tico 0.1.0.dev251106__py3-none-any.whl → 0.2.0.dev260122__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- tico/__init__.py +2 -2
- tico/_version.py +1 -0
- tico/passes/convert_conv3d_to_conv2d.py +435 -0
- tico/passes/convert_sym_size_to_circle_shape.py +99 -0
- tico/passes/decompose_batch_norm.py +9 -5
- tico/passes/lower_copy.py +95 -0
- tico/passes/ops.py +4 -0
- tico/quantization/algorithm/fpi_gptq/fpi_gptq.py +251 -0
- tico/quantization/algorithm/fpi_gptq/quantizer.py +180 -0
- tico/quantization/algorithm/gptq/gptq.py +231 -11
- tico/quantization/algorithm/gptq/quantizer.py +18 -6
- tico/quantization/config/{pt2e.py → fpi_gptq.py} +11 -4
- tico/quantization/config/gptq.py +27 -4
- tico/quantization/public_interface.py +0 -10
- tico/quantization/wrapq/quantizer.py +2 -0
- tico/quantization/wrapq/wrappers/quant_elementwise.py +51 -11
- tico/serialize/operators/adapters/onert/llama_attention.py +51 -0
- tico/serialize/operators/op_attention.py +58 -0
- tico/serialize/operators/op_circle_shape.py +64 -0
- tico/serialize/operators/op_dequantize_per_channel.py +1 -0
- tico/serialize/operators/op_dequantize_per_tensor.py +1 -0
- tico/serialize/operators/op_transpose_conv.py +66 -50
- tico/utils/convert.py +16 -1
- tico/utils/padding.py +13 -5
- tico/utils/record_input.py +2 -2
- tico/utils/register_custom_op.py +63 -0
- tico/utils/validate_args_kwargs.py +49 -4
- tico-0.2.0.dev260122.dist-info/METADATA +631 -0
- {tico-0.1.0.dev251106.dist-info → tico-0.2.0.dev260122.dist-info}/RECORD +35 -46
- {tico-0.1.0.dev251106.dist-info → tico-0.2.0.dev260122.dist-info}/WHEEL +1 -1
- {tico-0.1.0.dev251106.dist-info → tico-0.2.0.dev260122.dist-info}/entry_points.txt +0 -1
- tico/quantization/algorithm/pt2e/annotation/annotator.py +0 -208
- tico/quantization/algorithm/pt2e/annotation/config.py +0 -26
- tico/quantization/algorithm/pt2e/annotation/op/__init__.py +0 -21
- tico/quantization/algorithm/pt2e/annotation/op/adaptive_avg_pool2d.py +0 -63
- tico/quantization/algorithm/pt2e/annotation/op/add.py +0 -55
- tico/quantization/algorithm/pt2e/annotation/op/conv2d.py +0 -90
- tico/quantization/algorithm/pt2e/annotation/op/div.py +0 -55
- tico/quantization/algorithm/pt2e/annotation/op/linear.py +0 -92
- tico/quantization/algorithm/pt2e/annotation/op/mean.py +0 -51
- tico/quantization/algorithm/pt2e/annotation/op/mul.py +0 -55
- tico/quantization/algorithm/pt2e/annotation/op/relu6.py +0 -51
- tico/quantization/algorithm/pt2e/annotation/op/rsqrt.py +0 -51
- tico/quantization/algorithm/pt2e/annotation/op/sub.py +0 -55
- tico/quantization/algorithm/pt2e/annotation/spec.py +0 -45
- tico/quantization/algorithm/pt2e/annotation/utils.py +0 -88
- tico/quantization/algorithm/pt2e/quantizer.py +0 -81
- tico/quantization/algorithm/pt2e/transformation/__init__.py +0 -1
- tico/quantization/algorithm/pt2e/transformation/convert_scalars_to_attrs.py +0 -58
- tico/quantization/algorithm/pt2e/utils.py +0 -135
- tico/serialize/operators/op_copy.py +0 -187
- tico-0.1.0.dev251106.dist-info/METADATA +0 -392
- /tico/quantization/algorithm/{pt2e → fpi_gptq}/__init__.py +0 -0
- /tico/{quantization/algorithm/pt2e/annotation → serialize/operators/adapters/onert}/__init__.py +0 -0
- {tico-0.1.0.dev251106.dist-info → tico-0.2.0.dev260122.dist-info/licenses}/LICENSE +0 -0
- {tico-0.1.0.dev251106.dist-info → tico-0.2.0.dev260122.dist-info}/top_level.txt +0 -0
|
@@ -1,81 +0,0 @@
|
|
|
1
|
-
# Copyright (c) 2025 Samsung Electronics Co., Ltd. All Rights Reserved
|
|
2
|
-
#
|
|
3
|
-
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
4
|
-
# you may not use this file except in compliance with the License.
|
|
5
|
-
# You may obtain a copy of the License at
|
|
6
|
-
#
|
|
7
|
-
# http://www.apache.org/licenses/LICENSE-2.0
|
|
8
|
-
#
|
|
9
|
-
# Unless required by applicable law or agreed to in writing, software
|
|
10
|
-
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
11
|
-
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
12
|
-
# See the License for the specific language governing permissions and
|
|
13
|
-
# limitations under the License.
|
|
14
|
-
|
|
15
|
-
from typing import Any, Dict, Optional
|
|
16
|
-
|
|
17
|
-
import torch
|
|
18
|
-
|
|
19
|
-
from torch.ao.quantization.quantize_pt2e import convert_pt2e, prepare_pt2e
|
|
20
|
-
|
|
21
|
-
from tico.quantization.algorithm.pt2e.annotation.annotator import (
|
|
22
|
-
get_asymmetric_quantization_config,
|
|
23
|
-
PT2EAnnotator,
|
|
24
|
-
)
|
|
25
|
-
from tico.quantization.config.pt2e import PT2EConfig
|
|
26
|
-
from tico.quantization.quantizer import BaseQuantizer
|
|
27
|
-
from tico.quantization.quantizer_registry import register_quantizer
|
|
28
|
-
|
|
29
|
-
|
|
30
|
-
@register_quantizer(PT2EConfig)
|
|
31
|
-
class PT2EQuantizer(BaseQuantizer):
|
|
32
|
-
"""
|
|
33
|
-
Quantizer for applying pytorch 2.0 export quantization (typically for activation quantization).
|
|
34
|
-
"""
|
|
35
|
-
|
|
36
|
-
def prepare(
|
|
37
|
-
self,
|
|
38
|
-
model: torch.nn.Module,
|
|
39
|
-
args: Optional[Any] = None,
|
|
40
|
-
kwargs: Optional[Dict[str, Any]] = None,
|
|
41
|
-
):
|
|
42
|
-
"""
|
|
43
|
-
Prepare the model for pt2e quantization.
|
|
44
|
-
|
|
45
|
-
Registers activation observers using the provided example inputs.
|
|
46
|
-
|
|
47
|
-
Parameters:
|
|
48
|
-
model: The target PyTorch model.
|
|
49
|
-
args: Positional example inputs required for capturing graph.
|
|
50
|
-
kwargs: Keyword example inputs required for capturing graph.
|
|
51
|
-
|
|
52
|
-
Returns:
|
|
53
|
-
The model prepared for pt2e quantization.
|
|
54
|
-
"""
|
|
55
|
-
# Program capture
|
|
56
|
-
assert isinstance(args, tuple)
|
|
57
|
-
model = torch.export.export_for_training(
|
|
58
|
-
model, args=args, kwargs=kwargs
|
|
59
|
-
).module()
|
|
60
|
-
quantizer = PT2EAnnotator()
|
|
61
|
-
quantizer = quantizer.set_global(get_asymmetric_quantization_config())
|
|
62
|
-
|
|
63
|
-
# Register observers in each nodes
|
|
64
|
-
assert isinstance(model, torch.fx.GraphModule)
|
|
65
|
-
model = prepare_pt2e(model, quantizer)
|
|
66
|
-
|
|
67
|
-
return model
|
|
68
|
-
|
|
69
|
-
def convert(self, model: torch.fx.GraphModule):
|
|
70
|
-
"""
|
|
71
|
-
Convert the prepared model to its pt2e quantized version.
|
|
72
|
-
|
|
73
|
-
Applies the pt2e quantization on activations based on the collected statistics.
|
|
74
|
-
|
|
75
|
-
Parameters:
|
|
76
|
-
model: The prepared PyTorch model.
|
|
77
|
-
|
|
78
|
-
Returns:
|
|
79
|
-
The quantized model.
|
|
80
|
-
"""
|
|
81
|
-
return convert_pt2e(model)
|
|
@@ -1 +0,0 @@
|
|
|
1
|
-
# DO NOT REMOVE THIS FILE
|
|
@@ -1,58 +0,0 @@
|
|
|
1
|
-
# Copyright (c) 2025 Samsung Electronics Co., Ltd. All Rights Reserved
|
|
2
|
-
#
|
|
3
|
-
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
4
|
-
# you may not use this file except in compliance with the License.
|
|
5
|
-
# You may obtain a copy of the License at
|
|
6
|
-
#
|
|
7
|
-
# http://www.apache.org/licenses/LICENSE-2.0
|
|
8
|
-
#
|
|
9
|
-
# Unless required by applicable law or agreed to in writing, software
|
|
10
|
-
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
11
|
-
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
12
|
-
# See the License for the specific language governing permissions and
|
|
13
|
-
# limitations under the License.
|
|
14
|
-
|
|
15
|
-
import torch
|
|
16
|
-
from torch.ao.quantization.fx.utils import get_new_attr_name_with_prefix
|
|
17
|
-
|
|
18
|
-
|
|
19
|
-
def convert_scalars_to_attrs(model: torch.fx.GraphModule) -> torch.fx.GraphModule:
|
|
20
|
-
"""
|
|
21
|
-
Convert scalar values in the graph to `get_attr` nodes.
|
|
22
|
-
|
|
23
|
-
This function identifies scalar constants in the graph and transforms them
|
|
24
|
-
into `get_attr` nodes to ensure compatibility with quantization workflows.
|
|
25
|
-
"""
|
|
26
|
-
for n in model.graph.nodes:
|
|
27
|
-
if n.op != "call_function" or n.target not in [
|
|
28
|
-
# The operators that have scalar parameters.
|
|
29
|
-
torch.ops.aten.add.Tensor,
|
|
30
|
-
]:
|
|
31
|
-
continue
|
|
32
|
-
args = list(n.args)
|
|
33
|
-
new_args = []
|
|
34
|
-
for arg in args:
|
|
35
|
-
if isinstance(arg, torch.fx.Node):
|
|
36
|
-
new_args.append(arg)
|
|
37
|
-
continue
|
|
38
|
-
|
|
39
|
-
assert isinstance(arg, float)
|
|
40
|
-
prefix = "_tensor_constant_"
|
|
41
|
-
get_new_attr_name = get_new_attr_name_with_prefix(prefix)
|
|
42
|
-
tensor_constant_name = get_new_attr_name(model)
|
|
43
|
-
float_tensor = torch.tensor(float(arg))
|
|
44
|
-
model.register_buffer(tensor_constant_name, float_tensor)
|
|
45
|
-
|
|
46
|
-
fake_mode = n.meta["val"].fake_mode
|
|
47
|
-
with model.graph.inserting_before(n):
|
|
48
|
-
get_attr_node = model.graph.create_node(
|
|
49
|
-
"get_attr", tensor_constant_name, (), {}
|
|
50
|
-
)
|
|
51
|
-
get_attr_node.meta["val"] = fake_mode.from_tensor(
|
|
52
|
-
float_tensor, static_shapes=True
|
|
53
|
-
)
|
|
54
|
-
new_args.append(get_attr_node)
|
|
55
|
-
n.args = tuple(new_args)
|
|
56
|
-
model.recompile()
|
|
57
|
-
|
|
58
|
-
return model
|
|
@@ -1,135 +0,0 @@
|
|
|
1
|
-
# Copyright (c) 2025 Samsung Electronics Co., Ltd. All Rights Reserved
|
|
2
|
-
#
|
|
3
|
-
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
4
|
-
# you may not use this file except in compliance with the License.
|
|
5
|
-
# You may obtain a copy of the License at
|
|
6
|
-
#
|
|
7
|
-
# http://www.apache.org/licenses/LICENSE-2.0
|
|
8
|
-
#
|
|
9
|
-
# Unless required by applicable law or agreed to in writing, software
|
|
10
|
-
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
11
|
-
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
12
|
-
# See the License for the specific language governing permissions and
|
|
13
|
-
# limitations under the License.
|
|
14
|
-
|
|
15
|
-
from typing import Callable, List, Optional, TYPE_CHECKING
|
|
16
|
-
|
|
17
|
-
if TYPE_CHECKING:
|
|
18
|
-
import torch.fx
|
|
19
|
-
import torch
|
|
20
|
-
from torch.ao.quantization.quantizer import QuantizationSpec
|
|
21
|
-
from torch.ao.quantization.quantizer.utils import _get_module_name_filter
|
|
22
|
-
|
|
23
|
-
from tico.quantization.algorithm.pt2e.annotation.config import QuantizationConfig
|
|
24
|
-
|
|
25
|
-
|
|
26
|
-
def get_module_type_filter(tp: Callable):
|
|
27
|
-
"""
|
|
28
|
-
Get the module_type_filter function for a given module type.
|
|
29
|
-
|
|
30
|
-
The filter accepts a node and checks if the node comes from a module
|
|
31
|
-
that has certain module type.
|
|
32
|
-
|
|
33
|
-
For example:
|
|
34
|
-
node: linear_op = call_function[...](...) # comes from a module with type Block -> Sub -> Linear
|
|
35
|
-
|
|
36
|
-
|
|
37
|
-
>> module_type_filter = get_module_type_filter(Sub) # submodule with type `Sub`, under the `Block` submodule
|
|
38
|
-
>> print(module_type_filter(node))
|
|
39
|
-
True # the node is from the submodule `Sub`
|
|
40
|
-
"""
|
|
41
|
-
|
|
42
|
-
tp_str = tp.__module__ + "." + tp.__qualname__
|
|
43
|
-
|
|
44
|
-
def module_type_filter(n: torch.fx.Node) -> bool:
|
|
45
|
-
# example: {
|
|
46
|
-
# 'L__self___sub': ("L['self'].sub", <class '....Sub'>),
|
|
47
|
-
# 'L__self___sub_linear': ("L['self'].sub.linear", <class 'torch.nn.modules.linear.Linear'>)
|
|
48
|
-
# }
|
|
49
|
-
nn_module_stack = n.meta.get("nn_module_stack", {})
|
|
50
|
-
types = []
|
|
51
|
-
for _, t in nn_module_stack.values():
|
|
52
|
-
# export() returns str, but older APIs (e.g. capture_pre_autograd_graph)
|
|
53
|
-
# return type. Handle both cases.
|
|
54
|
-
if isinstance(t, type):
|
|
55
|
-
t = t.__module__ + "." + t.__qualname__
|
|
56
|
-
types.append(t)
|
|
57
|
-
return tp_str in types
|
|
58
|
-
|
|
59
|
-
return module_type_filter
|
|
60
|
-
|
|
61
|
-
|
|
62
|
-
def get_not_module_type_or_name_filter(
|
|
63
|
-
tp_list: List[Callable], module_name_list: List[str]
|
|
64
|
-
) -> Callable[[torch.fx.Node], bool]:
|
|
65
|
-
module_type_filters = [get_module_type_filter(tp) for tp in tp_list]
|
|
66
|
-
module_name_list_filters = [_get_module_name_filter(m) for m in module_name_list]
|
|
67
|
-
|
|
68
|
-
def not_module_type_or_name_filter(n: torch.fx.Node) -> bool:
|
|
69
|
-
return not any(f(n) for f in module_type_filters + module_name_list_filters)
|
|
70
|
-
|
|
71
|
-
return not_module_type_or_name_filter
|
|
72
|
-
|
|
73
|
-
|
|
74
|
-
def get_input_act_qspec(quantization_config: Optional[QuantizationConfig]):
|
|
75
|
-
if quantization_config is None:
|
|
76
|
-
return None
|
|
77
|
-
if quantization_config.input_activation is None:
|
|
78
|
-
return None
|
|
79
|
-
quantization_spec: QuantizationSpec = quantization_config.input_activation
|
|
80
|
-
assert quantization_spec.qscheme in [
|
|
81
|
-
torch.per_tensor_affine,
|
|
82
|
-
]
|
|
83
|
-
return quantization_spec
|
|
84
|
-
|
|
85
|
-
|
|
86
|
-
def get_output_act_qspec(quantization_config: Optional[QuantizationConfig]):
|
|
87
|
-
if quantization_config is None:
|
|
88
|
-
return None
|
|
89
|
-
if quantization_config.output_activation is None:
|
|
90
|
-
return None
|
|
91
|
-
quantization_spec: QuantizationSpec = quantization_config.output_activation
|
|
92
|
-
assert quantization_spec.qscheme in [
|
|
93
|
-
torch.per_tensor_affine,
|
|
94
|
-
]
|
|
95
|
-
return quantization_spec
|
|
96
|
-
|
|
97
|
-
|
|
98
|
-
def get_weight_qspec(quantization_config: Optional[QuantizationConfig]):
|
|
99
|
-
if quantization_config is None:
|
|
100
|
-
return None
|
|
101
|
-
if quantization_config.weight is None:
|
|
102
|
-
return None
|
|
103
|
-
quantization_spec: QuantizationSpec = quantization_config.weight
|
|
104
|
-
if quantization_spec.qscheme not in [
|
|
105
|
-
torch.per_tensor_affine,
|
|
106
|
-
torch.per_channel_affine,
|
|
107
|
-
]:
|
|
108
|
-
raise ValueError(
|
|
109
|
-
f"Unsupported quantization_spec {quantization_spec} for weight"
|
|
110
|
-
)
|
|
111
|
-
return quantization_spec
|
|
112
|
-
|
|
113
|
-
|
|
114
|
-
def get_bias_qspec(quantization_config: Optional[QuantizationConfig]):
|
|
115
|
-
if quantization_config is None:
|
|
116
|
-
return None
|
|
117
|
-
if quantization_config.bias is None:
|
|
118
|
-
return None
|
|
119
|
-
quantization_spec: QuantizationSpec = quantization_config.bias
|
|
120
|
-
return quantization_spec
|
|
121
|
-
|
|
122
|
-
|
|
123
|
-
def is_annotated(nodes: List[torch.fx.Node] | torch.fx.Node):
|
|
124
|
-
"""
|
|
125
|
-
Check if any of the node in the given list is annotated.
|
|
126
|
-
"""
|
|
127
|
-
annotated = False
|
|
128
|
-
if isinstance(nodes, torch.fx.Node):
|
|
129
|
-
nodes = [nodes]
|
|
130
|
-
for node in nodes:
|
|
131
|
-
annotated = annotated or (
|
|
132
|
-
"quantization_annotation" in node.meta
|
|
133
|
-
and node.meta["quantization_annotation"]._annotated
|
|
134
|
-
)
|
|
135
|
-
return annotated
|
|
@@ -1,187 +0,0 @@
|
|
|
1
|
-
# Copyright (c) 2025 Samsung Electronics Co., Ltd. All Rights Reserved
|
|
2
|
-
#
|
|
3
|
-
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
4
|
-
# you may not use this file except in compliance with the License.
|
|
5
|
-
# You may obtain a copy of the License at
|
|
6
|
-
#
|
|
7
|
-
# http://www.apache.org/licenses/LICENSE-2.0
|
|
8
|
-
#
|
|
9
|
-
# Unless required by applicable law or agreed to in writing, software
|
|
10
|
-
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
11
|
-
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
12
|
-
# See the License for the specific language governing permissions and
|
|
13
|
-
# limitations under the License.
|
|
14
|
-
|
|
15
|
-
from typing import Dict, List, Optional, TYPE_CHECKING, Union
|
|
16
|
-
|
|
17
|
-
if TYPE_CHECKING:
|
|
18
|
-
import torch._ops
|
|
19
|
-
import torch.fx
|
|
20
|
-
import torch
|
|
21
|
-
from circle_schema import circle
|
|
22
|
-
|
|
23
|
-
from tico.serialize.circle_graph import CircleSubgraph
|
|
24
|
-
from tico.serialize.operators.hashable_opcode import OpCode
|
|
25
|
-
from tico.serialize.operators.node_visitor import NodeVisitor, register_node_visitor
|
|
26
|
-
from tico.serialize.operators.utils import create_builtin_operator, get_op_index
|
|
27
|
-
from tico.utils.errors import NotYetSupportedError
|
|
28
|
-
from tico.utils.validate_args_kwargs import CopyArgs
|
|
29
|
-
|
|
30
|
-
|
|
31
|
-
@register_node_visitor
|
|
32
|
-
class CopyVisitor(NodeVisitor):
|
|
33
|
-
"""
|
|
34
|
-
NOTE `torch.Tensor.copy_`'s behavior matches with `Reshape` of CIRCLE.
|
|
35
|
-
- because `torch.Tensor.copy_` is a in-place operator, so `dst` is converted to `Shape` of CIRCLE.
|
|
36
|
-
- after that, `dst` converted to `Shape` is connected to shape of `Reshape`.
|
|
37
|
-
- `src` is connected to tensor of `Reshape`.
|
|
38
|
-
- if `dst` is not converted to `Shape`.
|
|
39
|
-
[dst] [src]
|
|
40
|
-
|
|
|
41
|
-
[Reshape]
|
|
42
|
-
- if `dst` is converted to `Shape`.
|
|
43
|
-
[dst] [src]
|
|
44
|
-
| |
|
|
45
|
-
[Shape] |
|
|
46
|
-
\ /
|
|
47
|
-
[Reshape]
|
|
48
|
-
"""
|
|
49
|
-
|
|
50
|
-
target: List[torch._ops.OpOverload] = [torch.ops.aten.copy.default]
|
|
51
|
-
|
|
52
|
-
def __init__(self, op_codes: Dict[OpCode, int], graph: CircleSubgraph):
|
|
53
|
-
super().__init__(op_codes, graph)
|
|
54
|
-
|
|
55
|
-
def check_to_do_broadcast(
|
|
56
|
-
self,
|
|
57
|
-
dst: List[int],
|
|
58
|
-
dst_sig: Optional[List[int]],
|
|
59
|
-
src: List[int],
|
|
60
|
-
src_sig: Optional[List[int]],
|
|
61
|
-
) -> bool:
|
|
62
|
-
assert dst_sig is None
|
|
63
|
-
assert src_sig is None
|
|
64
|
-
return dst != src
|
|
65
|
-
|
|
66
|
-
def define_broadcast_to_node(
|
|
67
|
-
self,
|
|
68
|
-
inputs: List[Union[circle.Tensor.TensorT, torch.Tensor]],
|
|
69
|
-
outputs: List[circle.Tensor.TensorT],
|
|
70
|
-
) -> circle.Operator.OperatorT:
|
|
71
|
-
op_index = get_op_index(
|
|
72
|
-
circle.BuiltinOperator.BuiltinOperator.BROADCAST_TO, self._op_codes
|
|
73
|
-
)
|
|
74
|
-
operator = create_builtin_operator(self.graph, op_index, inputs, outputs)
|
|
75
|
-
operator.builtinOptionsType = (
|
|
76
|
-
circle.BuiltinOptions.BuiltinOptions.BroadcastToOptions
|
|
77
|
-
)
|
|
78
|
-
|
|
79
|
-
option = circle.BroadcastToOptions.BroadcastToOptionsT()
|
|
80
|
-
operator.builtinOptions = option
|
|
81
|
-
return operator
|
|
82
|
-
|
|
83
|
-
def define_shape_node(
|
|
84
|
-
self, inputs: List[torch.fx.Node], outputs: List[circle.Tensor.TensorT]
|
|
85
|
-
) -> circle.Operator.OperatorT:
|
|
86
|
-
op_index = get_op_index(
|
|
87
|
-
circle.BuiltinOperator.BuiltinOperator.SHAPE, self._op_codes
|
|
88
|
-
)
|
|
89
|
-
operator = create_builtin_operator(self.graph, op_index, inputs, outputs)
|
|
90
|
-
operator.builtinOptionsType = circle.BuiltinOptions.BuiltinOptions.ShapeOptions
|
|
91
|
-
|
|
92
|
-
option = circle.ShapeOptions.ShapeOptionsT()
|
|
93
|
-
option.outType = circle.TensorType.TensorType.INT32
|
|
94
|
-
operator.builtinOptions = option
|
|
95
|
-
return operator
|
|
96
|
-
|
|
97
|
-
def define_node(
|
|
98
|
-
self,
|
|
99
|
-
node: torch.fx.Node,
|
|
100
|
-
) -> circle.Operator.OperatorT:
|
|
101
|
-
if len(node.args) == 3:
|
|
102
|
-
raise NotYetSupportedError("'non_blocking' is not supported yet.")
|
|
103
|
-
|
|
104
|
-
assert len(node.args) == 2, len(node.args)
|
|
105
|
-
|
|
106
|
-
args = CopyArgs(*node.args, **node.kwargs) # type: ignore[arg-type]
|
|
107
|
-
dst = args.dst
|
|
108
|
-
src = args.src
|
|
109
|
-
|
|
110
|
-
# To connect 'dst' to Reshape node in the graph, 'dst' must be converted to Shape op.
|
|
111
|
-
dst_tensor: circle.Tensor.TensorT = self.graph.get_tensor(dst)
|
|
112
|
-
dst_shape: List[int] = dst_tensor.shape
|
|
113
|
-
dst_shape_signature: Optional[List[int]] = dst_tensor.shapeSignature
|
|
114
|
-
|
|
115
|
-
if dst_shape_signature is not None:
|
|
116
|
-
# TODO: support dynamic shape
|
|
117
|
-
raise NotYetSupportedError("Dynamic shape is not supported yet.")
|
|
118
|
-
|
|
119
|
-
dst_shape_tensor = torch.as_tensor(dst_shape, dtype=torch.int32)
|
|
120
|
-
|
|
121
|
-
dst_shape_shape = [len(dst_shape)]
|
|
122
|
-
dst_name: str = dst.name
|
|
123
|
-
|
|
124
|
-
shape_output = self.graph.add_tensor_from_scratch(
|
|
125
|
-
prefix=f"{dst_name}_shape_output",
|
|
126
|
-
shape=dst_shape_shape,
|
|
127
|
-
shape_signature=None,
|
|
128
|
-
dtype=circle.TensorType.TensorType.INT32,
|
|
129
|
-
source_node=node,
|
|
130
|
-
)
|
|
131
|
-
|
|
132
|
-
shape_operator = self.define_shape_node([dst], [shape_output])
|
|
133
|
-
self.graph.add_operator(shape_operator)
|
|
134
|
-
|
|
135
|
-
src_tensor: circle.Tensor.TensorT = self.graph.get_tensor(src)
|
|
136
|
-
src_shape: List[int] = src_tensor.shape
|
|
137
|
-
src_shape_signature: Optional[List[int]] = src_tensor.shapeSignature
|
|
138
|
-
|
|
139
|
-
if src_shape_signature is not None:
|
|
140
|
-
# TODO: support dynamic shape
|
|
141
|
-
raise NotYetSupportedError("Dynamic shape is not supported yet.")
|
|
142
|
-
|
|
143
|
-
# The src tensor must be broadcastable with the dst tensor.
|
|
144
|
-
do_broadcast = self.check_to_do_broadcast(
|
|
145
|
-
dst_shape, dst_shape_signature, src_shape, src_shape_signature
|
|
146
|
-
)
|
|
147
|
-
if do_broadcast:
|
|
148
|
-
# create braodcastTo output tensor
|
|
149
|
-
src_name: str = src.name
|
|
150
|
-
src_type: int = src_tensor.type
|
|
151
|
-
|
|
152
|
-
broadcast_to_output: circle.Tensor.TensorT = (
|
|
153
|
-
self.graph.add_tensor_from_scratch(
|
|
154
|
-
prefix=f"{src_name}_broadcast_to_output",
|
|
155
|
-
shape=dst_shape,
|
|
156
|
-
shape_signature=dst_shape_signature,
|
|
157
|
-
dtype=src_type,
|
|
158
|
-
source_node=node,
|
|
159
|
-
)
|
|
160
|
-
)
|
|
161
|
-
|
|
162
|
-
broadcast_to_operator: circle.Operator.OperatorT = (
|
|
163
|
-
self.define_broadcast_to_node(
|
|
164
|
-
[src_tensor, dst_shape_tensor], [broadcast_to_output]
|
|
165
|
-
)
|
|
166
|
-
)
|
|
167
|
-
self.graph.add_operator(broadcast_to_operator)
|
|
168
|
-
inputs: List = [broadcast_to_output, shape_output]
|
|
169
|
-
else:
|
|
170
|
-
inputs = [src, shape_output]
|
|
171
|
-
|
|
172
|
-
outputs = [node]
|
|
173
|
-
op_index = get_op_index(
|
|
174
|
-
circle.BuiltinOperator.BuiltinOperator.RESHAPE, self._op_codes
|
|
175
|
-
)
|
|
176
|
-
|
|
177
|
-
operator = create_builtin_operator(self.graph, op_index, inputs, outputs)
|
|
178
|
-
|
|
179
|
-
# Op-specific option
|
|
180
|
-
operator.builtinOptionsType = (
|
|
181
|
-
circle.BuiltinOptions.BuiltinOptions.ReshapeOptions
|
|
182
|
-
)
|
|
183
|
-
option = circle.ReshapeOptions.ReshapeOptionsT()
|
|
184
|
-
option.newShape = dst_shape
|
|
185
|
-
|
|
186
|
-
operator.builtinOptions = option
|
|
187
|
-
return operator
|