tico 0.1.0.dev250824__py3-none-any.whl → 0.1.0.dev250826__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
tico/__init__.py CHANGED
@@ -29,7 +29,7 @@ __all__ = [
29
29
  ]
30
30
 
31
31
  # THIS LINE IS AUTOMATICALLY GENERATED BY setup.py
32
- __version__ = "0.1.0.dev250824"
32
+ __version__ = "0.1.0.dev250826"
33
33
 
34
34
  MINIMUM_SUPPORTED_VERSION = "2.5.0"
35
35
  SECURE_TORCH_VERSION = "2.6.0"
@@ -0,0 +1 @@
1
+ # DO NOT REMOVE THIS FILE
@@ -0,0 +1,106 @@
1
+ # Copyright (c) 2025 Samsung Electronics Co., Ltd. All Rights Reserved
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+
15
+ # =============================================================================
16
+ # POST-TRAINING QUANTIZATION EXAMPLE — Simple Linear Model
17
+ # -----------------------------------------------------------------------------
18
+ # This demo shows a minimal PTQ flow for a toy model:
19
+ # 1. Define a simple model with a single Linear layer.
20
+ # 2. Replace the FP32 Linear with a QuantLinear wrapper.
21
+ # 3. Run a short calibration pass to collect activation statistics.
22
+ # 4. Freeze scales / zero-points and switch to INT-simulation mode.
23
+ # 5. Compare INT vs FP32 outputs with a mean-absolute-diff check.
24
+ # 6. Export the quantized model to a Circle format.
25
+ # =============================================================================
26
+
27
+ import pathlib
28
+
29
+ import torch
30
+ import torch.nn as nn
31
+
32
+ from tico.experimental.quantization.evaluation.metric import compute_peir
33
+ from tico.experimental.quantization.evaluation.utils import plot_two_outputs
34
+
35
+ from tico.experimental.quantization.ptq.mode import Mode
36
+ from tico.experimental.quantization.ptq.wrappers.nn.quant_linear import QuantLinear
37
+ from tico.utils.utils import SuppressWarning
38
+
39
+ # -------------------------------------------------------------------------
40
+ # 0. Define a toy model (1 Linear layer only)
41
+ # -------------------------------------------------------------------------
42
+ class TinyLinearModel(nn.Module):
43
+ """A minimal model: single Linear layer."""
44
+
45
+ def __init__(self, in_features=16, out_features=8):
46
+ super().__init__()
47
+ self.fc = nn.Linear(in_features, out_features, bias=False)
48
+
49
+ def forward(self, x):
50
+ return self.fc(x)
51
+
52
+
53
+ # Instantiate FP32 model
54
+ model = TinyLinearModel()
55
+ model.eval()
56
+
57
+ # Keep FP32 reference for diff check
58
+ fp32_layer = model.fc
59
+
60
+ # -------------------------------------------------------------------------
61
+ # 1. Replace the Linear with QuantLinear wrapper
62
+ # -------------------------------------------------------------------------
63
+ model.fc = QuantLinear(fp32_layer) # type: ignore[assignment]
64
+ # model.fc = PTQWrapper(fp32_layer) (Wrapping helper class)
65
+ qlayer = model.fc # alias for brevity
66
+
67
+ # -------------------------------------------------------------------------
68
+ # 2. Single-pass calibration (collect activation ranges)
69
+ # -------------------------------------------------------------------------
70
+ assert isinstance(qlayer, QuantLinear)
71
+ with torch.no_grad():
72
+ qlayer.enable_calibration()
73
+ for _ in range(16): # small toy batch
74
+ x = torch.randn(4, 16) # (batch=4, features=16)
75
+ _ = model(x)
76
+ qlayer.freeze_qparams() # lock scales & zero-points
77
+
78
+ assert qlayer._mode is Mode.QUANT, "Quantization mode should be active now."
79
+
80
+ # -------------------------------------------------------------------------
81
+ # 3. Quick INT-sim vs FP32 sanity check
82
+ # -------------------------------------------------------------------------
83
+ x = torch.randn(2, 16)
84
+ with torch.no_grad():
85
+ int8_out = model(x)
86
+ fp32_out = fp32_layer(x)
87
+
88
+ print("┌───────────── Quantization Error Summary ─────────────")
89
+ print(f"│ Mean |diff|: {(int8_out - fp32_out).abs().mean().item():.6f}")
90
+ print(f"│ PEIR : {compute_peir(fp32_out, int8_out) * 100:.6f} %")
91
+ print("└──────────────────────────────────────────────────────")
92
+ print(plot_two_outputs(fp32_out, int8_out))
93
+
94
+ # -------------------------------------------------------------------------
95
+ # 4. Export the calibrated model to Circle
96
+ # -------------------------------------------------------------------------
97
+ import tico
98
+
99
+ save_path = pathlib.Path("tiny_linear.q.circle")
100
+ example_input = torch.randn(1, 16)
101
+
102
+ with SuppressWarning(UserWarning, ".*"):
103
+ cm = tico.convert(model, (example_input,)) # forward(x) only
104
+ cm.save(save_path)
105
+
106
+ print(f"Quantized Circle model saved to {save_path.resolve()}")
@@ -1,5 +1,11 @@
1
+ from tico.experimental.quantization.ptq.wrappers.nn.quant_layernorm import (
2
+ QuantLayerNorm,
3
+ )
1
4
  from tico.experimental.quantization.ptq.wrappers.nn.quant_linear import QuantLinear
5
+ from tico.experimental.quantization.ptq.wrappers.nn.quant_silu import QuantSiLU
2
6
 
3
7
  __all__ = [
8
+ "QuantLayerNorm",
4
9
  "QuantLinear",
10
+ "QuantSiLU",
5
11
  ]
@@ -0,0 +1,184 @@
1
+ # Copyright (c) 2025 Samsung Electronics Co., Ltd. All Rights Reserved
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+
15
+ from typing import Iterable, Optional, Tuple
16
+
17
+ import torch
18
+ import torch.nn as nn
19
+
20
+ from tico.experimental.quantization.ptq.mode import Mode
21
+ from tico.experimental.quantization.ptq.quant_config import QuantConfig
22
+ from tico.experimental.quantization.ptq.wrappers.quant_module_base import (
23
+ QuantModuleBase,
24
+ )
25
+ from tico.experimental.quantization.ptq.wrappers.registry import register
26
+
27
+
28
+ @register(nn.LayerNorm)
29
+ class QuantLayerNorm(QuantModuleBase):
30
+ """
31
+ QuantLayerNorm — drop-in replacement for nn.LayerNorm that quantizes
32
+ the elementary steps:
33
+ 1) μ = mean(x, dims) (mean)
34
+ 2) c = x - μ (sub)
35
+ 3) s = c * c (square)
36
+ 4) v = mean(s, dims) (variance)
37
+ 5) e = v + eps (add-eps)
38
+ 6) r = rsqrt(e) (rsqrt)
39
+ 7) n = c * r (normalize)
40
+ 8) y = (n * γ) + β (affine), with:
41
+ • affine_mul : n * γ
42
+ • affine_add : (n * γ) + β
43
+ """
44
+
45
+ def __init__(
46
+ self,
47
+ fp: nn.LayerNorm,
48
+ *,
49
+ qcfg: Optional[QuantConfig] = None,
50
+ fp_name: Optional[str] = None
51
+ ):
52
+ super().__init__(qcfg, fp_name=fp_name)
53
+ self.module = fp
54
+ self.eps = torch.tensor(self.module.eps)
55
+ # Number of trailing dims participating in normalization
56
+ # (PyTorch stores normalized_shape as a tuple even if an int was passed)
57
+ self._norm_ndim: int = len(fp.normalized_shape) # safe for int→tuple
58
+
59
+ # Activation / intermediate observers
60
+ self.act_in_obs = self._make_obs("act_in")
61
+ self.mean_obs = self._make_obs("mean")
62
+ self.centered_obs = self._make_obs("centered")
63
+ self.square_obs = self._make_obs("square")
64
+ self.var_obs = self._make_obs("var")
65
+ self.eps_obs = self._make_obs("eps")
66
+ self.add_eps_obs = self._make_obs("add_eps")
67
+ self.inv_std_obs = self._make_obs("inv_std")
68
+ self.norm_obs = self._make_obs("norm")
69
+ self.act_out_obs = self._make_obs("act_out")
70
+
71
+ # Optional affine parameter observers (γ, β)
72
+ self.weight_obs = None
73
+ self.bias_obs = None
74
+ self.affine_mul_obs = None
75
+ self.affine_add_obs = None
76
+ if self.module.elementwise_affine:
77
+ if self.module.weight is not None:
78
+ self.weight_obs = self._make_obs("weight")
79
+ if self.module.bias is not None:
80
+ self.bias_obs = self._make_obs("bias")
81
+ # Per-op observers for (n * w) and (+ b)
82
+ self.affine_mul_obs = self._make_obs("affine_mul")
83
+ self.affine_add_obs = self._make_obs("affine_add")
84
+
85
+ def enable_calibration(self) -> None:
86
+ """
87
+ Switch to CALIB mode and collect *fixed* ranges for affine params
88
+ immediately, since they do not change across inputs.
89
+ """
90
+ super().enable_calibration()
91
+ if self.module.elementwise_affine:
92
+ if self.weight_obs is not None and self.module.weight is not None:
93
+ self.weight_obs.collect(self.module.weight)
94
+ if self.bias_obs is not None and self.module.bias is not None:
95
+ self.bias_obs.collect(self.module.bias)
96
+
97
+ def forward(self, x: torch.Tensor) -> torch.Tensor:
98
+ # Determine reduction dims (last self._norm_ndim axes)
99
+ # Example: if x.ndim=4 and norm_ndim=2 → dims=(2,3)
100
+ dims = tuple(range(x.dim() - self._norm_ndim, x.dim()))
101
+
102
+ # 0) input
103
+ x_q = self._fq(x, self.act_in_obs)
104
+
105
+ # 1) mean
106
+ mu = x_q.mean(dim=dims, keepdim=True)
107
+ mu_q = self._fq(mu, self.mean_obs)
108
+
109
+ # 2) center
110
+ c = x_q - mu_q
111
+ c_q = self._fq(c, self.centered_obs)
112
+
113
+ # 3) square (elementwise mul)
114
+ s = c_q * c_q
115
+ s_q = self._fq(s, self.square_obs)
116
+
117
+ # 4) variance (via squared mean)
118
+ v = s_q.mean(dim=dims, keepdim=True)
119
+ v_q = self._fq(v, self.var_obs)
120
+
121
+ # 5) add eps
122
+ eps_q = self._fq(self.eps, self.eps_obs)
123
+ e = v_q + eps_q
124
+ e_q = self._fq(e, self.add_eps_obs)
125
+
126
+ # 6) inverse std
127
+ r = torch.rsqrt(e_q)
128
+ r_q = self._fq(r, self.inv_std_obs)
129
+
130
+ # 7) normalize
131
+ n = c_q * r_q
132
+ n_q = self._fq(n, self.norm_obs)
133
+
134
+ # 8) optional affine
135
+ if self.module.elementwise_affine:
136
+ w = self.module.weight
137
+ b = self.module.bias
138
+ if self._mode is Mode.QUANT:
139
+ if self.weight_obs is not None and w is not None:
140
+ w = self.weight_obs.fake_quant(w) # type: ignore[assignment]
141
+ if self.bias_obs is not None and b is not None:
142
+ b = self.bias_obs.fake_quant(b) # type: ignore[assignment]
143
+ y = n_q
144
+ # 8a) n * w (fake-quant the result of the mul)
145
+ if w is not None:
146
+ y = y * w
147
+ if self.affine_mul_obs is not None:
148
+ y = self._fq(y, self.affine_mul_obs)
149
+
150
+ # 8b) (+ b) (fake-quant the result of the add)
151
+ if b is not None:
152
+ y = y + b
153
+ if self.affine_add_obs is not None:
154
+ y = self._fq(y, self.affine_add_obs)
155
+ else:
156
+ y = n_q
157
+
158
+ # 9) output activation
159
+ return self._fq(y, self.act_out_obs)
160
+
161
+ def _all_observers(self) -> Iterable:
162
+ obs: Tuple = (
163
+ self.act_in_obs,
164
+ self.mean_obs,
165
+ self.centered_obs,
166
+ self.square_obs,
167
+ self.var_obs,
168
+ self.eps_obs,
169
+ self.add_eps_obs,
170
+ self.inv_std_obs,
171
+ self.norm_obs,
172
+ self.act_out_obs,
173
+ )
174
+ # Insert affine param observers if present
175
+ if self.module.elementwise_affine:
176
+ if self.weight_obs is not None:
177
+ obs = (self.weight_obs,) + obs
178
+ if self.bias_obs is not None:
179
+ obs = obs + (self.bias_obs,)
180
+ if self.affine_mul_obs is not None:
181
+ obs = obs + (self.affine_mul_obs,)
182
+ if self.affine_add_obs is not None:
183
+ obs = obs + (self.affine_add_obs,)
184
+ return obs
@@ -0,0 +1,61 @@
1
+ # Copyright (c) 2025 Samsung Electronics Co., Ltd. All Rights Reserved
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+
15
+ from typing import Optional
16
+
17
+ import torch
18
+ import torch.nn as nn
19
+
20
+ from tico.experimental.quantization.ptq.quant_config import QuantConfig
21
+ from tico.experimental.quantization.ptq.wrappers.quant_module_base import (
22
+ QuantModuleBase,
23
+ )
24
+ from tico.experimental.quantization.ptq.wrappers.registry import register
25
+
26
+
27
+ @register(nn.SiLU)
28
+ class QuantSiLU(QuantModuleBase):
29
+ """
30
+ QuantSiLU — drop-in replacement for nn.SiLU that quantizes
31
+ both intermediate tensors:
32
+ • s = sigmoid(x) (logistic)
33
+ • y = x * s (mul)
34
+ """
35
+
36
+ def __init__(
37
+ self,
38
+ fp: nn.SiLU,
39
+ *,
40
+ qcfg: Optional[QuantConfig] = None,
41
+ fp_name: Optional[str] = None
42
+ ):
43
+ super().__init__(qcfg, fp_name=fp_name)
44
+ self.act_in_obs = self._make_obs("act_in")
45
+ self.sig_obs = self._make_obs("sigmoid")
46
+ self.mul_obs = self._make_obs("mul")
47
+ self.module = fp
48
+
49
+ def forward(self, x: torch.Tensor):
50
+ x_q = self._fq(x, self.act_in_obs)
51
+
52
+ s = torch.sigmoid(x_q)
53
+ s = self._fq(s, self.sig_obs)
54
+
55
+ y = x * s
56
+ y = self._fq(y, self.mul_obs)
57
+
58
+ return y
59
+
60
+ def _all_observers(self):
61
+ return (self.act_in_obs, self.sig_obs, self.mul_obs)
@@ -48,7 +48,24 @@ class PTQWrapper(QuantModuleBase):
48
48
  return self.wrapped(*args, **kwargs)
49
49
 
50
50
  def _all_observers(self):
51
- yield from self.wrapped._all_observers()
51
+ """
52
+ PTQWrapper itself owns NO observers (transparent node).
53
+ Returning an empty iterator prevents double-processing when parents
54
+ traverse the tree and then recurse into `self.wrapped`.
55
+ """
56
+ return () # no local observers
57
+
58
+ def named_observers(self):
59
+ """
60
+ Proxy to the wrapped module so debugging tools can still enumerate observers.
61
+ """
62
+ yield from self.wrapped.named_observers()
63
+
64
+ def get_observer(self, name: str):
65
+ """
66
+ Proxy to the wrapped module for direct lookup by name.
67
+ """
68
+ return self.wrapped.get_observer(name)
52
69
 
53
70
  def extra_repr(self) -> str:
54
71
  return self.wrapped.extra_repr()
@@ -46,10 +46,24 @@ class QuantModuleBase(nn.Module, ABC):
46
46
  self.fp_name = fp_name
47
47
 
48
48
  def _child_quant_modules(self):
49
- """Yield direct children that are QuantModuleBase."""
50
- for m in self.children():
49
+ """
50
+ Yield immediate QuantModuleBase *descendants*, skipping over pure containers
51
+ (e.g., ModuleList/Sequential/ModuleDict). Once a QuantModuleBase is found,
52
+ do NOT descend into it here—let recursion happen level by level.
53
+ """
54
+ seen = set()
55
+ stack = list(self.children()) # start from direct children
56
+
57
+ while stack:
58
+ m = stack.pop()
51
59
  if isinstance(m, QuantModuleBase):
52
- yield m
60
+ if id(m) not in seen:
61
+ seen.add(id(m))
62
+ yield m
63
+ # IMPORTANT: do not recurse into `m` here; its own call will handle its subtree
64
+ elif isinstance(m, (nn.ModuleList, nn.ModuleDict, nn.Sequential)):
65
+ # `m` is a container or a non-quant leaf: keep descending until we hit quant modules
66
+ stack.extend(list(m.children()))
53
67
 
54
68
  def enable_calibration(self) -> None:
55
69
  self._mode = Mode.CALIB
@@ -24,7 +24,10 @@ from tico.experimental.quantization.ptq.wrappers.quant_module_base import (
24
24
  _WRAPPERS: Dict[Type[nn.Module], Type[QuantModuleBase]] = {}
25
25
  _IMPORT_ONCE = False
26
26
  _CORE_MODULES = (
27
+ "tico.experimental.quantization.ptq.wrappers.quant_elementwise",
28
+ "tico.experimental.quantization.ptq.wrappers.nn.quant_layernorm",
27
29
  "tico.experimental.quantization.ptq.wrappers.nn.quant_linear",
30
+ "tico.experimental.quantization.ptq.wrappers.nn.quant_silu",
28
31
  # add future core wrappers here
29
32
  )
30
33
 
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: tico
3
- Version: 0.1.0.dev250824
3
+ Version: 0.1.0.dev250826
4
4
  Summary: Convert exported Torch module to circle
5
5
  Home-page: UNKNOWN
6
6
  License: UNKNOWN
@@ -1,4 +1,4 @@
1
- tico/__init__.py,sha256=KpoO-uGcDRC4A9St5fZzxTPNGa4_zegc4omDan4X0qg,1883
1
+ tico/__init__.py,sha256=M4dQ4CTD_7xsO5DjUx76t4A5o1Q_2NqGlMe0fjkGDxQ,1883
2
2
  tico/pt2_to_circle.py,sha256=gu3MD4Iqc0zMZcCZ2IT8oGbyj21CTSbT3Rgd9s2B_9A,2767
3
3
  tico/config/__init__.py,sha256=xZzCXjZ84qE-CsBi-dfaL05bqpQ3stKKfTXhnrJRyVs,142
4
4
  tico/config/base.py,sha256=q5xMqGxTUZs4mFqt5c7i_y9U00fYgdMGl9nUqIVMlCo,1248
@@ -61,6 +61,8 @@ tico/experimental/quantization/ptq/dtypes.py,sha256=xfCBtq6mQmUYRwsoFgII6gvRl1ra
61
61
  tico/experimental/quantization/ptq/mode.py,sha256=lT-T8vIv8YWcwrjT7xXVhOw1g7aoAdh_3PWB-ptPKaI,1052
62
62
  tico/experimental/quantization/ptq/qscheme.py,sha256=uwhv7bCxOOXB3I-IKlRyr_u4eXOq48uIqGy4TLDqGxY,1301
63
63
  tico/experimental/quantization/ptq/quant_config.py,sha256=nm7570Y1X2mOT_8s27ilWid04otor6cVTi9GwgAEaKc,4300
64
+ tico/experimental/quantization/ptq/examples/__init__.py,sha256=IO6FP_xYbGy0dW0HL26GXD3ouxARaxCK7bz9dn4blPQ,26
65
+ tico/experimental/quantization/ptq/examples/quantize_linear.py,sha256=8zq-ZJDYgam0xQ-PbC6Xb1I7W1mv0Wi-b--IP2wwXtw,4539
64
66
  tico/experimental/quantization/ptq/observers/__init__.py,sha256=WF2MvL9M_jl-B1FqcY9zic34NOCRp17HkRYv-TMxMr4,613
65
67
  tico/experimental/quantization/ptq/observers/affine_base.py,sha256=e2Eba64nrxKQyE4F_WJ7WTSsk3xe6bkdGUKaoLFWGFw,4638
66
68
  tico/experimental/quantization/ptq/observers/base.py,sha256=Wons1MzpqK1mfcy-ppl-B2Dum0edXg2dWW2Lw3V18tw,3280
@@ -71,12 +73,14 @@ tico/experimental/quantization/ptq/observers/mx.py,sha256=aP4qmBgeiRIYZJksShN5gs
71
73
  tico/experimental/quantization/ptq/utils/__init__.py,sha256=PL9IZgiWoMtsXVljeOy7KymmLVP238SXEFRLXYK72WQ,126
72
74
  tico/experimental/quantization/ptq/utils/reduce_utils.py,sha256=3kWawLB91EcvvHlCrNqqfZF7tpgr22htBSA049mKw_4,973
73
75
  tico/experimental/quantization/ptq/wrappers/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
74
- tico/experimental/quantization/ptq/wrappers/ptq_wrapper.py,sha256=KRw_VvFJYvd2OBj4K1sYEXxUwZk9QghMw3NsgjKIAGk,1857
76
+ tico/experimental/quantization/ptq/wrappers/ptq_wrapper.py,sha256=F9sK_DiRaXiGNHULcwIbs5EUtHz6ZJ7N4r5CWTTfhsM,2442
75
77
  tico/experimental/quantization/ptq/wrappers/quant_elementwise.py,sha256=LhEoobfvto6zKrBOKL4gmxfFFc31jHzyQV_zfps-iQM,3604
76
- tico/experimental/quantization/ptq/wrappers/quant_module_base.py,sha256=6RK4bn9G1pzFmkIdBdFf7liBOpb-b7rpthgD83AgkbQ,5256
77
- tico/experimental/quantization/ptq/wrappers/registry.py,sha256=exXl2wNNzVgC2P9gMjpF_-PqIBgYERGruzh0u1Pril0,4367
78
- tico/experimental/quantization/ptq/wrappers/nn/__init__.py,sha256=q4A9BiGlsa8ZdGV3y0SDiSkzkdVugsK2iz2daiJqBCY,118
78
+ tico/experimental/quantization/ptq/wrappers/quant_module_base.py,sha256=vkcDos_knGSS29rIZuEIWkAJLHrENbGz8nCH2-iara8,5969
79
+ tico/experimental/quantization/ptq/wrappers/registry.py,sha256=562nKSlp9qF-w4-aQeJbx2V_wMGE2FRrjIKUfRwC4Mg,4571
80
+ tico/experimental/quantization/ptq/wrappers/nn/__init__.py,sha256=I9uTt5HfcRoMEDYHpAeATMv2TbCQiX0ZbfUFMzSJ4Qw,336
81
+ tico/experimental/quantization/ptq/wrappers/nn/quant_layernorm.py,sha256=G5Sgt-tXnzh0Rxyk-2honmZIfEQOZlRfOsoDBdSGmA4,6887
79
82
  tico/experimental/quantization/ptq/wrappers/nn/quant_linear.py,sha256=xW-VEPB7RJoslS3xLVCdhIuMjppknvpkZleRGK4JFVQ,2240
83
+ tico/experimental/quantization/ptq/wrappers/nn/quant_silu.py,sha256=XnJDggkWUTfXC1-BLeAbcCUtp687XLIkIIbuQlqycDw,1864
80
84
  tico/interpreter/__init__.py,sha256=IO6FP_xYbGy0dW0HL26GXD3ouxARaxCK7bz9dn4blPQ,26
81
85
  tico/interpreter/infer.py,sha256=1ZFe3DVMR2mlwBosoedqoL0-CGN_01CKLgMgxuw62KA,4861
82
86
  tico/interpreter/interpreter.py,sha256=tGbluCbrehTCqBu8mtGDNzby_ieJ2ry8_RH_eC0CQxk,3828
@@ -231,9 +235,9 @@ tico/utils/mx/__init__.py,sha256=IO6FP_xYbGy0dW0HL26GXD3ouxARaxCK7bz9dn4blPQ,26
231
235
  tico/utils/mx/elemwise_ops.py,sha256=V6glyAHsVR1joqpsgnNytatCD_ew92xNWZ19UFDoMTA,10281
232
236
  tico/utils/mx/formats.py,sha256=uzNWyu-1onUlwQfX5cZ6fZSUfHMRqorper7_T1k3jfk,3404
233
237
  tico/utils/mx/mx_ops.py,sha256=RcfUTYVi-wilGB2sC35OeARdwDqnixv7dG5iyZ-fQT8,8555
234
- tico-0.1.0.dev250824.dist-info/LICENSE,sha256=kp4JLII7bzRhPb0CPD5XTDZMh22BQ7h3k3B7t8TiSbw,12644
235
- tico-0.1.0.dev250824.dist-info/METADATA,sha256=5PX-E9sIG566-2M_MBf8gnBXrQTSpyXzsPTeL-BLPEQ,8450
236
- tico-0.1.0.dev250824.dist-info/WHEEL,sha256=G16H4A3IeoQmnOrYV4ueZGKSjhipXx8zc8nu9FGlvMA,92
237
- tico-0.1.0.dev250824.dist-info/entry_points.txt,sha256=kBKYSS_IYrSXmUYevmmepqIVPScq5vF8ulQRu3I_Zf0,59
238
- tico-0.1.0.dev250824.dist-info/top_level.txt,sha256=oqs7UPoNSKZEwqsX8B-KAWdQwfAa7i60pbxW_Jk7P3w,5
239
- tico-0.1.0.dev250824.dist-info/RECORD,,
238
+ tico-0.1.0.dev250826.dist-info/LICENSE,sha256=kp4JLII7bzRhPb0CPD5XTDZMh22BQ7h3k3B7t8TiSbw,12644
239
+ tico-0.1.0.dev250826.dist-info/METADATA,sha256=QhtUiHj_YT4ZxsClOx4OaP24kuaLUsLT83x3yl1gRDY,8450
240
+ tico-0.1.0.dev250826.dist-info/WHEEL,sha256=G16H4A3IeoQmnOrYV4ueZGKSjhipXx8zc8nu9FGlvMA,92
241
+ tico-0.1.0.dev250826.dist-info/entry_points.txt,sha256=kBKYSS_IYrSXmUYevmmepqIVPScq5vF8ulQRu3I_Zf0,59
242
+ tico-0.1.0.dev250826.dist-info/top_level.txt,sha256=oqs7UPoNSKZEwqsX8B-KAWdQwfAa7i60pbxW_Jk7P3w,5
243
+ tico-0.1.0.dev250826.dist-info/RECORD,,