themefinder 0.7.4__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -0,0 +1,174 @@
1
+ Metadata-Version: 2.4
2
+ Name: themefinder
3
+ Version: 0.7.4
4
+ Summary: A topic modelling Python package designed for analysing one-to-many question-answer data eg free-text survey responses.
5
+ License: MIT
6
+ License-File: LICENCE
7
+ Author: i.AI
8
+ Author-email: packages@cabinetoffice.gov.uk
9
+ Requires-Python: >=3.10,<3.13
10
+ Classifier: Intended Audience :: Developers
11
+ Classifier: Intended Audience :: Science/Research
12
+ Classifier: License :: OSI Approved :: MIT License
13
+ Classifier: Programming Language :: Python :: 3
14
+ Classifier: Programming Language :: Python :: 3.10
15
+ Classifier: Programming Language :: Python :: 3.11
16
+ Classifier: Programming Language :: Python :: 3.12
17
+ Classifier: Topic :: Scientific/Engineering :: Artificial Intelligence
18
+ Classifier: Topic :: Text Processing :: Linguistic
19
+ Requires-Dist: boto3 (>=1.29,<2.0)
20
+ Requires-Dist: langchain
21
+ Requires-Dist: langchain-openai
22
+ Requires-Dist: langfuse (==2.29.1)
23
+ Requires-Dist: openpyxl (>=3.1.5,<4.0.0)
24
+ Requires-Dist: pandas (>=2.2.2,<3.0.0)
25
+ Requires-Dist: pyarrow (>=15.0.0,<16.0.0)
26
+ Requires-Dist: python-dotenv (>=1.0.1,<2.0.0)
27
+ Requires-Dist: scikit-learn
28
+ Requires-Dist: toml (>=0.10.2,<0.11.0)
29
+ Project-URL: Documentation, https://i-dot-ai.github.io/themefinder/
30
+ Project-URL: Repository, https://github.com/i-dot-ai/themefinder/
31
+ Description-Content-Type: text/markdown
32
+
33
+ # ThemeFinder
34
+
35
+ ThemeFinder is a topic modelling Python package designed for analysing one-to-many question-answer data (i.e. survey responses, public consultations, etc.). See the [docs](https://i-dot-ai.github.io/themefinder/) for more info.
36
+
37
+ > [!IMPORTANT]
38
+ > Incubation project: This project is an incubation project; as such, we don't recommend using this for critical use cases yet. We are currently in a research stage, trialling the tool for case studies across the Civil Service. Find out more about our projects at https://ai.gov.uk/.
39
+
40
+
41
+ ## Quickstart
42
+
43
+ ### Install using your package manager of choice
44
+
45
+ For example `pip install themefinder` or `poetry add themefinder`.
46
+
47
+ ### Usage
48
+
49
+ ThemeFinder takes as input a [pandas DataFrame](https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.html) with two columns:
50
+ - `response_id`: A unique identifier for each response
51
+ - `response`: The free text survey response
52
+
53
+ ThemeFinder now supports a range of language models through structured outputs.
54
+
55
+ The function `find_themes` identifies common themes in responses and labels them, it also outputs results from intermediate steps in the theme finding pipeline.
56
+
57
+ For this example, import the following Python packages into your virtual environment: `asyncio`, `pandas`, `lanchain`. And import `themefinder` as described above.
58
+
59
+ If you are using environment variables (eg for API keys), you can use `python-dotenv` to read variables from a `.env` file.
60
+
61
+ If you are using an Azure OpenAI endpoint, you will need the following variables:
62
+
63
+ - `AZURE_OPENAI_API_KEY`
64
+ - `AZURE_OPENAI_ENDPOINT`
65
+ - `OPENAI_API_VERSION`
66
+ - `DEPLOYMENT_NAME`
67
+ - `AZURE_OPENAI_BASE_URL`
68
+
69
+ Otherwise you will need whichever variables [LangChain](https://www.langchain.com/) requires for your LLM of choice.
70
+
71
+ ```python
72
+ import asyncio
73
+ from dotenv import load_dotenv
74
+ import pandas as pd
75
+ from langchain_openai import AzureChatOpenAI
76
+ from themefinder import find_themes
77
+
78
+ # If needed, load LLM API settings from .env file
79
+ load_dotenv()
80
+
81
+ # Initialise your LLM of choice using langchain
82
+ llm = AzureChatOpenAI(
83
+ model="gpt-4o",
84
+ temperature=0,
85
+ )
86
+
87
+ # Set up your data
88
+ responses_df = pd.DataFrame({
89
+ "response_id": ["1", "2", "3", "4", "5"],
90
+ "response": ["I think it's awesome, I can use it for consultation analysis.",
91
+ "It's great.", "It's a good approach to topic modelling.", "I'm not sure, I need to trial it more.", "I don't like it so much."]
92
+ })
93
+
94
+ # Add your question
95
+ question = "What do you think of ThemeFinder?"
96
+
97
+ # Make the system prompt specific to your use case
98
+ system_prompt = "You are an AI evaluation tool analyzing survey responses about a Python package."
99
+
100
+ # Run the function to find themes, we use asyncio to query LLM endpoints asynchronously, so we need to await our function
101
+ async def main():
102
+ result = await find_themes(responses_df, llm, question, system_prompt=system_prompt)
103
+ print(result)
104
+
105
+ if __name__ == "__main__":
106
+ asyncio.run(main())
107
+ ```
108
+
109
+ ## ThemeFinder pipeline
110
+
111
+ ThemeFinder's pipeline consists of five distinct stages, each utilizing a specialized LLM prompt:
112
+
113
+ ### Sentiment analysis
114
+ - Analyses the emotional tone and position of each response using sentiment-focused prompts
115
+ - Provides structured sentiment categorisation based on LLM analysis
116
+
117
+ ### Theme generation
118
+ - Uses exploratory prompts to identify initial themes from response batches
119
+ - Groups related responses for better context through guided theme extraction
120
+
121
+ ### Theme condensation
122
+ - Employs comparative prompts to combine similar or overlapping themes
123
+ - Reduces redundancy in identified topics through systematic theme evaluation
124
+
125
+ ### Theme refinement
126
+ - Leverages standardisation prompts to normalise theme descriptions
127
+ - Creates clear, consistent theme definitions through structured refinement
128
+
129
+ ### Theme target alignment
130
+ - Optional step to consolidate themes down to a target number
131
+
132
+ ### Theme mapping
133
+ - Utilizes classification prompts to map individual responses to refined themes
134
+ - Supports multiple theme assignments per response through detailed analysis
135
+
136
+
137
+ The prompts used at each stage can be found in `src/themefinder/prompts/`.
138
+
139
+ The file `src/themefinder.core.py` contains the function `find_themes` which runs the pipline. It also contains functions fo each individual stage.
140
+
141
+
142
+ **For more detail - see the docs: [https://i-dot-ai.github.io/themefinder/](https://i-dot-ai.github.io/themefinder/).**
143
+
144
+
145
+ ## Model Compatibility
146
+
147
+ ThemeFinder's structured output approach makes it compatible with a wide range of language models from various providers. This list is non-exhaustive, and other models may also work effectively:
148
+
149
+ ### OpenAI Models
150
+ - GPT-4, GPT-4o, GPT-4.1
151
+ - All Azure OpenAI deployments
152
+
153
+ ### Google Models
154
+ - Gemini series (1.5 Pro, 2.0 Pro, etc.)
155
+
156
+ ### Anthropic Models
157
+ - Claude series (Claude 3 Opus, Sonnet, Haiku, etc.)
158
+
159
+ ### Open Source Models
160
+ - Llama 2, Llama 3
161
+ - Mistral models (e.g., Mistral 7B, Mixtral)
162
+
163
+
164
+ ## License
165
+
166
+ This project is licensed under the MIT License - see the [LICENSE](LICENSE) file for details.
167
+
168
+ The documentation is [© Crown copyright](https://www.nationalarchives.gov.uk/information-management/re-using-public-sector-information/uk-government-licensing-framework/crown-copyright/) and available under the terms of the [Open Government 3.0 licence](https://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/).
169
+
170
+
171
+ ## Feedback
172
+
173
+ Contact us with questions or feedback at packages@cabinetoffice.gov.uk.
174
+
@@ -0,0 +1,24 @@
1
+ themefinder/__init__.py,sha256=DosVY1CPiL179NnPvLhXr-7bkZDbqFp93XcJh3AswhE,474
2
+ themefinder/advanced_tasks/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
3
+ themefinder/advanced_tasks/cross_cutting_themes_agent.py,sha256=tCG1bwMXXa4Iy1rX8cJPbxps8VamhndPc9RCbbkjf5Q,15074
4
+ themefinder/advanced_tasks/theme_clustering_agent.py,sha256=HGUEpsutBIQ80TL6stjE2zMruNwbRQkxRYpYjKnxi1E,13734
5
+ themefinder/llm_batch_processor.py,sha256=Z9jm9Kr-6GD8g8kLkgdW97onjUbLLQ2M1YKwok39Q6Y,17652
6
+ themefinder/models.py,sha256=iN-chIm0ojyfRPr_cj9wQU3Q4I3yrwFI3FgnYb7IjWA,15072
7
+ themefinder/prompts/agentic_theme_clustering.txt,sha256=FuvHD4jjCDBQ1ptTKYg0W9Bpsbwy7VeK1l-NzRoEmNM,2155
8
+ themefinder/prompts/consultation_system_prompt.txt,sha256=_A07oY_an4hnRx-9pQ0y-TLXJz0dd8vDI-MZne7Mdb4,89
9
+ themefinder/prompts/cross_cutting_identification.txt,sha256=Dm7BwIZV21HgnAOQd3EMatuhwRtQS-pxttQC_ekAb9g,1115
10
+ themefinder/prompts/cross_cutting_mapping.txt,sha256=d7w1SFEyQ6IQWUuzzlvVWW9yYW4WByoIP0Ls6lHg9JU,929
11
+ themefinder/prompts/cross_cutting_refinement.txt,sha256=5nWH-lbpVJD9BRvxjnHifmjVb0oGAIfJaBxL4f6XOss,860
12
+ themefinder/prompts/detail_detection.txt,sha256=hMB8yQR5y855TJLYSW3CNZDkLTPaA2lf9UJwH_GpkD4,1515
13
+ themefinder/prompts/sentiment_analysis.txt,sha256=vYCDhtEsG5I9xixwVhZbvKPJGU1Gqpw4-xAqGz72xhU,1671
14
+ themefinder/prompts/theme_condensation.txt,sha256=jqWKuPaSKrRGeYwNWTlVx45hfyWWhX1CvnKXrIiXxa0,1714
15
+ themefinder/prompts/theme_generation.txt,sha256=QRKW7DtcMSb2olT6j5jmdEPcXPMeZgogM-NYddEIKRk,1871
16
+ themefinder/prompts/theme_mapping.txt,sha256=0z6ddfYxRn1Ew4W3Su-16qTbWn2C6J2LMnK7Biu1tno,1621
17
+ themefinder/prompts/theme_refinement.txt,sha256=JDSYs2sdXqN-Yw9OWjfbmsl9x4Bn1J3oNVSsb_PQ5Ik,2433
18
+ themefinder/prompts/theme_target_alignment.txt,sha256=g7AVZLiP_xIH010X5SIZyG3q7gA6OBAplPv3xvmstOY,855
19
+ themefinder/tasks.py,sha256=FIBC9-0aUDuAuxAFa7zqIgMo5-5WSbkkIZBT0QtF5Co,26946
20
+ themefinder/themefinder_logging.py,sha256=n5SUQovEZLC4skEbxicjz_fOGF9mOk3S-Wpj5uXsaL8,314
21
+ themefinder-0.7.4.dist-info/METADATA,sha256=OVi-63REBmQ7-ptHAKe_kxB_K2oVSiAYQPflhKJADSU,6748
22
+ themefinder-0.7.4.dist-info/WHEEL,sha256=3ny-bZhpXrU6vSQ1UPG34FoxZBp3lVcvK0LkgUz6VLk,88
23
+ themefinder-0.7.4.dist-info/licenses/LICENCE,sha256=C9ULIN0ctF60ZxUWH_hw1H434bDLg49Z-Qzn6BUHgqs,1060
24
+ themefinder-0.7.4.dist-info/RECORD,,
@@ -0,0 +1,4 @@
1
+ Wheel-Version: 1.0
2
+ Generator: poetry-core 2.3.0
3
+ Root-Is-Purelib: true
4
+ Tag: py3-none-any
@@ -0,0 +1,21 @@
1
+ MIT License
2
+
3
+ Copyright (c) 2024 i.AI
4
+
5
+ Permission is hereby granted, free of charge, to any person obtaining a copy
6
+ of this software and associated documentation files (the "Software"), to deal
7
+ in the Software without restriction, including without limitation the rights
8
+ to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
9
+ copies of the Software, and to permit persons to whom the Software is
10
+ furnished to do so, subject to the following conditions:
11
+
12
+ The above copyright notice and this permission notice shall be included in all
13
+ copies or substantial portions of the Software.
14
+
15
+ THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16
+ IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17
+ FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
18
+ AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19
+ LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20
+ OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21
+ SOFTWARE.