tico 0.1.0.dev250630__py3-none-any.whl → 0.1.0.dev250702__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
tico/__init__.py CHANGED
@@ -21,7 +21,7 @@ from tico.config import CompileConfigV1, get_default_config
21
21
  from tico.utils.convert import convert, convert_from_exported_program, convert_from_pt2
22
22
 
23
23
  # THIS LINE IS AUTOMATICALLY GENERATED BY setup.py
24
- __version__ = "0.1.0.dev250630"
24
+ __version__ = "0.1.0.dev250702"
25
25
 
26
26
  MINIMUM_SUPPORTED_VERSION = "2.5.0"
27
27
  SECURE_TORCH_VERSION = "2.6.0"
tico/interpreter/infer.py CHANGED
@@ -12,7 +12,7 @@
12
12
  # See the License for the specific language governing permissions and
13
13
  # limitations under the License.
14
14
 
15
- from typing import Any
15
+ from typing import Any, Sequence
16
16
 
17
17
  import numpy as np
18
18
  import torch
@@ -20,40 +20,46 @@ from circle_schema import circle
20
20
 
21
21
  from tico.interpreter.interpreter import Interpreter
22
22
  from tico.serialize.circle_mapping import np_dtype_from_circle_dtype, to_circle_dtype
23
+ from tico.utils.installed_packages import is_dynamic_cache_available
23
24
 
24
25
 
25
- def preprocess_inputs(inputs: Any):
26
- """
27
- Preprocess user inputs for circle inference.
26
+ def flatten_and_convert(inputs: Sequence) -> tuple:
27
+ result = [] # type: ignore[var-annotated]
28
+ for item in inputs:
29
+ if item is None:
30
+ continue
28
31
 
29
- 1. None inputs are ignored.
30
- 2. A list/tuple input is flatten when a torch module is exported.
31
- e.g. inputs = (torch.Tensor, [2,3,4]) -> inputs = (torch.Tensor, 2, 3, 4)
32
- """
33
- l = []
34
- for value in inputs:
35
- if value == None:
32
+ # 1. recursion on list and tuple
33
+ if isinstance(item, (list, tuple)):
34
+ result.extend(flatten_and_convert(item))
36
35
  continue
37
- if isinstance(value, (tuple, list)):
38
- for val in value:
39
- l.append(val)
40
- else:
41
- l.append(value)
42
- # Check if it is a list of a list.
43
- if any(isinstance(item, (tuple, list)) for item in l):
44
- l = preprocess_inputs(l)
45
- return tuple(l)
36
+
37
+ # 2. handle DynamicCache
38
+ if is_dynamic_cache_available():
39
+ from transformers.cache_utils import DynamicCache
40
+
41
+ if isinstance(item, DynamicCache):
42
+ # NOTE The tensor order is: key_in → key_out → value_in → value_out
43
+ #
44
+ # Refer to https://github.com/huggingface/transformers/blob/3457e8e73e4f5532cc69059682b1ba4484d7e7e8/src/transformers/cache_utils.py#L557
45
+ # ```py
46
+ # self.key_cache[layer_idx] = torch.cat([self.key_cache[layer_idx], key_states], dim=-2)
47
+ # self.value_cache[layer_idx] = torch.cat([self.value_cache[layer_idx], value_states], dim=-2)
48
+ # ```
49
+ result.extend(item.key_cache)
50
+ result.extend(item.value_cache)
51
+ continue
52
+
53
+ # 3. Convert to tensors
54
+ result.append(item if isinstance(item, torch.Tensor) else torch.tensor(item))
55
+
56
+ return tuple(result)
46
57
 
47
58
 
48
59
  def infer(circle_binary: bytes, *args: Any, **kwargs: Any) -> Any:
49
60
  # When converting a model, it is assumed that the order of keyword arguments is maintained.
50
- user_inputs = args + tuple(kwargs.values())
51
- user_inputs = preprocess_inputs(user_inputs)
52
- # Cast them to torch.Tensor to make it simple.
53
- user_inputs = tuple(
54
- torch.tensor(user_input) if type(user_input) != torch.Tensor else user_input
55
- for user_input in user_inputs
56
- )
61
+ raw_inputs = args + tuple(kwargs.values())
62
+ user_inputs = flatten_and_convert(raw_inputs)
57
63
 
58
64
  # Get input spec from circle binary.
59
65
  model = circle.Model.Model.GetRootAsModel(circle_binary, 0)
@@ -30,6 +30,7 @@ from tico.utils.utils import is_target_node
30
30
  from tico.utils.validate_args_kwargs import (
31
31
  AvgPool2dArgs,
32
32
  Conv2DArgs,
33
+ ConvTranspose2DArgs,
33
34
  DequantizePerChannelArgs,
34
35
  DequantizePerTensorArgs,
35
36
  InstanceNormArgs,
@@ -37,7 +38,9 @@ from tico.utils.validate_args_kwargs import (
37
38
  )
38
39
 
39
40
 
40
- def get_permute_weight_input(conv_args: Conv2DArgs) -> torch.fx.Node:
41
+ def get_permute_weight_input(
42
+ conv_args: Conv2DArgs | ConvTranspose2DArgs,
43
+ ) -> torch.fx.Node:
41
44
  """
42
45
  Retrieves the weight input for the permute operation.
43
46
 
@@ -194,6 +197,85 @@ class LegalizePreDefinedLayoutOperators(PassBase):
194
197
  modified = True
195
198
  return modified
196
199
 
200
+ def legalize_conv_transpose2d(self, exported_program, node) -> bool:
201
+ logger = logging.getLogger(__name__)
202
+ modified = False
203
+
204
+ graph_module = exported_program.graph_module
205
+ graph = graph_module.graph
206
+
207
+ args = ConvTranspose2DArgs(*node.args, **node.kwargs) # type: ignore[arg-type]
208
+ input = args.input
209
+ padding = args.padding
210
+ groups = args.groups
211
+ dilation = args.dilation
212
+
213
+ input_shape = extract_shape(input)
214
+ if not (len(input_shape) == 4):
215
+ raise NotYetSupportedError(
216
+ f"Only support 4D input tensor: node's input shape: {input_shape}"
217
+ )
218
+
219
+ if groups != 1:
220
+ raise NotYetSupportedError(
221
+ f"Only support groups=1: node's groups: {groups}"
222
+ )
223
+
224
+ if dilation != [1, 1]:
225
+ raise NotYetSupportedError(
226
+ f"Only support dilation=[1, 1]: node's groups: {dilation}"
227
+ )
228
+
229
+ NCHW_to_NHWC = [0, 2, 3, 1]
230
+ # input permute
231
+ with graph.inserting_after(input):
232
+ input_permute = create_node(
233
+ graph,
234
+ torch.ops.aten.permute.default,
235
+ args=(input, NCHW_to_NHWC),
236
+ origin=input,
237
+ )
238
+ node.update_arg(node.args.index(input), input_permute)
239
+
240
+ # weight permute
241
+ weight = get_permute_weight_input(args)
242
+ with graph.inserting_after(weight):
243
+ perm = [1, 2, 3, 0] # IOHW_to_OHWI
244
+ weight_permute = create_node(
245
+ graph,
246
+ torch.ops.aten.permute.default,
247
+ args=(weight, perm),
248
+ origin=weight,
249
+ )
250
+ if args.weight.target in [
251
+ torch.ops.quantized_decomposed.dequantize_per_channel.default,
252
+ torch.ops.quantized_decomposed.dequantize_per_tensor.default,
253
+ ]:
254
+ dq = args.weight
255
+ dq.update_arg(dq.args.index(weight), weight_permute)
256
+ # Need to update dq.meta["val"] in FillMetaVal pass.
257
+ del dq.meta["val"]
258
+ else:
259
+ node.update_arg(node.args.index(weight), weight_permute)
260
+
261
+ with graph.inserting_before(node):
262
+ legalized_op = torch.ops.circle_custom.transpose_conv
263
+ circle_op = create_node(
264
+ graph, legalized_op, args=node.args, kwargs=node.kwargs, origin=node
265
+ )
266
+ # output permute
267
+ NHWC_to_NCHW = [0, 3, 1, 2]
268
+ conv_out_permute = create_node(
269
+ graph,
270
+ torch.ops.aten.permute.default,
271
+ args=(circle_op, NHWC_to_NCHW),
272
+ )
273
+ node.replace_all_uses_with(conv_out_permute, propagate_meta=True)
274
+
275
+ logger.debug(f"{node.name} is replaced with {circle_op.name}")
276
+ modified = True
277
+ return modified
278
+
197
279
  def legalize_instance_norm(self, exported_program, node) -> bool:
198
280
  logger = logging.getLogger(__name__)
199
281
  modified = False
@@ -365,6 +447,7 @@ class LegalizePreDefinedLayoutOperators(PassBase):
365
447
  target_to_legalize_func = {
366
448
  torch.ops.aten.conv2d.default: self.legalize_conv2d,
367
449
  torch.ops.aten.conv2d.padding: self.legalize_conv2d,
450
+ torch.ops.aten.conv_transpose2d.input: self.legalize_conv_transpose2d,
368
451
  torch.ops.aten.max_pool2d_with_indices.default: self.legalize_max_pool2d_with_indices,
369
452
  torch.ops.aten.avg_pool2d.default: self.legalize_avg_pool2d,
370
453
  torch.ops.aten.instance_norm.default: self.legalize_instance_norm,
@@ -26,7 +26,7 @@ from tico.serialize.operators.node_visitor import NodeVisitor, register_node_vis
26
26
  from tico.serialize.operators.utils import create_builtin_operator, get_op_index
27
27
  from tico.serialize.quant_param import QPARAM_KEY, QuantParam
28
28
  from tico.utils.define import define_pad_node
29
- from tico.utils.padding import is_same_padding, is_valid_padding, SAME, VALID
29
+ from tico.utils.padding import identify_padding
30
30
  from tico.utils.validate_args_kwargs import Conv2DArgs
31
31
 
32
32
 
@@ -111,53 +111,39 @@ class Conv2dVisitor(NodeVisitor):
111
111
 
112
112
  assert groups == 1, "Only support group 1 conv2d"
113
113
 
114
- input_dtype: int = extract_circle_dtype(input_)
115
114
  input_shape = list(extract_shape(input_))
115
+ output_shape = list(extract_shape(node))
116
+ weight_shape = list(extract_shape(weight))
116
117
  assert len(input_shape) == 4, len(input_shape)
117
- output_shape = extract_shape(node)
118
118
  assert len(output_shape) == 4, len(output_shape)
119
+ assert len(weight_shape) == 4, len(weight_shape)
119
120
 
120
- conv_input: torch.fx.node.Node | circle.Tensor.TensorT = input_
121
- weight_shape = list(extract_shape(weight))
122
-
123
- if is_valid_padding(padding):
124
- conv2d_padding_type = VALID
125
- elif is_same_padding(padding, input_shape, output_shape) and stride == [1, 1]:
126
- conv2d_padding_type = SAME
127
- else:
128
- assert isinstance(padding, list) and len(padding) == 2
121
+ pad_decision = identify_padding(padding, input_shape, output_shape, stride)
129
122
 
130
- conv2d_padding_type = VALID
131
-
132
- # Padding is not valid or same, so we use valid padding and add padding operator before conv2d operator.
133
- # when data_foramt is "NHWC", padding should be [[0, 0], [pad_top, pad_bottom], [pad_left, pad_right], [0, 0]]
123
+ conv_input: torch.fx.Node | circle.Tensor.TensorT = input_
124
+ if pad_decision.explicit_pad_hw is not None:
125
+ pad_h, pad_w = pad_decision.explicit_pad_hw
134
126
  paddings = torch.tensor(
135
127
  [
136
128
  [0, 0],
137
- [padding[0], padding[0]],
138
- [padding[1], padding[1]],
129
+ [pad_h, pad_h],
130
+ [pad_w, pad_w],
139
131
  [0, 0],
140
132
  ],
141
133
  dtype=torch.int32,
142
134
  )
143
135
  pad_output_shape = [
144
136
  input_shape[0],
145
- input_shape[1],
146
- input_shape[2],
137
+ input_shape[1] + pad_h * 2,
138
+ input_shape[2] + pad_w * 2,
147
139
  input_shape[3],
148
140
  ]
149
- # Add (pad_top+pad_bottom) to pad_output_shape_h
150
- pad_output_shape[1] += padding[0] * 2
151
- # Add (pad_left+pad_Right) to pad_output_shape_w
152
- pad_output_shape[2] += padding[1] * 2
153
141
  # create padded output tensor
154
- input_qparam: Optional[QuantParam] = (
155
- input_.meta[QPARAM_KEY] if QPARAM_KEY in input_.meta else None
156
- )
142
+ input_qparam: Optional[QuantParam] = input_.meta.get(QPARAM_KEY)
157
143
  pad_output = self.graph.add_tensor_from_scratch(
158
144
  prefix=f"{node.name}_input_pad_output",
159
145
  shape=pad_output_shape,
160
- dtype=input_dtype,
146
+ dtype=extract_circle_dtype(input_),
161
147
  qparam=input_qparam,
162
148
  source_node=node,
163
149
  )
@@ -170,13 +156,11 @@ class Conv2dVisitor(NodeVisitor):
170
156
 
171
157
  if bias is None:
172
158
  # luci-interpreter can't run no bias conv. Let's add zero vector for bias.
173
- assert len(weight_shape) == 4
174
- out_channel = weight_shape[0]
175
- bias = [0.0] * out_channel # type: ignore[assignment]
159
+ bias = [0.0] * weight_shape[0] # type: ignore[assignment]
176
160
 
177
161
  # Conv2D
178
162
  conv2d_operator = self.define_conv2d_node(
179
- conv2d_padding_type, # 'SAME'(0) or 'VALID'(1)
163
+ pad_decision.conv_padding_type, # 'SAME'(0) or 'VALID'(1)
180
164
  stride,
181
165
  dilation,
182
166
  [conv_input, weight, bias],
@@ -12,7 +12,7 @@
12
12
  # See the License for the specific language governing permissions and
13
13
  # limitations under the License.
14
14
 
15
- from typing import Dict, List, TYPE_CHECKING
15
+ from typing import Dict, List, Optional, TYPE_CHECKING
16
16
 
17
17
  if TYPE_CHECKING:
18
18
  import torch._ops
@@ -24,8 +24,9 @@ from tico.serialize.circle_mapping import extract_circle_dtype, extract_shape
24
24
  from tico.serialize.operators.hashable_opcode import OpCode
25
25
  from tico.serialize.operators.node_visitor import NodeVisitor, register_node_visitor
26
26
  from tico.serialize.operators.utils import create_builtin_operator, get_op_index
27
+ from tico.serialize.quant_param import QPARAM_KEY, QuantParam
27
28
  from tico.utils.define import define_pad_node
28
- from tico.utils.padding import is_same_padding, is_valid_padding, SAME, VALID
29
+ from tico.utils.padding import identify_padding
29
30
  from tico.utils.validate_args_kwargs import Conv2DArgs
30
31
 
31
32
 
@@ -114,63 +115,49 @@ class DepthwiseConv2dVisitor(NodeVisitor):
114
115
  dilation = args.dilation
115
116
  groups = args.groups
116
117
 
117
- input_dtype: int = extract_circle_dtype(input_)
118
118
  input_shape = list(extract_shape(input_)) # OHWI
119
- assert len(input_shape) == 4, len(input_shape)
120
-
121
119
  output_shape = list(extract_shape(node)) # OHWI
122
- assert len(output_shape) == 4, len(output_shape)
123
-
124
120
  weight_shape = list(extract_shape(weight)) # 1HWO
125
- assert (
126
- weight_shape[3] % groups == 0
127
- ), "Depthwise convolution requires output channel to be divisible by groups"
128
-
121
+ assert len(input_shape) == 4, len(input_shape)
122
+ assert len(output_shape) == 4, len(output_shape)
123
+ assert len(weight_shape) == 4
129
124
  assert weight_shape[0] == 1
130
125
  assert weight_shape[3] == output_shape[3]
131
126
  assert input_shape[3] == groups
127
+ assert (
128
+ weight_shape[3] % groups == 0
129
+ ), "Depthwise convolution requires output channel to be divisible by groups"
132
130
 
133
131
  depthMultiplier = weight_shape[3] // input_shape[3]
134
132
  assert weight_shape[3] % input_shape[3] == 0, "depthMultiplier must be integer"
135
133
 
136
- conv_input: torch.fx.node.Node | circle.Tensor.TensorT = input_
137
-
138
- if is_valid_padding(padding):
139
- dconv2d_padding_type = VALID
140
- elif is_same_padding(padding, input_shape, output_shape):
141
- dconv2d_padding_type = SAME
142
- else:
143
- assert isinstance(padding, list) and len(padding) == 2
134
+ pad_decision = identify_padding(padding, input_shape, output_shape, stride)
144
135
 
145
- dconv2d_padding_type = VALID
146
-
147
- # Padding is not valid or same, so we use valid padding and add padding operator before conv2d operator.
148
- # when data_format is "NHWC", padding should be [[0, 0], [pad_top, pad_bottom], [pad_left, pad_right], [0, 0]]
136
+ conv_input: torch.fx.Node | circle.Tensor.TensorT = input_
137
+ if pad_decision.explicit_pad_hw is not None:
138
+ pad_h, pad_w = pad_decision.explicit_pad_hw
149
139
  paddings = torch.tensor(
150
140
  [
151
141
  [0, 0],
152
- [padding[0], padding[0]],
153
- [padding[1], padding[1]],
142
+ [pad_h, pad_h],
143
+ [pad_w, pad_w],
154
144
  [0, 0],
155
145
  ],
156
146
  dtype=torch.int32,
157
147
  )
158
148
  pad_output_shape = [
159
149
  input_shape[0],
160
- input_shape[1],
161
- input_shape[2],
150
+ input_shape[1] + pad_h * 2,
151
+ input_shape[2] + pad_w * 2,
162
152
  input_shape[3],
163
153
  ]
164
- # Add (pad_top+pad_bottom) to pad_output_shape_h
165
- pad_output_shape[1] += padding[0] * 2
166
- # Add (pad_left+pad_Right) to pad_output_shape_w
167
- pad_output_shape[2] += padding[1] * 2
168
154
  # create padded output tensor
169
-
155
+ input_qparam: Optional[QuantParam] = input_.meta.get(QPARAM_KEY)
170
156
  pad_output = self.graph.add_tensor_from_scratch(
171
157
  prefix=f"{node.name}_input_pad_output",
172
158
  shape=pad_output_shape,
173
- dtype=input_dtype,
159
+ dtype=extract_circle_dtype(input_),
160
+ qparam=input_qparam,
174
161
  source_node=node,
175
162
  )
176
163
  # CirclePad
@@ -182,13 +169,11 @@ class DepthwiseConv2dVisitor(NodeVisitor):
182
169
 
183
170
  if bias is None:
184
171
  # luci-interpreter can't run no bias conv. Let's add zero vector for bias.
185
- assert len(weight_shape) == 4
186
- out_channel = weight_shape[3]
187
- bias = [0.0] * out_channel # type: ignore[assignment]
172
+ bias = [0.0] * weight_shape[3] # type: ignore[assignment]
188
173
 
189
174
  # DConv2D
190
175
  dconv2d_operator = self.define_dconv_node(
191
- dconv2d_padding_type,
176
+ pad_decision.conv_padding_type,
192
177
  stride,
193
178
  dilation,
194
179
  depthMultiplier,
@@ -0,0 +1,149 @@
1
+ # Copyright (c) 2025 Samsung Electronics Co., Ltd. All Rights Reserved
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+
15
+ from typing import Dict, List, Optional, TYPE_CHECKING
16
+
17
+ if TYPE_CHECKING:
18
+ import torch._ops
19
+ import torch.fx
20
+ import torch
21
+ from circle_schema import circle
22
+
23
+ from tico.serialize.circle_mapping import (
24
+ circle_legalize_dtype_to,
25
+ extract_circle_dtype,
26
+ extract_shape,
27
+ )
28
+ from tico.serialize.operators.hashable_opcode import OpCode
29
+ from tico.serialize.operators.node_visitor import NodeVisitor, register_node_visitor
30
+ from tico.serialize.operators.utils import create_builtin_operator, get_op_index
31
+ from tico.serialize.quant_param import QPARAM_KEY, QuantParam
32
+ from tico.utils.define import define_pad_node
33
+ from tico.utils.padding import identify_padding
34
+ from tico.utils.validate_args_kwargs import ConvTranspose2DArgs
35
+
36
+
37
+ @register_node_visitor
38
+ class TransposeConvVisitor(NodeVisitor):
39
+ target: List[torch._ops.OpOverload] = [
40
+ torch.ops.circle_custom.transpose_conv,
41
+ ]
42
+
43
+ def define_transpose_conv_node(
44
+ self, padding: int, stride: List, inputs: List, outputs: List
45
+ ) -> circle.Operator.OperatorT:
46
+ def set_transpose_conv_option(operator, stride):
47
+ operator.builtinOptionsType = (
48
+ circle.BuiltinOptions.BuiltinOptions.TransposeConvOptions
49
+ )
50
+ option = circle.TransposeConvOptions.TransposeConvOptionsT()
51
+ option.padding = padding
52
+ option.strideH = stride[0]
53
+ option.strideW = stride[1]
54
+ option.fusedActivationFunction = (
55
+ circle.ActivationFunctionType.ActivationFunctionType.NONE
56
+ )
57
+ operator.builtinOptions = option
58
+
59
+ transpose_conv_op_index = get_op_index(
60
+ circle.BuiltinOperator.BuiltinOperator.TRANSPOSE_CONV, self._op_codes
61
+ )
62
+ operator = create_builtin_operator(
63
+ self.graph, transpose_conv_op_index, inputs, outputs
64
+ )
65
+ set_transpose_conv_option(operator, stride)
66
+ return operator
67
+
68
+ def __init__(self, op_codes: Dict[OpCode, int], graph):
69
+ super().__init__(op_codes, graph)
70
+
71
+ def define_node(self, node: torch.fx.Node) -> circle.Operator.OperatorT:
72
+ args = ConvTranspose2DArgs(*node.args, **node.kwargs) # type: ignore[arg-type]
73
+
74
+ input_ = args.input
75
+ weight = args.weight
76
+ bias = args.bias
77
+ stride = args.stride
78
+ padding = args.padding
79
+ output_padding = args.output_padding
80
+ groups = args.groups
81
+ dilation = args.dilation
82
+
83
+ assert groups == 1, "Only support group 1"
84
+
85
+ input_shape = list(extract_shape(input_))
86
+ output_shape = list(extract_shape(node))
87
+ weight_shape = list(extract_shape(weight))
88
+ assert len(input_shape) == 4, len(input_shape)
89
+ assert len(output_shape) == 4, len(output_shape)
90
+ assert len(weight_shape) == 4, len(weight_shape)
91
+
92
+ pad_decision = identify_padding(padding, input_shape, output_shape, stride)
93
+
94
+ conv_input: torch.fx.Node | circle.Tensor.TensorT = input_
95
+ if pad_decision.explicit_pad_hw is not None:
96
+ pad_h, pad_w = pad_decision.explicit_pad_hw
97
+ paddings = torch.tensor(
98
+ [
99
+ [0, 0],
100
+ [pad_h, pad_h],
101
+ [pad_w, pad_w],
102
+ [0, 0],
103
+ ],
104
+ dtype=torch.int32,
105
+ )
106
+ pad_output_shape = [
107
+ input_shape[0],
108
+ input_shape[1] + pad_h * 2,
109
+ input_shape[2] + pad_w * 2,
110
+ input_shape[3],
111
+ ]
112
+ # create padded output tensor
113
+ input_qparam: Optional[QuantParam] = input_.meta.get(QPARAM_KEY)
114
+ pad_output = self.graph.add_tensor_from_scratch(
115
+ prefix=f"{node.name}_input_pad_output",
116
+ shape=pad_output_shape,
117
+ dtype=extract_circle_dtype(input_),
118
+ qparam=input_qparam,
119
+ source_node=node,
120
+ )
121
+ # CirclePad
122
+ pad_operator = define_pad_node(
123
+ self.graph, self._op_codes, [input_, paddings], [pad_output]
124
+ )
125
+ self.graph.add_operator(pad_operator)
126
+ conv_input = pad_output
127
+
128
+ if bias is None:
129
+ # luci-interpreter can't run no bias conv. Let's add zero vector for bias.
130
+ bias = [0.0] * weight_shape[0] # type: ignore[assignment]
131
+
132
+ # First arguemnt is output shape of tconv.
133
+ assert output_shape[0] == input_shape[0]
134
+ assert output_shape[3] == weight_shape[0]
135
+ tconv_output = circle_legalize_dtype_to(output_shape, dtype=torch.int32)
136
+
137
+ tconv_output_tensor = self.graph.add_const_tensor(
138
+ tconv_output, source_node=node
139
+ )
140
+
141
+ # TConv2D
142
+ tconv2d_operator = self.define_transpose_conv_node(
143
+ pad_decision.conv_padding_type, # 'SAME'(0) or 'VALID'(1)
144
+ stride,
145
+ [tconv_output_tensor, weight, conv_input, bias],
146
+ [node],
147
+ )
148
+
149
+ return tconv2d_operator
tico/utils/convert.py CHANGED
@@ -100,6 +100,7 @@ def traced_run_decompositions(exported_program: ExportedProgram):
100
100
  torch.ops.aten.conv2d.padding,
101
101
  torch.ops.aten.conv1d.default,
102
102
  torch.ops.aten.conv1d.padding,
103
+ torch.ops.aten.conv_transpose2d.input,
103
104
  torch.ops.aten.instance_norm.default,
104
105
  torch.ops.aten._safe_softmax.default,
105
106
  torch.ops.aten.relu6.default, # Do not decompose to hardtanh
@@ -116,6 +117,7 @@ def traced_run_decompositions(exported_program: ExportedProgram):
116
117
  torch.ops.aten.conv2d.padding,
117
118
  torch.ops.aten.conv1d.default,
118
119
  torch.ops.aten.conv1d.padding,
120
+ torch.ops.aten.conv_transpose2d.input,
119
121
  torch.ops.aten.instance_norm.default,
120
122
  torch.ops.aten._safe_softmax.default,
121
123
  torch.ops.aten.relu6.default, # Do not decompose to hardtanh
@@ -287,6 +289,12 @@ def convert(
287
289
  strict: bool = True,
288
290
  config: CompileConfigBase = get_default_config(),
289
291
  ) -> CircleModel:
292
+ if hasattr(mod, "training") and mod.training:
293
+ logger = logging.getLogger(__name__)
294
+ logger.fatal(
295
+ "Your model is in TRAINING MODE. PLEASE CHECK IF YOU FORGOT `model.eval()`."
296
+ )
297
+
290
298
  with torch.no_grad():
291
299
  exported_program = export(mod, args, kwargs, strict=strict)
292
300
 
@@ -0,0 +1,35 @@
1
+ # Copyright (c) 2025 Samsung Electronics Co., Ltd. All Rights Reserved
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+
15
+ ##############################
16
+ #### Transformers Package ####
17
+ ##############################
18
+
19
+
20
+ def is_transformers_installed():
21
+ try:
22
+ import transformers
23
+
24
+ return True
25
+ except ImportError:
26
+ return False
27
+
28
+
29
+ def is_dynamic_cache_available():
30
+ try:
31
+ from transformers.cache_utils import DynamicCache
32
+
33
+ return True
34
+ except ImportError:
35
+ return False
tico/utils/padding.py CHANGED
@@ -12,36 +12,71 @@
12
12
  # See the License for the specific language governing permissions and
13
13
  # limitations under the License.
14
14
 
15
+ from enum import IntEnum
16
+ from typing import NamedTuple, Optional, Sequence, Tuple, Union
17
+
15
18
  import torch
16
19
 
17
20
  from tico.utils.errors import InvalidArgumentError
18
21
 
19
- SAME = 0
20
- VALID = 1
21
22
 
23
+ PaddingValue = Union[str, Sequence[int]] # "same" | "valid" | [pad_h, pad_w]
22
24
 
23
- def is_valid_padding(padding: str | list):
24
- if isinstance(padding, str):
25
- return padding == "valid"
26
25
 
27
- if isinstance(padding, list):
28
- assert len(padding) == 2, "Padding should be a list of length 2."
29
- return padding == [0, 0]
26
+ class ConvPadding(IntEnum):
27
+ SAME = 0 # auto-pad, HW out == HW in
28
+ VALID = 1 # no implicit padding
29
+
30
30
 
31
- raise InvalidArgumentError("Invalid padding.")
31
+ class ConvPaddingInfo(NamedTuple):
32
+ """
33
+ Result of padding analysis.
34
+ """
32
35
 
36
+ conv_padding_type: ConvPadding
37
+ explicit_pad_hw: Optional[Tuple[int, int]] # None -> no extra Pad() op needed
33
38
 
34
- def is_same_padding(
35
- padding: str | list, input_shape: list | torch.Size, output_shape: list | torch.Size
36
- ):
39
+
40
+ def identify_padding(
41
+ padding: PaddingValue,
42
+ input_shape: Sequence[int],
43
+ output_shape: Sequence[int],
44
+ stride: Sequence[int],
45
+ ) -> ConvPaddingInfo:
46
+ """
47
+ Normalizes all PyTorch `padding` variants to a single decision.
48
+
49
+ Rules
50
+ -----
51
+ 1. "valid" or [0, 0] → VALID, no Pad().
52
+ 2. "same" or the shapes already match (stride==1) → SAME, no Pad().
53
+ 3. Any other 2-element list → VALID + explicit Pad().
54
+ """
55
+ # ─── 1. String form ────────────────────────────────────────────────────
37
56
  if isinstance(padding, str):
38
- return padding == "same"
57
+ pad = padding.lower()
58
+ if pad == "valid":
59
+ return ConvPaddingInfo(ConvPadding.VALID, None)
60
+ if pad == "same":
61
+ return ConvPaddingInfo(ConvPadding.SAME, None)
62
+ raise InvalidArgumentError(f"Unknown padding string: {padding}")
63
+
64
+ # ─── 2. List / tuple form ─────────────────────────────────────────────
65
+ if not (isinstance(padding, (list, tuple)) and len(padding) == 2):
66
+ raise InvalidArgumentError(
67
+ "Padding must be 'valid', 'same', or a [pad_h, pad_w] list"
68
+ )
39
69
 
40
- if isinstance(padding, list):
41
- assert len(padding) == 2, "Padding should be a list of length 2."
70
+ pad_h, pad_w = padding
71
+ # [0, 0] → VALID
72
+ if pad_h == 0 and pad_w == 0:
73
+ return ConvPaddingInfo(ConvPadding.VALID, None)
42
74
 
43
- input_HW = tuple(input_shape[1:3]) # N H W C
44
- output_HW = tuple(output_shape[1:3]) # N H W C
45
- return input_HW == output_HW
75
+ # SAME heuristic: output H/W already match input when stride is 1
76
+ hw_in = tuple(input_shape[1:3])
77
+ hw_out = tuple(output_shape[1:3])
78
+ if hw_in == hw_out and stride == [1, 1]:
79
+ return ConvPaddingInfo(ConvPadding.SAME, None)
46
80
 
47
- raise InvalidArgumentError("Invalid padding.")
81
+ # Anything else = explicit symmetric padding
82
+ return ConvPaddingInfo(ConvPadding.VALID, (pad_h, pad_w))
@@ -371,6 +371,113 @@ def CircleDepthwiseConv2dPadding():
371
371
  return NHWC_output
372
372
 
373
373
 
374
+ def CircleTransposeConv():
375
+ """
376
+ Note that this op follows the input spec of `aten.conv_transpose2d.input` whose number
377
+ of arguments meets (2 <= node.args <= 8) condition.
378
+ [RESTRICTION]
379
+ Therefore, I tried to define a spec of it as transpose_conv(input, weight, *args).
380
+ But, custom operators in torch do not support positional-only args. So, I set it
381
+ them as None by default.
382
+ """
383
+
384
+ @custom_op("circle_custom::transpose_conv", mutates_args=())
385
+ def transpose_conv(
386
+ input_: torch.Tensor,
387
+ weight: torch.Tensor,
388
+ bias: Optional[torch.Tensor] = None,
389
+ stride: Optional[List[int]] = None,
390
+ padding: Optional[List[int]] = None,
391
+ output_padding: Optional[List[int]] = None,
392
+ groups: Optional[int] = None,
393
+ dilation: Optional[List[int]] = None,
394
+ ) -> torch.Tensor:
395
+ """
396
+ Set default values.
397
+ Custom operators have limited types when it comes to default values.
398
+ So, let's set them by None in input specs, and then, set it by default values.
399
+ https://github.com/pytorch/pytorch/blob/6b05aafc/torch/_library/infer_schema.py#L131-L144
400
+ """
401
+ stride = [1, 1] if stride is None else stride
402
+ padding = [0, 0] if padding is None else padding
403
+ output_padding = [0, 0] if output_padding is None else output_padding
404
+ groups = 1 if groups is None else groups
405
+ dilation = [1, 1] if dilation is None else dilation
406
+ if groups != 1:
407
+ raise RuntimeError(
408
+ f"CircleTransposeConv only supports 1 'groups'. the node's groups: {groups}"
409
+ )
410
+
411
+ NHWC_to_NCHW = [0, 3, 1, 2]
412
+ OHWI_to_IOHW = [3, 0, 1, 2]
413
+ NCHW_input = torch.ops.aten.permute.default(input_, NHWC_to_NCHW)
414
+ OIHW_weight = torch.ops.aten.permute.default(weight, OHWI_to_IOHW)
415
+
416
+ args = [
417
+ NCHW_input,
418
+ OIHW_weight,
419
+ bias,
420
+ stride,
421
+ padding,
422
+ output_padding,
423
+ groups,
424
+ dilation,
425
+ ]
426
+ NCHW_output = torch.ops.aten.conv_transpose2d.input(*args)
427
+ NCHW_to_NHWC = [0, 2, 3, 1]
428
+ NHWC_output = torch.ops.aten.permute.default(NCHW_output, NCHW_to_NHWC)
429
+
430
+ return NHWC_output
431
+
432
+ @register_fake("circle_custom::transpose_conv")
433
+ def _(
434
+ input_: torch.Tensor,
435
+ weight: torch.Tensor,
436
+ bias: Optional[torch.Tensor] = None,
437
+ stride: Optional[List[int]] = None,
438
+ padding: Optional[List[int]] = None,
439
+ output_padding: Optional[List[int]] = None,
440
+ groups: Optional[int] = None,
441
+ dilation: Optional[List[int]] = None,
442
+ ):
443
+ """
444
+ Set default values.
445
+ Custom operators have limited types when it comes to default values.
446
+ So, let's set them by None in input specs, and then, set it by default values.
447
+ https://github.com/pytorch/pytorch/blob/6b05aafc/torch/_library/infer_schema.py#L131-L144
448
+ """
449
+ stride = [1, 1] if stride is None else stride
450
+ padding = [0, 0] if padding is None else padding
451
+ output_padding = [0, 0] if output_padding is None else output_padding
452
+ groups = 1 if groups is None else groups
453
+ dilation = [1, 1] if dilation is None else dilation
454
+ if groups != 1:
455
+ raise RuntimeError(
456
+ f"CircleConv2d only supports 1 'groups'. the node's groups: {groups}"
457
+ )
458
+
459
+ NHWC_to_NCHW = [0, 3, 1, 2]
460
+ OHWI_to_IOHW = [3, 0, 1, 2]
461
+ NCHW_input = torch.ops.aten.permute.default(input_, NHWC_to_NCHW)
462
+ OIHW_weight = torch.ops.aten.permute.default(weight, OHWI_to_IOHW)
463
+
464
+ args = [
465
+ NCHW_input,
466
+ OIHW_weight,
467
+ bias,
468
+ stride,
469
+ padding,
470
+ output_padding,
471
+ groups,
472
+ dilation,
473
+ ]
474
+ NCHW_output = torch.ops.aten.conv_transpose2d.input(*args)
475
+ NCHW_to_NHWC = [0, 2, 3, 1]
476
+ NHWC_output = torch.ops.aten.permute.default(NCHW_output, NCHW_to_NHWC)
477
+
478
+ return NHWC_output
479
+
480
+
374
481
  def CircleMaxPool2D():
375
482
  """
376
483
  Note that this op follows the input spec of `aten.max_pool2d_with_indices.default` whose number
@@ -603,6 +710,7 @@ def RegisterOps():
603
710
  CircleDepthwiseConv2dPadding()
604
711
  CircleConv2d()
605
712
  CircleConv2dPadding()
713
+ CircleTransposeConv()
606
714
  CircleMaxPool2D()
607
715
  CircleAvgPool2D()
608
716
  CircleInstanceNorm()
@@ -208,6 +208,45 @@ class ConstantPadNdArgs:
208
208
  value: int | float
209
209
 
210
210
 
211
+ @enforce_type
212
+ @dataclass
213
+ class ConvArgs:
214
+ """
215
+ convolution(Tensor input, Tensor weight, Tensor? bias, SymInt[] stride, SymInt[] padding, SymInt[] dilation, bool transposed, SymInt[] output_padding, SymInt groups) -> Tensor
216
+ """
217
+
218
+ input: torch.fx.Node
219
+ weight: torch.fx.Node
220
+ bias: Union[torch.fx.Node, None]
221
+ stride: List[int]
222
+ padding: List[int]
223
+ dilation: List[int]
224
+ transposed: bool
225
+ output_padding: List[int]
226
+ groups: int
227
+
228
+
229
+ @enforce_type
230
+ @dataclass
231
+ class ConvTranspose2DArgs:
232
+ """
233
+ conv_transpose2d.input(Tensor input, Tensor weight, Tensor? bias=None, SymInt[2] stride=1, SymInt[2] padding=0, SymInt[2] output_padding=0, SymInt groups=1, SymInt[2] dilation=1) -> Tensor
234
+ """
235
+
236
+ input: torch.fx.Node
237
+ weight: torch.fx.Node
238
+ bias: Union[torch.fx.Node, None] = None
239
+ stride: List[int] = field(default_factory=lambda: [1, 1])
240
+ padding: List[int] = field(default_factory=lambda: [0, 0])
241
+ output_padding: List[int] = field(default_factory=lambda: [0, 0])
242
+ groups: int = 1
243
+ dilation: List[int] = field(default_factory=lambda: [1, 1])
244
+
245
+ def __post_init__(self):
246
+ assert len(self.stride) == 2, len(self.stride)
247
+ assert len(self.dilation) == 2, len(self.dilation)
248
+
249
+
211
250
  @enforce_type
212
251
  @dataclass
213
252
  class Conv2DArgs:
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: tico
3
- Version: 0.1.0.dev250630
3
+ Version: 0.1.0.dev250702
4
4
  Summary: Convert exported Torch module to circle
5
5
  Home-page: UNKNOWN
6
6
  License: UNKNOWN
@@ -1,4 +1,4 @@
1
- tico/__init__.py,sha256=gNG4gqEHE73hnLBf47wz6Gj7RXqTV5DoQ8Bpss9Az84,1743
1
+ tico/__init__.py,sha256=OwKeuduBe-XLK_9XzKLwmCWJd6kRwEZ2xiY8RnRGnCA,1743
2
2
  tico/pt2_to_circle.py,sha256=gu3MD4Iqc0zMZcCZ2IT8oGbyj21CTSbT3Rgd9s2B_9A,2767
3
3
  tico/config/__init__.py,sha256=xZzCXjZ84qE-CsBi-dfaL05bqpQ3stKKfTXhnrJRyVs,142
4
4
  tico/config/base.py,sha256=anwOiJFkUxUi7Cef573JgQcjk6S-FSi6O_TLjYASW-g,1244
@@ -57,7 +57,7 @@ tico/experimental/quantization/passes/propagate_qparam_forward.py,sha256=RhUHGCR
57
57
  tico/experimental/quantization/passes/quantize_bias.py,sha256=ZQ3rETYStpW28JUbODRixbq5sDEOiIOB_qWA-Jzuu-Y,4337
58
58
  tico/experimental/quantization/passes/remove_weight_dequant_op.py,sha256=Klc_9-94tl0_AuAToKOjsWED_YPk5RB67eum0ddPX7o,6588
59
59
  tico/interpreter/__init__.py,sha256=IO6FP_xYbGy0dW0HL26GXD3ouxARaxCK7bz9dn4blPQ,26
60
- tico/interpreter/infer.py,sha256=vJ3b69ce9HrxNT0gFwbEhHpAyvVyuiunTgAeiqn5t64,4350
60
+ tico/interpreter/infer.py,sha256=1ZFe3DVMR2mlwBosoedqoL0-CGN_01CKLgMgxuw62KA,4861
61
61
  tico/interpreter/interpreter.py,sha256=tGbluCbrehTCqBu8mtGDNzby_ieJ2ry8_RH_eC0CQxk,3828
62
62
  tico/passes/__init__.py,sha256=IO6FP_xYbGy0dW0HL26GXD3ouxARaxCK7bz9dn4blPQ,26
63
63
  tico/passes/cast_aten_where_arg_type.py,sha256=ybtGj1L7_2zGyfb_G-_y1N1mRgKHVq6fBZc-9-fH9sA,7229
@@ -79,7 +79,7 @@ tico/passes/fill_meta_val.py,sha256=Xbam6Aq90ZfWItZw1dgLIwH_q8RCiU5JodKNqkj-ink,
79
79
  tico/passes/fuse_leading_unsqueeze_reshape.py,sha256=88jwTP35yRyXOk9xdO6YW2OEfdKAws3KFRT16WQz0RI,4291
80
80
  tico/passes/fuse_redundant_reshape_to_mean.py,sha256=GhJS1ZKB6Ns4AhwcW3uUQ6q-0N-AzlD32B2EwusUJHg,3761
81
81
  tico/passes/legalize_causal_mask_value.py,sha256=xKdFwwMaSFCSQpSk8xISOAqFpZ1jIhgbBIqf7KTSGuk,4017
82
- tico/passes/legalize_predefined_layout_operators.py,sha256=6jd_FmXX5rbBxqp3H5MQoCnL3vY3qoAdXaXkVdfXEjI,15902
82
+ tico/passes/legalize_predefined_layout_operators.py,sha256=MNx7L2dAlsxSazb-F7c0onPqHleI17zAc7AzQAa9aJ4,18934
83
83
  tico/passes/lower_pow2_to_mul.py,sha256=nfJXa9ZTZMiLg6ownSyvkM4KF2z9tZW34Q3CCWI_vmQ,2402
84
84
  tico/passes/lower_to_resize_nearest_neighbor.py,sha256=N6F56Of8Aiv-KIiYLHnh33WX72W60ZVQSBEYWHdYqNQ,9005
85
85
  tico/passes/lower_to_slice.py,sha256=0qAX3WzZdyMFDW4DiO9b5JFXd4rL1-0doBT6lJvaw_I,7260
@@ -115,11 +115,11 @@ tico/serialize/operators/op_cat.py,sha256=XDYOh0XAyrM0TlxVm6Sa0OFFGrKk7aSDcGXC-h
115
115
  tico/serialize/operators/op_clamp.py,sha256=ZRAsXLGsZqJEh4wXxESEpRJkRtUuJWTDgAem6lr9_5I,4298
116
116
  tico/serialize/operators/op_clone.py,sha256=vzDYJ8TS3tc2BAyd_z8nt5VqT1inpymSseMEhd9dva0,2394
117
117
  tico/serialize/operators/op_constant_pad_nd.py,sha256=OpP4AP-d1IFcWZolNa-o9ZxzXJQkMdG9WQ66soX3s-E,2675
118
- tico/serialize/operators/op_conv2d.py,sha256=BmSCunhziD9EhXEkWwFrWkaQ_t3cIhrJJQSRLbgqmxI,7338
118
+ tico/serialize/operators/op_conv2d.py,sha256=UfYk5xnA9PqVYyjU9dUCSW0CiCmcEK3LnlnFh0WY4Gg,6599
119
119
  tico/serialize/operators/op_copy.py,sha256=vaianLQ19-2ZQZ-MdQ07YuOPeFeo_HAx2a0Qfn7I5Kk,6122
120
120
  tico/serialize/operators/op_cos.py,sha256=N12bNyuTQIxRnD0eHRPdFVzRQPMy1NFM4iM8oQ4lYzw,2034
121
121
  tico/serialize/operators/op_cumsum.py,sha256=3fmOf1mIeCX1uhTBcSJmRGXejzLtO8UwaI1eEQDC6nA,3798
122
- tico/serialize/operators/op_depthwise_conv2d.py,sha256=PTos0tQoM8EZoB88s4Tjb7n6pJja5nbNQRDsucVzRwc,7532
122
+ tico/serialize/operators/op_depthwise_conv2d.py,sha256=wH1SFjhWJdJrb8xi2qCiCeSWNxlL8IjEwALGCxTQxbc,7034
123
123
  tico/serialize/operators/op_dequantize_per_channel.py,sha256=aPcVxjdgvfSFoLnv9NL-RxO5vZYj8ulqriMP5LHIWs0,3133
124
124
  tico/serialize/operators/op_dequantize_per_tensor.py,sha256=u9aK_Xle9rDN0EHLE0YrCTlXY4Q53Ch9Di4qmx7ynps,2304
125
125
  tico/serialize/operators/op_div.py,sha256=WjeM2Ux7TyGlSNx2aVC783JvcL0xnY6FBYo1Q_kdb5Q,2201
@@ -175,32 +175,34 @@ tico/serialize/operators/op_sub.py,sha256=yZskQJF0ylXVk02Uid8djPNIWDJ-0uHJar4UYh
175
175
  tico/serialize/operators/op_sum.py,sha256=B5aSwQMhyoBe2JYdE5nVQ3QeVDSzL-yuZZujsG08OdQ,2294
176
176
  tico/serialize/operators/op_tanh.py,sha256=rs7FsbQeUQ7Ak8RoQV9ymNGXHXRObojfY_SiqJiyqdA,1846
177
177
  tico/serialize/operators/op_to_copy.py,sha256=a8T0uPMavMO_md1a-4_0dlvDHyZS_xew0qB6xjf69rI,3934
178
+ tico/serialize/operators/op_transpose_conv.py,sha256=YDObXXaHNOD7yjO1ccaB_NCfc5-L76ClvT3pduL8E90,5631
178
179
  tico/serialize/operators/op_unsqueeze.py,sha256=ZHhfVXSWEiwb2VDYX5uhxbGQyzZjKT7CrbBpVGxVHBU,2310
179
180
  tico/serialize/operators/op_view.py,sha256=5EMww-ve17Vm9XPuV03Tn7vJsjpU2J8U4d_FOrlm9_o,2546
180
181
  tico/serialize/operators/op_where.py,sha256=doE81GSwygrPBm3JIfN9w7kKXxeIYKxgk0eoY22QIcg,2845
181
182
  tico/serialize/operators/utils.py,sha256=lXGpEJW1h8U_-gfc6EWjvvSiq3yJ9P-v1v3EMRT_pSk,2954
182
183
  tico/utils/__init__.py,sha256=IO6FP_xYbGy0dW0HL26GXD3ouxARaxCK7bz9dn4blPQ,26
183
- tico/utils/convert.py,sha256=crjCVDLoGBSSpI0EAq-cr_oL68CcntOBy361XVcaPzU,12444
184
+ tico/utils/convert.py,sha256=5C8Z2ia2XN4k3XgtJrFZYJSEejoeMllyr8YW6gwu9mw,12763
184
185
  tico/utils/define.py,sha256=Ypgp7YffM4pgPl4Zh6TmogSn1OxGBMRw_e09qYGflZk,1467
185
186
  tico/utils/diff_graph.py,sha256=_eDGGPDPYQD4b--MXX0DLoVgSt_wLfNPt47UlolLLR4,5272
186
187
  tico/utils/errors.py,sha256=f3csJjgbXG9W1aHhqEcou008Aor19W57X8oT5Hx8w1M,954
187
188
  tico/utils/graph.py,sha256=Y6aODsnc_-9l61oanknb7K1jqJ8B35iPypOKkM0Qkk0,9149
189
+ tico/utils/installed_packages.py,sha256=J0FTwnkCGs0MxRWoCMYAqiwH7Z0GWFDLV--x-IndSp4,1017
188
190
  tico/utils/logging.py,sha256=IlbBWscsaHidI0dNqro1HEXAbIcbkR3BD5ukLy2m95k,1286
189
191
  tico/utils/model.py,sha256=Uqc92AnJXQ2pbvctS2z2F3Ku3yNrwXZ9O33hZVis7is,1250
190
- tico/utils/padding.py,sha256=jNMX2KFoZ3c6HTlMU8BAwG3Fyrqpq4F3ytKP13Pg4ps,1498
192
+ tico/utils/padding.py,sha256=qk6eh295msjDl3yFRg2OAjF-p6q0B8U2u_rnB2odT2A,3024
191
193
  tico/utils/passes.py,sha256=kGmDe__5cPaO6i5EDAoXSVe6yXEoX9hAny4ROb3ZEmQ,2409
192
- tico/utils/register_custom_op.py,sha256=qheG1WqtkUaG1SnHrrKQ7-fE4IZRETApCsfMkjDKcfs,23240
194
+ tico/utils/register_custom_op.py,sha256=3-Yl6iYmx1qQA2igNHt4hYhQhQMkdPb7gF50LIY8yvc,27350
193
195
  tico/utils/serialize.py,sha256=AQXMBOLu-Kg2Rn-qbqsAtHndjZAZIavlKA0QFgJREHM,1420
194
196
  tico/utils/trace_decorators.py,sha256=ddLIiKQfSaQrxgF1kNpwjFTQnXENzeSfcr1kuAW4jGI,3221
195
197
  tico/utils/utils.py,sha256=fnbZ2RLH6-J-wqb32O4qsR1ce4BJU0wYNrk84QXa6_E,13158
196
- tico/utils/validate_args_kwargs.py,sha256=ifzO4ikubDPU2iXRBPF8KeyubW23cjxBThOslLAcTrg,25368
198
+ tico/utils/validate_args_kwargs.py,sha256=cJAK6aqdzK3_Xccu6K1FQ32WGdmwWA_SqJ--TPavIuk,26614
197
199
  tico/utils/mx/__init__.py,sha256=IO6FP_xYbGy0dW0HL26GXD3ouxARaxCK7bz9dn4blPQ,26
198
200
  tico/utils/mx/elemwise_ops.py,sha256=V6glyAHsVR1joqpsgnNytatCD_ew92xNWZ19UFDoMTA,10281
199
201
  tico/utils/mx/formats.py,sha256=uzNWyu-1onUlwQfX5cZ6fZSUfHMRqorper7_T1k3jfk,3404
200
202
  tico/utils/mx/mx_ops.py,sha256=RcfUTYVi-wilGB2sC35OeARdwDqnixv7dG5iyZ-fQT8,8555
201
- tico-0.1.0.dev250630.dist-info/LICENSE,sha256=kp4JLII7bzRhPb0CPD5XTDZMh22BQ7h3k3B7t8TiSbw,12644
202
- tico-0.1.0.dev250630.dist-info/METADATA,sha256=SM3Z2qgcIkj7qUL2DKzlp4F47pwbr-3dR1ZTL-gtdMc,8846
203
- tico-0.1.0.dev250630.dist-info/WHEEL,sha256=G16H4A3IeoQmnOrYV4ueZGKSjhipXx8zc8nu9FGlvMA,92
204
- tico-0.1.0.dev250630.dist-info/entry_points.txt,sha256=kBKYSS_IYrSXmUYevmmepqIVPScq5vF8ulQRu3I_Zf0,59
205
- tico-0.1.0.dev250630.dist-info/top_level.txt,sha256=oqs7UPoNSKZEwqsX8B-KAWdQwfAa7i60pbxW_Jk7P3w,5
206
- tico-0.1.0.dev250630.dist-info/RECORD,,
203
+ tico-0.1.0.dev250702.dist-info/LICENSE,sha256=kp4JLII7bzRhPb0CPD5XTDZMh22BQ7h3k3B7t8TiSbw,12644
204
+ tico-0.1.0.dev250702.dist-info/METADATA,sha256=y6E2HN1pWGO-n-xqv9GGXkNHhNbvY7d9iIA-lWVlaZE,8846
205
+ tico-0.1.0.dev250702.dist-info/WHEEL,sha256=G16H4A3IeoQmnOrYV4ueZGKSjhipXx8zc8nu9FGlvMA,92
206
+ tico-0.1.0.dev250702.dist-info/entry_points.txt,sha256=kBKYSS_IYrSXmUYevmmepqIVPScq5vF8ulQRu3I_Zf0,59
207
+ tico-0.1.0.dev250702.dist-info/top_level.txt,sha256=oqs7UPoNSKZEwqsX8B-KAWdQwfAa7i60pbxW_Jk7P3w,5
208
+ tico-0.1.0.dev250702.dist-info/RECORD,,