
|
221
|
+
# if np.isnan(array).sum() != 0:
|
|
222
|
+
# raise ValueError("nans after standardizing, "
|
|
223
|
+
# "possibly constant array!")
|
|
224
|
+
|
|
225
|
+
target_series = array[target_var, :]
|
|
226
|
+
z = array[2:].T.copy()
|
|
227
|
+
if np.ndim(z) == 1:
|
|
228
|
+
z = z.reshape(-1, 1)
|
|
229
|
+
|
|
230
|
+
|
|
231
|
+
# Overwrite default kernel and alpha values
|
|
232
|
+
params = self.gp_params.copy()
|
|
233
|
+
if 'kernel' not in list(self.gp_params):
|
|
234
|
+
kernel = gaussian_process.kernels.RBF() +\
|
|
235
|
+
gaussian_process.kernels.WhiteKernel()
|
|
236
|
+
else:
|
|
237
|
+
kernel = self.gp_params['kernel']
|
|
238
|
+
del params['kernel']
|
|
239
|
+
|
|
240
|
+
if 'alpha' not in list(self.gp_params):
|
|
241
|
+
alpha = 0.
|
|
242
|
+
else:
|
|
243
|
+
alpha = self.gp_params['alpha']
|
|
244
|
+
del params['alpha']
|
|
245
|
+
|
|
246
|
+
gp = gaussian_process.GaussianProcessRegressor(kernel=kernel,
|
|
247
|
+
alpha=alpha,
|
|
248
|
+
**params)
|
|
249
|
+
|
|
250
|
+
gp.fit(z, target_series.reshape(-1, 1))
|
|
251
|
+
|
|
252
|
+
if self.verbosity > 3:
|
|
253
|
+
print(kernel, alpha, gp.kernel_, gp.alpha)
|
|
254
|
+
|
|
255
|
+
if return_likelihood:
|
|
256
|
+
likelihood = gp.log_marginal_likelihood()
|
|
257
|
+
|
|
258
|
+
mean = gp.predict(z).squeeze()
|
|
259
|
+
|
|
260
|
+
resid = target_series - mean
|
|
261
|
+
|
|
262
|
+
if return_means and not return_likelihood:
|
|
263
|
+
return (resid, mean)
|
|
264
|
+
elif return_likelihood and not return_means:
|
|
265
|
+
return (resid, likelihood)
|
|
266
|
+
elif return_means and return_likelihood:
|
|
267
|
+
return resid, mean, likelihood
|
|
268
|
+
return resid
|
|
269
|
+
|
|
270
|
+
def _get_model_selection_criterion(self, j, parents, tau_max=0):
|
|
271
|
+
"""Returns log marginal likelihood for GP regression.
|
|
272
|
+
|
|
273
|
+
Fits a GP model of the parents to variable j and returns the negative
|
|
274
|
+
log marginal likelihood as a model selection score. Is used to determine
|
|
275
|
+
optimal hyperparameters in PCMCI, in particular the pc_alpha value.
|
|
276
|
+
|
|
277
|
+
Parameters
|
|
278
|
+
----------
|
|
279
|
+
j : int
|
|
280
|
+
Index of target variable in data array.
|
|
281
|
+
|
|
282
|
+
parents : list
|
|
283
|
+
List of form [(0, -1), (3, -2), ...] containing parents.
|
|
284
|
+
|
|
285
|
+
tau_max : int, optional (default: 0)
|
|
286
|
+
Maximum time lag. This may be used to make sure that estimates for
|
|
287
|
+
different lags in X, Z, all have the same sample size.
|
|
288
|
+
|
|
289
|
+
Returns:
|
|
290
|
+
score : float
|
|
291
|
+
Model score.
|
|
292
|
+
"""
|
|
293
|
+
|
|
294
|
+
Y = [(j, 0)]
|
|
295
|
+
X = [(j, 0)] # dummy variable here
|
|
296
|
+
Z = parents
|
|
297
|
+
array, xyz, _ = \
|
|
298
|
+
self.cond_ind_test.dataframe.construct_array(
|
|
299
|
+
X=X, Y=Y, Z=Z,
|
|
300
|
+
tau_max=tau_max,
|
|
301
|
+
mask_type=self.cond_ind_test.mask_type,
|
|
302
|
+
return_cleaned_xyz=False,
|
|
303
|
+
do_checks=True,
|
|
304
|
+
verbosity=self.verbosity)
|
|
305
|
+
|
|
306
|
+
dim, T = array.shape
|
|
307
|
+
|
|
308
|
+
_, logli = self._get_single_residuals(array,
|
|
309
|
+
target_var=1,
|
|
310
|
+
return_likelihood=True)
|
|
311
|
+
|
|
312
|
+
score = -logli
|
|
313
|
+
return score
|
|
314
|
+
|
|
315
|
+
class GPDC(CondIndTest):
|
|
316
|
+
r"""GPDC conditional independence test based on Gaussian processes and distance correlation.
|
|
317
|
+
|
|
318
|
+
GPDC is based on a Gaussian process (GP) regression and a distance
|
|
319
|
+
correlation test on the residuals [2]_. GP is estimated with scikit-learn
|
|
320
|
+
and allows to flexibly specify kernels and hyperparameters or let them be
|
|
321
|
+
optimized automatically. The distance correlation test is implemented with
|
|
322
|
+
cython. Here the null distribution is not analytically available, but can be
|
|
323
|
+
precomputed with the function generate_and_save_nulldists(...) which saves a
|
|
324
|
+
\*.npz file containing the null distribution for different sample sizes.
|
|
325
|
+
This file can then be supplied as null_dist_filename.
|
|
326
|
+
|
|
327
|
+
Notes
|
|
328
|
+
-----
|
|
329
|
+
|
|
330
|
+
GPDC is based on a Gaussian process (GP) regression and a distance
|
|
331
|
+
correlation test on the residuals. Distance correlation is described in
|
|
332
|
+
[2]_. To test :math:`X \perp Y | Z`, first :math:`Z` is regressed out from
|
|
333
|
+
:math:`X` and :math:`Y` assuming the model
|
|
334
|
+
|
|
335
|
+
.. math:: X & = f_X(Z) + \epsilon_{X} \\
|
|
336
|
+
Y & = f_Y(Z) + \epsilon_{Y} \\
|
|
337
|
+
\epsilon_{X,Y} &\sim \mathcal{N}(0, \sigma^2)
|
|
338
|
+
|
|
339
|
+
using GP regression. Here :math:`\sigma^2` and the kernel bandwidth are
|
|
340
|
+
optimzed using ``sklearn``. Then the residuals are transformed to uniform
|
|
341
|
+
marginals yielding :math:`r_X,r_Y` and their dependency is tested with
|
|
342
|
+
|
|
343
|
+
.. math:: \mathcal{R}\left(r_X, r_Y\right)
|
|
344
|
+
|
|
345
|
+
The null distribution of the distance correlation should be pre-computed.
|
|
346
|
+
Otherwise it is computed during runtime.
|
|
347
|
+
|
|
348
|
+
References
|
|
349
|
+
----------
|
|
350
|
+
.. [2] Gabor J. Szekely, Maria L. Rizzo, and Nail K. Bakirov: Measuring and
|
|
351
|
+
testing dependence by correlation of distances,
|
|
352
|
+
https://arxiv.org/abs/0803.4101
|
|
353
|
+
|
|
354
|
+
Parameters
|
|
355
|
+
----------
|
|
356
|
+
null_dist_filename : str, otional (default: None)
|
|
357
|
+
Path to file containing null distribution.
|
|
358
|
+
|
|
359
|
+
gp_params : dictionary, optional (default: None)
|
|
360
|
+
Dictionary with parameters for ``GaussianProcessRegressor``.
|
|
361
|
+
|
|
362
|
+
**kwargs :
|
|
363
|
+
Arguments passed on to parent class GaussProcReg.
|
|
364
|
+
|
|
365
|
+
"""
|
|
366
|
+
@property
|
|
367
|
+
def measure(self):
|
|
368
|
+
"""
|
|
369
|
+
Concrete property to return the measure of the independence test
|
|
370
|
+
"""
|
|
371
|
+
return self._measure
|
|
372
|
+
|
|
373
|
+
def __init__(self,
|
|
374
|
+
null_dist_filename=None,
|
|
375
|
+
gp_params=None,
|
|
376
|
+
**kwargs):
|
|
377
|
+
self._measure = 'gp_dc'
|
|
378
|
+
self.two_sided = False
|
|
379
|
+
self.residual_based = True
|
|
380
|
+
# Call the parent constructor
|
|
381
|
+
CondIndTest.__init__(self, **kwargs)
|
|
382
|
+
# Build the regressor
|
|
383
|
+
self.gauss_pr = GaussProcReg(self.sig_samples,
|
|
384
|
+
self,
|
|
385
|
+
gp_params=gp_params,
|
|
386
|
+
null_dist_filename=null_dist_filename,
|
|
387
|
+
verbosity=self.verbosity)
|
|
388
|
+
|
|
389
|
+
if self.verbosity > 0:
|
|
390
|
+
print("null_dist_filename = %s" % self.gauss_pr.null_dist_filename)
|
|
391
|
+
if self.gauss_pr.gp_params is not None:
|
|
392
|
+
for key in list(self.gauss_pr.gp_params):
|
|
393
|
+
print("%s = %s" % (key, self.gauss_pr.gp_params[key]))
|
|
394
|
+
print("")
|
|
395
|
+
|
|
396
|
+
def _load_nulldist(self, filename):
|
|
397
|
+
r"""
|
|
398
|
+
Load a precomputed null distribution from a \*.npz file. This
|
|
399
|
+
distribution can be calculated using generate_and_save_nulldists(...).
|
|
400
|
+
|
|
401
|
+
Parameters
|
|
402
|
+
----------
|
|
403
|
+
filename : strng
|
|
404
|
+
Path to the \*.npz file
|
|
405
|
+
|
|
406
|
+
Returns
|
|
407
|
+
-------
|
|
408
|
+
null_dists, null_samples : dict, int
|
|
409
|
+
The null distirbution as a dictionary of distributions keyed by
|
|
410
|
+
sample size, the number of null samples in total.
|
|
411
|
+
"""
|
|
412
|
+
return self.gauss_pr._load_nulldist(filename)
|
|
413
|
+
|
|
414
|
+
def generate_nulldist(self, df, add_to_null_dists=True):
|
|
415
|
+
"""Generates null distribution for pairwise independence tests.
|
|
416
|
+
|
|
417
|
+
Generates the null distribution for sample size df. Assumes pairwise
|
|
418
|
+
samples transformed to uniform marginals. Uses get_dependence_measure
|
|
419
|
+
available in class and generates self.sig_samples random samples. Adds
|
|
420
|
+
the null distributions to self.gauss_pr.null_dists.
|
|
421
|
+
|
|
422
|
+
Parameters
|
|
423
|
+
----------
|
|
424
|
+
df : int
|
|
425
|
+
Degrees of freedom / sample size to generate null distribution for.
|
|
426
|
+
|
|
427
|
+
add_to_null_dists : bool, optional (default: True)
|
|
428
|
+
Whether to add the null dist to the dictionary of null dists or
|
|
429
|
+
just return it.
|
|
430
|
+
|
|
431
|
+
Returns
|
|
432
|
+
-------
|
|
433
|
+
null_dist : array of shape [df,]
|
|
434
|
+
Only returned,if add_to_null_dists is False.
|
|
435
|
+
"""
|
|
436
|
+
return self.gauss_pr._generate_nulldist(df, add_to_null_dists)
|
|
437
|
+
|
|
438
|
+
def generate_and_save_nulldists(self, sample_sizes, null_dist_filename):
|
|
439
|
+
"""Generates and saves null distribution for pairwise independence
|
|
440
|
+
tests.
|
|
441
|
+
|
|
442
|
+
Generates the null distribution for different sample sizes. Calls
|
|
443
|
+
generate_nulldist. Null dists are saved to disk as
|
|
444
|
+
self.null_dist_filename.npz. Also adds the null distributions to
|
|
445
|
+
self.gauss_pr.null_dists.
|
|
446
|
+
|
|
447
|
+
Parameters
|
|
448
|
+
----------
|
|
449
|
+
sample_sizes : list
|
|
450
|
+
List of sample sizes.
|
|
451
|
+
|
|
452
|
+
null_dist_filename : str
|
|
453
|
+
Name to save file containing null distributions.
|
|
454
|
+
"""
|
|
455
|
+
self.gauss_pr._generate_and_save_nulldists(sample_sizes,
|
|
456
|
+
null_dist_filename)
|
|
457
|
+
|
|
458
|
+
def _get_single_residuals(self, array, target_var,
|
|
459
|
+
return_means=False,
|
|
460
|
+
standardize=True,
|
|
461
|
+
return_likelihood=False):
|
|
462
|
+
"""Returns residuals of Gaussian process regression.
|
|
463
|
+
|
|
464
|
+
Performs a GP regression of the variable indexed by target_var on the
|
|
465
|
+
conditions Z. Here array is assumed to contain X and Y as the first two
|
|
466
|
+
rows with the remaining rows (if present) containing the conditions Z.
|
|
467
|
+
Optionally returns the estimated mean and the likelihood.
|
|
468
|
+
|
|
469
|
+
Parameters
|
|
470
|
+
----------
|
|
471
|
+
array : array-like
|
|
472
|
+
data array with X, Y, Z in rows and observations in columns
|
|
473
|
+
|
|
474
|
+
target_var : {0, 1}
|
|
475
|
+
Variable to regress out conditions from.
|
|
476
|
+
|
|
477
|
+
standardize : bool, optional (default: True)
|
|
478
|
+
Whether to standardize the array beforehand.
|
|
479
|
+
|
|
480
|
+
return_means : bool, optional (default: False)
|
|
481
|
+
Whether to return the estimated regression line.
|
|
482
|
+
|
|
483
|
+
return_likelihood : bool, optional (default: False)
|
|
484
|
+
Whether to return the log_marginal_likelihood of the fitted GP
|
|
485
|
+
|
|
486
|
+
Returns
|
|
487
|
+
-------
|
|
488
|
+
resid [, mean, likelihood] : array-like
|
|
489
|
+
The residual of the regression and optionally the estimated mean
|
|
490
|
+
and/or the likelihood.
|
|
491
|
+
"""
|
|
492
|
+
return self.gauss_pr._get_single_residuals(
|
|
493
|
+
array, target_var,
|
|
494
|
+
return_means,
|
|
495
|
+
standardize,
|
|
496
|
+
return_likelihood)
|
|
497
|
+
|
|
498
|
+
def get_model_selection_criterion(self, j, parents, tau_max=0):
|
|
499
|
+
"""Returns log marginal likelihood for GP regression.
|
|
500
|
+
|
|
501
|
+
Fits a GP model of the parents to variable j and returns the negative
|
|
502
|
+
log marginal likelihood as a model selection score. Is used to determine
|
|
503
|
+
optimal hyperparameters in PCMCI, in particular the pc_alpha value.
|
|
504
|
+
|
|
505
|
+
Parameters
|
|
506
|
+
----------
|
|
507
|
+
j : int
|
|
508
|
+
Index of target variable in data array.
|
|
509
|
+
|
|
510
|
+
parents : list
|
|
511
|
+
List of form [(0, -1), (3, -2), ...] containing parents.
|
|
512
|
+
|
|
513
|
+
tau_max : int, optional (default: 0)
|
|
514
|
+
Maximum time lag. This may be used to make sure that estimates for
|
|
515
|
+
different lags in X, Z, all have the same sample size.
|
|
516
|
+
|
|
517
|
+
Returns:
|
|
518
|
+
score : float
|
|
519
|
+
Model score.
|
|
520
|
+
"""
|
|
521
|
+
return self.gauss_pr._get_model_selection_criterion(j, parents, tau_max)
|
|
522
|
+
|
|
523
|
+
def get_dependence_measure(self, array, xyz, data_type=None):
|
|
524
|
+
"""Return GPDC measure.
|
|
525
|
+
|
|
526
|
+
Estimated as the distance correlation of the residuals of a GP
|
|
527
|
+
regression.
|
|
528
|
+
|
|
529
|
+
Parameters
|
|
530
|
+
----------
|
|
531
|
+
array : array-like
|
|
532
|
+
data array with X, Y, Z in rows and observations in columns
|
|
533
|
+
|
|
534
|
+
xyz : array of ints
|
|
535
|
+
XYZ identifier array of shape (dim,).
|
|
536
|
+
|
|
537
|
+
Returns
|
|
538
|
+
-------
|
|
539
|
+
val : float
|
|
540
|
+
GPDC test statistic.
|
|
541
|
+
"""
|
|
542
|
+
|
|
543
|
+
x_vals = self._get_single_residuals(array, target_var=0)
|
|
544
|
+
y_vals = self._get_single_residuals(array, target_var=1)
|
|
545
|
+
val = self._get_dcorr(np.array([x_vals, y_vals]))
|
|
546
|
+
return val
|
|
547
|
+
|
|
548
|
+
|
|
549
|
+
def _get_dcorr(self, array_resid):
|
|
550
|
+
r"""Return distance correlation coefficient.
|
|
551
|
+
|
|
552
|
+
The variables are transformed to uniform marginals using the empirical
|
|
553
|
+
cumulative distribution function beforehand. Here the null distribution
|
|
554
|
+
is not analytically available, but can be precomputed with the function
|
|
555
|
+
generate_and_save_nulldists(...) which saves a *.npz file containing
|
|
556
|
+
the null distribution for different sample sizes. This file can then be
|
|
557
|
+
supplied as null_dist_filename.
|
|
558
|
+
|
|
559
|
+
Parameters
|
|
560
|
+
----------
|
|
561
|
+
array_resid : array-like
|
|
562
|
+
data array must be of shape (2, T)
|
|
563
|
+
|
|
564
|
+
Returns
|
|
565
|
+
-------
|
|
566
|
+
val : float
|
|
567
|
+
Distance correlation coefficient.
|
|
568
|
+
"""
|
|
569
|
+
# Remove ties before applying transformation to uniform marginals
|
|
570
|
+
# array_resid = self._remove_ties(array_resid, verbosity=4)
|
|
571
|
+
x_vals, y_vals = self._trafo2uniform(array_resid)
|
|
572
|
+
val = dcor.distance_correlation(x_vals, y_vals, method='AVL')
|
|
573
|
+
return val
|
|
574
|
+
|
|
575
|
+
def get_shuffle_significance(self, array, xyz, value,
|
|
576
|
+
return_null_dist=False,
|
|
577
|
+
data_type=None):
|
|
578
|
+
"""Returns p-value for shuffle significance test.
|
|
579
|
+
|
|
580
|
+
For residual-based test statistics only the residuals are shuffled.
|
|
581
|
+
|
|
582
|
+
Parameters
|
|
583
|
+
----------
|
|
584
|
+
array : array-like
|
|
585
|
+
data array with X, Y, Z in rows and observations in columns
|
|
586
|
+
|
|
587
|
+
xyz : array of ints
|
|
588
|
+
XYZ identifier array of shape (dim,).
|
|
589
|
+
|
|
590
|
+
value : number
|
|
591
|
+
Value of test statistic for unshuffled estimate.
|
|
592
|
+
|
|
593
|
+
Returns
|
|
594
|
+
-------
|
|
595
|
+
pval : float
|
|
596
|
+
p-value
|
|
597
|
+
"""
|
|
598
|
+
|
|
599
|
+
x_vals = self._get_single_residuals(array, target_var=0)
|
|
600
|
+
y_vals = self._get_single_residuals(array, target_var=1)
|
|
601
|
+
array_resid = np.array([x_vals, y_vals])
|
|
602
|
+
xyz_resid = np.array([0, 1])
|
|
603
|
+
|
|
604
|
+
null_dist = self._get_shuffle_dist(array_resid, xyz_resid,
|
|
605
|
+
self.get_dependence_measure,
|
|
606
|
+
sig_samples=self.sig_samples,
|
|
607
|
+
sig_blocklength=self.sig_blocklength,
|
|
608
|
+
verbosity=self.verbosity)
|
|
609
|
+
|
|
610
|
+
# pval = (null_dist >= value).mean()
|
|
611
|
+
pval = float(np.sum(null_dist >= value) + 1) / (self.sig_samples + 1)
|
|
612
|
+
|
|
613
|
+
if return_null_dist:
|
|
614
|
+
return pval, null_dist
|
|
615
|
+
return pval
|
|
616
|
+
|
|
617
|
+
def get_analytic_significance(self, value, T, dim, xyz):
|
|
618
|
+
"""Returns p-value for the distance correlation coefficient.
|
|
619
|
+
|
|
620
|
+
The null distribution for necessary degrees of freedom (df) is loaded.
|
|
621
|
+
If not available, the null distribution is generated with the function
|
|
622
|
+
generate_nulldist(). It is recommended to generate the nulldists for a
|
|
623
|
+
wide range of sample sizes beforehand with the function
|
|
624
|
+
generate_and_save_nulldists(...). The distance correlation coefficient
|
|
625
|
+
is one-sided. If the degrees of freedom are less than 1, numpy.nan is
|
|
626
|
+
returned.
|
|
627
|
+
|
|
628
|
+
Parameters
|
|
629
|
+
----------
|
|
630
|
+
value : float
|
|
631
|
+
Test statistic value.
|
|
632
|
+
|
|
633
|
+
T : int
|
|
634
|
+
Sample length
|
|
635
|
+
|
|
636
|
+
dim : int
|
|
637
|
+
Dimensionality, ie, number of features.
|
|
638
|
+
|
|
639
|
+
xyz : array of ints
|
|
640
|
+
XYZ identifier array of shape (dim,).
|
|
641
|
+
|
|
642
|
+
Returns
|
|
643
|
+
-------
|
|
644
|
+
pval : float or numpy.nan
|
|
645
|
+
p-value.
|
|
646
|
+
"""
|
|
647
|
+
|
|
648
|
+
# GP regression approximately doesn't cost degrees of freedom
|
|
649
|
+
df = T
|
|
650
|
+
|
|
651
|
+
if df < 1:
|
|
652
|
+
pval = np.nan
|
|
653
|
+
else:
|
|
654
|
+
# idx_near = (np.abs(self.sample_sizes - df)).argmin()
|
|
655
|
+
if int(df) not in list(self.gauss_pr.null_dists):
|
|
656
|
+
# if np.abs(self.sample_sizes[idx_near] - df) / float(df) > 0.01:
|
|
657
|
+
if self.verbosity > 0:
|
|
658
|
+
print("Null distribution for GPDC not available "
|
|
659
|
+
"for deg. of freed. = %d." % df)
|
|
660
|
+
self.generate_nulldist(df)
|
|
661
|
+
null_dist_here = self.gauss_pr.null_dists[int(df)]
|
|
662
|
+
pval = np.mean(null_dist_here > np.abs(value))
|
|
663
|
+
return pval
|
|
664
|
+
|