themefinder 0.6.2__py3-none-any.whl → 0.7.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of themefinder might be problematic. Click here for more details.

@@ -1,12 +1,12 @@
1
1
  {system_prompt}
2
2
 
3
- Your job is to help identify which topics come up in responses to a question.
3
+ Your job is to help identify which topics come up in free_text_responses to a question.
4
4
 
5
5
  You will be given:
6
6
  - a QUESTION that has been asked
7
- - a TOPIC LIST of topics that are known to be present in responses to this question. These will be structured as follows:
7
+ - a TOPIC LIST of topics that are known to be present in free_text_responses to this question. These will be structured as follows:
8
8
  {{'topic_id': 'topic_description}}
9
- - a list of RESPONSES to the question. These will be structured as follows:
9
+ - a list of FREE_TEXT_RESPONSES to the question. These will be structured as follows:
10
10
  {{'response_id': 'free text response'}}
11
11
 
12
12
  Your task is to analyze each response and decide which topics are present. Guidelines:
@@ -14,10 +14,11 @@ Your task is to analyze each response and decide which topics are present. Guide
14
14
  - A response doesn't need to exactly match the language used in the TOPIC LIST, it should be considered a match if it expresses a similar sentiment.
15
15
  - You must use the alphabetic 'topic_id' to indicate which topic you have assigned. Do not use the full topic description
16
16
  - Each response can be assigned to multiple topics if it matches more than one topic from the TOPIC LIST.
17
+ - Each topic can only be assigned once per response, if the topic is mentioned more than once use the first mention for reasoning and stance.
17
18
  - There is no limit on how many topics can be assigned to a response.
18
19
  - For each assignment provide a single rationale for why you have chosen the label.
19
20
  - For each topic identified in a response, indicate whether the response expresses a positive or negative stance toward that topic (options: 'POSITIVE' or 'NEGATIVE')
20
- - You MUST use either 'POSTIVE' or 'NEGATIVE'
21
+ - You MUST use either 'POSITIVE' or 'NEGATIVE'
21
22
  - The order of reasons and stances must align with the order of labels (e.g., stance_a applies to topic_a)
22
23
 
23
24
  You MUST include every response ID in the output.
@@ -25,24 +26,6 @@ If the response can not be labelled return empty sections where appropriate but
25
26
  with the correct response ID for each input object.
26
27
  You must only return the alphabetic topic_ids in the labels section.
27
28
 
28
- The final output should be in the following JSON format:
29
-
30
- {{
31
- "responses": [
32
- {{
33
- "response_id": response_id_1,
34
- "reasons": ["reason_a", "reason_b"],
35
- "labels": ["topic_a", "topic_b"],
36
- "stances": ["stance_a", "stance_b"],
37
- }},
38
- {{
39
- "response_id": response_id_2,
40
- "reasons": ["reason_c"],
41
- "labels": ["topic_c"],
42
- "stances": ["stance_c"],
43
- }}
44
- ]
45
- }}
46
29
 
47
30
  QUESTION:
48
31
 
@@ -52,6 +35,6 @@ TOPIC LIST:
52
35
 
53
36
  {refined_themes}
54
37
 
55
- RESPONSES:
38
+ FREE_TEXT_RESPONSES:
56
39
 
57
40
  {responses}
@@ -6,9 +6,12 @@ You are tasked with refining a list of topics generated from responses to a ques
6
6
  You will receive a list of TOPICS. These topics explicitly tie opinions to whether a person agrees or disagrees with the question.
7
7
 
8
8
  ## Output
9
- You will produce a list of CLEAR STANCE TOPICS based on the input. Each topic should have two parts:
10
- 1. A brief, clear topic label (3-7 words)
11
- 2. A more detailed topic description (1-2 sentences)
9
+ You will produce a list of CLEAR STANCE TOPICS based on the input. Each topic should have four parts:
10
+ 1. A topic_id that is an uppercase letter (starting from 'A', for the 27th element use AA)
11
+ 2. A brief, clear topic label (3-7 words)
12
+ 3. A more detailed topic description (1-2 sentences)
13
+ 4. The source_topic_count field should be included for each topic and should reflect the number of original source topics that were merged to create this refined topic. If multiple source topics were combined, sum their individual counts. If only one source topic was used, simply retain its original count value.
14
+
12
15
 
13
16
  ## Guidelines
14
17
 
@@ -46,20 +49,8 @@ You will produce a list of CLEAR STANCE TOPICS based on the input. Each topic sh
46
49
  b. Create a neutral, concise topic label.
47
50
  c. Write a more detailed description that provides context without taking sides.
48
51
  4. Review the entire list to ensure distinctiveness and adjust as needed.
49
- 5. Assign each output topic a topic_id a single uppercase letters (starting from 'A', for the 27th element use AA)
52
+ 5. Assign each output topic a topic_id that is an uppercase letter (starting from 'A', for the 27th element use AA)
50
53
  6. Combine the topic label and description with a colon separator
51
54
 
52
- Return your output in the following JSON format:
53
- {{
54
- "responses": [
55
- {{"topic_id": "A", "topic": "{{topic label 1}}: {{topic description 1}}", "source_topic_count": {{count1}}}},
56
- {{"topic_id": "B", "topic": "{{topic label 2}}: {{topic description 2}}", "source_topic_count": {{count2}}}},
57
- {{"topic_id": "C", "topic": "{{topic label 3}}: {{topic description 3}}", "source_topic_count": {{count3}}}},
58
- // Additional topics as necessary
59
- ]
60
- }}
61
-
62
-
63
-
64
55
  TOPICS:
65
56
  {responses}
@@ -10,17 +10,9 @@ Requirements:
10
10
  - Each consolidated theme should capture all relevant information from its source themes
11
11
  - Final descriptions should be concise but thorough
12
12
  - The merged themes should be distinct from each other with minimal overlap
13
+ - The source_topic_count field should be included for each theme and represent the sum of all source themes that were combined to create it
14
+ - You cannot return more than {target_n_themes}
13
15
 
14
- Return your output in the following JSON format:
15
-
16
- {{
17
- "responses": [
18
- {{"topic_id": "A", "topic": "{{topic label 1}}: {{topic description 1}}"}},
19
- {{"topic_id": "B", "topic": "{{topic label 2}}: {{topic description 2}}"}},
20
- {{"topic_id": "C", "topic": "{{topic label 3}}: {{topic description 3}}"}},
21
- // Additional topics as necessary
22
- ]
23
- }}
24
16
 
25
17
  Themes to analyze:
26
18
  {responses}
@@ -0,0 +1,332 @@
1
+ """Theme clustering agent for hierarchical topic organization.
2
+
3
+ This module provides the ThemeClusteringAgent class for performing iterative
4
+ hierarchical clustering of topics using a language model.
5
+ """
6
+
7
+ import json
8
+ import logging
9
+ from typing import Dict, List, Any
10
+
11
+ import pandas as pd
12
+ from langchain.schema.runnable import Runnable
13
+ from tenacity import (
14
+ before,
15
+ before_sleep_log,
16
+ retry,
17
+ stop_after_attempt,
18
+ wait_random_exponential,
19
+ )
20
+
21
+ from .models import ThemeNode
22
+ from .llm_batch_processor import load_prompt_from_file
23
+ from .themefinder_logging import logger
24
+
25
+
26
+ class ThemeClusteringAgent:
27
+ """Agent for performing hierarchical clustering of topics using language models.
28
+
29
+ This class manages the iterative process of merging similar topics into a
30
+ hierarchical structure using an LLM to identify semantic relationships and
31
+ create meaningful parent-child topic relationships.
32
+
33
+ Attributes:
34
+ llm: Language model configured with structured output for clustering
35
+ themes: Dictionary mapping topic IDs to ThemeNode objects
36
+ active_themes: Set of topic IDs that are currently active for clustering
37
+ current_iteration: Current iteration number in the clustering process
38
+ """
39
+
40
+ def __init__(self, llm: Runnable, themes: List[ThemeNode]) -> None:
41
+ """Initialize the clustering agent with an LLM and initial themes.
42
+
43
+ Args:
44
+ llm: Language model instance configured with structured output
45
+ for HierarchicalClusteringResponse
46
+ themes: List of ThemeNode objects to be clustered
47
+ """
48
+ self.llm = llm
49
+ self.themes: Dict[str, ThemeNode] = {}
50
+ for theme in themes:
51
+ self.themes[theme.topic_id] = theme
52
+ self.active_themes = set(self.themes.keys())
53
+ self.current_iteration = 0
54
+
55
+ def _format_prompt(self) -> str:
56
+ """Format the clustering prompt with current active themes.
57
+
58
+ Creates a JSON representation of all currently active themes and
59
+ formats them into the clustering prompt template.
60
+
61
+ Returns:
62
+ str: Formatted prompt string ready for LLM processing
63
+ """
64
+ themes_for_prompt = []
65
+ for active_id in self.active_themes:
66
+ theme_dict = {
67
+ "topic_id": self.themes[active_id].topic_id,
68
+ "topic_label": self.themes[active_id].topic_label,
69
+ "topic_description": self.themes[active_id].topic_description,
70
+ }
71
+ themes_for_prompt.append(theme_dict)
72
+ themes_json = json.dumps(themes_for_prompt, indent=2)
73
+
74
+ # Load the clustering prompt template
75
+ prompt_template = load_prompt_from_file("agentic_theme_clustering")
76
+ return prompt_template.format(
77
+ themes_json=themes_json, iteration=self.current_iteration
78
+ )
79
+
80
+ @retry(
81
+ wait=wait_random_exponential(min=1, max=2),
82
+ stop=stop_after_attempt(3),
83
+ before=before.before_log(logger=logger, log_level=logging.DEBUG),
84
+ before_sleep=before_sleep_log(logger, logging.ERROR),
85
+ reraise=True,
86
+ )
87
+ def cluster_iteration(self) -> None:
88
+ """Perform one iteration of hierarchical theme clustering.
89
+
90
+ Uses the configured LLM to identify semantically similar themes
91
+ and merge them into parent themes. Updates the theme hierarchy
92
+ and active theme set based on the clustering results.
93
+
94
+ The method includes retry logic to handle transient API failures
95
+ and will automatically retry up to 3 times with exponential backoff.
96
+
97
+ Side Effects:
98
+ - Creates new parent ThemeNode objects in self.themes
99
+ - Updates parent_id relationships for child themes
100
+ - Modifies self.active_themes set
101
+ - Increments self.current_iteration
102
+ """
103
+ prompt = self._format_prompt()
104
+ response = self.llm.invoke(prompt)
105
+ # The response is already a parsed dictionary when using with_structured_output
106
+ result = response
107
+ for i, parent in enumerate(result["parent_themes"]):
108
+ new_theme_id = f"{chr(65 + i)}_{self.current_iteration}"
109
+ children = [c for c in parent["children"] if c in self.active_themes]
110
+ for child in children:
111
+ self.themes[child].parent_id = new_theme_id
112
+ total_source_count = sum(
113
+ self.themes[child_id].source_topic_count for child_id in children
114
+ )
115
+ new_theme = ThemeNode(
116
+ topic_id=new_theme_id,
117
+ topic_label=parent["topic_label"],
118
+ topic_description=parent["topic_description"],
119
+ source_topic_count=total_source_count,
120
+ children=children,
121
+ )
122
+ self.themes[new_theme_id] = new_theme
123
+ self.active_themes.add(new_theme_id)
124
+ for child in children:
125
+ self.active_themes.remove(child)
126
+ self.current_iteration += 1
127
+
128
+ def cluster_themes(
129
+ self, max_iterations: int = 5, target_themes: int = 5
130
+ ) -> pd.DataFrame:
131
+ """Perform hierarchical clustering to reduce themes to target number.
132
+
133
+ Iteratively merges similar themes using the clustering agent until
134
+ either the maximum iterations is reached or the target number of
135
+ themes is achieved. Creates a root node to represent the complete
136
+ hierarchy.
137
+
138
+ Args:
139
+ max_iterations: Maximum number of clustering iterations to perform
140
+ target_themes: Target number of themes to cluster down to
141
+
142
+ Returns:
143
+ pd.DataFrame: DataFrame containing all theme nodes (excluding root)
144
+ with their hierarchical relationships and metadata
145
+ """
146
+ logger.info(f"Starting clustering with {len(self.active_themes)} active themes")
147
+ while (
148
+ self.current_iteration <= max_iterations
149
+ and len(self.active_themes) > target_themes
150
+ ):
151
+ self.cluster_iteration()
152
+ logger.info(
153
+ f"After {self.current_iteration} iterations {len(self.active_themes)} active themes remaining"
154
+ )
155
+ root_node = ThemeNode(
156
+ topic_id="0",
157
+ topic_label="All Topics",
158
+ topic_description="",
159
+ source_topic_count=sum(
160
+ self.themes[theme_id].source_topic_count
161
+ for theme_id in self.active_themes
162
+ ),
163
+ children=list(self.active_themes),
164
+ )
165
+ self.themes["0"] = root_node
166
+ for theme in self.active_themes:
167
+ self.themes[theme].parent_id = "0"
168
+
169
+ # Convert all themes (except root) to DataFrame
170
+ theme_nodes_dicts = [
171
+ node.model_dump() for node in self.themes.values() if node.topic_id != "0"
172
+ ]
173
+ return pd.DataFrame(theme_nodes_dicts)
174
+
175
+ def convert_themes_to_tree_json(self) -> str:
176
+ """Convert themes into a hierarchical JSON structure for visualization.
177
+
178
+ Creates a nested JSON structure starting from the root node (ID '0')
179
+ that represents the complete theme hierarchy. Each node includes
180
+ metadata and references to its children.
181
+
182
+ Returns:
183
+ str: JSON string representing the hierarchical tree structure
184
+ suitable for JavaScript tree visualization libraries
185
+ """
186
+
187
+ def build_tree(node: ThemeNode) -> Dict[str, Any]:
188
+ return {
189
+ "id": node.topic_id,
190
+ "name": node.topic_label,
191
+ "description": node.topic_description,
192
+ "value": node.source_topic_count,
193
+ "children": [
194
+ build_tree(self.themes[child_id])
195
+ for child_id in node.children
196
+ if child_id in self.themes
197
+ ],
198
+ }
199
+
200
+ tree_data = build_tree(self.themes["0"])
201
+ return json.dumps(tree_data, indent=2)
202
+
203
+ def select_significant_themes(
204
+ self, significance_threshold: int, total_responses: int
205
+ ) -> Dict[str, Any]:
206
+ """Select significant themes using depth-first traversal.
207
+
208
+ Performs a depth-first search on the theme hierarchy to identify
209
+ themes that meet the significance threshold. Prioritizes leaf nodes
210
+ when possible, but selects parent nodes when children don't meet
211
+ the threshold.
212
+
213
+ Args:
214
+ significance_threshold: Minimum source_topic_count for significance
215
+ total_responses: Total number of responses across all themes
216
+
217
+ Returns:
218
+ Dict containing selected theme nodes and metadata
219
+ """
220
+ # Track selected nodes
221
+ selected_nodes: List[Dict[str, Any]] = []
222
+
223
+ # Perform the DFS selection
224
+ self._traverse_tree(self.themes["0"], selected_nodes, significance_threshold)
225
+
226
+ # Format the final result
227
+ result = {"selected_nodes": selected_nodes, "total_responses": total_responses}
228
+
229
+ return result
230
+
231
+ def _traverse_tree(
232
+ self,
233
+ node: ThemeNode,
234
+ selected_nodes: List[Dict[str, Any]],
235
+ significance_threshold: int,
236
+ ) -> bool:
237
+ """Recursively traverse theme tree to select significant nodes.
238
+
239
+ Implements depth-first traversal logic for theme selection:
240
+ 1. For leaf nodes: always select
241
+ 2. For parent nodes: select if no significant children exist
242
+ 3. For significant children: recursively process them
243
+
244
+ Args:
245
+ node: Current ThemeNode being processed
246
+ selected_nodes: List to accumulate selected theme dictionaries
247
+ significance_threshold: Minimum source_topic_count for significance
248
+
249
+ Returns:
250
+ bool: True if this node or descendants were selected, False otherwise
251
+ """
252
+ # Base case: if node has no children (leaf node)
253
+ if not node.children:
254
+ selected_nodes.append(
255
+ {
256
+ "id": node.topic_id,
257
+ "name": node.topic_label,
258
+ "value": node.source_topic_count,
259
+ }
260
+ )
261
+ return True
262
+
263
+ # Check if any children are significant
264
+ has_significant_children = any(
265
+ self.themes[child_id].source_topic_count >= significance_threshold
266
+ for child_id in node.children
267
+ if child_id in self.themes
268
+ )
269
+
270
+ # If no significant children, select this node
271
+ if not has_significant_children:
272
+ selected_nodes.append(
273
+ {
274
+ "id": node.topic_id,
275
+ "name": node.topic_label,
276
+ "value": node.source_topic_count,
277
+ }
278
+ )
279
+ return True
280
+
281
+ # If significant children exist, recursively process them
282
+ any_selected = False
283
+ for child_id in node.children:
284
+ if child_id in self.themes:
285
+ if self._traverse_tree(
286
+ self.themes[child_id], selected_nodes, significance_threshold
287
+ ):
288
+ any_selected = True
289
+
290
+ # If none of the children were selected, select this node
291
+ if not any_selected:
292
+ selected_nodes.append(
293
+ {
294
+ "id": node.topic_id,
295
+ "name": node.topic_label,
296
+ "value": node.source_topic_count,
297
+ }
298
+ )
299
+ return True
300
+
301
+ return any_selected
302
+
303
+ def select_themes(self, significance_percentage: float) -> pd.DataFrame:
304
+ """Select themes that meet the significance threshold.
305
+
306
+ Calculates the significance threshold based on the percentage of total
307
+ responses and returns only themes that meet or exceed this threshold.
308
+ Excludes the root node from results.
309
+
310
+ Args:
311
+ significance_percentage: Percentage (0-100) of total responses
312
+ required for a theme to be considered significant
313
+
314
+ Returns:
315
+ pd.DataFrame: DataFrame containing significant theme data,
316
+ excluding the root node (topic_id='0')
317
+ """
318
+ total_responses = self.themes["0"].source_topic_count
319
+ # Convert percentage to absolute threshold
320
+ significance_threshold = int(total_responses * (significance_percentage / 100))
321
+
322
+ # Filter themes that meet the significance threshold
323
+ significant_themes = [
324
+ theme_node
325
+ for theme_node in self.themes.values()
326
+ if theme_node.source_topic_count >= significance_threshold
327
+ ]
328
+ # Convert significant themes to DataFrame, excluding root node
329
+ theme_nodes_dicts = [
330
+ node.model_dump() for node in significant_themes if node.topic_id != "0"
331
+ ]
332
+ return pd.DataFrame(theme_nodes_dicts)
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.3
2
2
  Name: themefinder
3
- Version: 0.6.2
3
+ Version: 0.7.0
4
4
  Summary: A topic modelling Python package designed for analysing one-to-many question-answer data eg free-text survey responses.
5
5
  License: MIT
6
6
  Author: i.AI
@@ -49,9 +49,9 @@ ThemeFinder takes as input a [pandas DataFrame](https://pandas.pydata.org/docs/r
49
49
  - `response_id`: A unique identifier for each response
50
50
  - `response`: The free text survey response
51
51
 
52
- ThemeFinder is compatible with any instantiated [LangChain LLM runnable](https://python.langchain.com/v0.1/docs/integrations/llms/), but you will need to use JSON structured output.
52
+ ThemeFinder now supports a range of language models through structured outputs.
53
53
 
54
- The function `find_themes` identifies common themes in response and labels them, it also outputs results from intermediate steps in the theme finding pipeline.
54
+ The function `find_themes` identifies common themes in responses and labels them, it also outputs results from intermediate steps in the theme finding pipeline.
55
55
 
56
56
  For this example, import the following Python packages into your virtual environment: `asyncio`, `pandas`, `lanchain`. And import `themefinder` as described above.
57
57
 
@@ -81,7 +81,6 @@ load_dotenv()
81
81
  llm = AzureChatOpenAI(
82
82
  model="gpt-4o",
83
83
  temperature=0,
84
- model_kwargs={"response_format": {"type": "json_object"}},
85
84
  )
86
85
 
87
86
  # Set up your data
@@ -97,18 +96,15 @@ question = "What do you think of ThemeFinder?"
97
96
  # Make the system prompt specific to your use case
98
97
  system_prompt = "You are an AI evaluation tool analyzing survey responses about a Python package."
99
98
 
100
- # Run the function to find themes
101
- # We use asyncio to query LLM endpoints asynchronously, so we need to await our function
99
+ # Run the function to find themes, we use asyncio to query LLM endpoints asynchronously, so we need to await our function
102
100
  async def main():
103
101
  result = await find_themes(responses_df, llm, question, system_prompt=system_prompt)
104
102
  print(result)
105
103
 
106
104
  if __name__ == "__main__":
107
105
  asyncio.run(main())
108
-
109
106
  ```
110
107
 
111
-
112
108
  ## ThemeFinder pipeline
113
109
 
114
110
  ThemeFinder's pipeline consists of five distinct stages, each utilizing a specialized LLM prompt:
@@ -145,6 +141,25 @@ The file `src/themefinder.core.py` contains the function `find_themes` which run
145
141
  **For more detail - see the docs: [https://i-dot-ai.github.io/themefinder/](https://i-dot-ai.github.io/themefinder/).**
146
142
 
147
143
 
144
+ ## Model Compatibility
145
+
146
+ ThemeFinder's structured output approach makes it compatible with a wide range of language models from various providers. This list is non-exhaustive, and other models may also work effectively:
147
+
148
+ ### OpenAI Models
149
+ - GPT-4, GPT-4o, GPT-4.1
150
+ - All Azure OpenAI deployments
151
+
152
+ ### Google Models
153
+ - Gemini series (1.5 Pro, 2.0 Pro, etc.)
154
+
155
+ ### Anthropic Models
156
+ - Claude series (Claude 3 Opus, Sonnet, Haiku, etc.)
157
+
158
+ ### Open Source Models
159
+ - Llama 2, Llama 3
160
+ - Mistral models (e.g., Mistral 7B, Mixtral)
161
+
162
+
148
163
  ## License
149
164
 
150
165
  This project is licensed under the MIT License - see the [LICENSE](LICENSE) file for details.
@@ -154,5 +169,5 @@ The documentation is [© Crown copyright](https://www.nationalarchives.gov.uk/in
154
169
 
155
170
  ## Feedback
156
171
 
157
- If you have feedback on this package, please fill in our [feedback form](https://forms.gle/85xUSMvxGzSSKQ499) or contact us with questions or feedback at packages@cabinetoffice.gov.uk.
172
+ Contact us with questions or feedback at packages@cabinetoffice.gov.uk.
158
173
 
@@ -0,0 +1,19 @@
1
+ themefinder/__init__.py,sha256=k3D3TpAvRdcXXZbHc_Lb7DsB53JwoGA0S4Ap5iX7PEw,477
2
+ themefinder/core.py,sha256=mqToJ-ggx8JyholNMUwFDcAT35dWX8Hnt3BJzdaNgS0,26219
3
+ themefinder/llm_batch_processor.py,sha256=Z9jm9Kr-6GD8g8kLkgdW97onjUbLLQ2M1YKwok39Q6Y,17652
4
+ themefinder/models.py,sha256=JopmD4F23Mteh60m6WDpsuTs58dRc0tUbVX-d-L8Gv8,14680
5
+ themefinder/prompts/agentic_theme_clustering.txt,sha256=6bHLpgZUQEaZXpLUB7EcMEbtXGqQ_1yniqZ6ZBJHFn0,1917
6
+ themefinder/prompts/consultation_system_prompt.txt,sha256=_A07oY_an4hnRx-9pQ0y-TLXJz0dd8vDI-MZne7Mdb4,89
7
+ themefinder/prompts/detail_detection.txt,sha256=6Vr_oN7rF5BCFipnCIHTSF8MmjerGyCixRWRT3vni1U,941
8
+ themefinder/prompts/sentiment_analysis.txt,sha256=vYCDhtEsG5I9xixwVhZbvKPJGU1Gqpw4-xAqGz72xhU,1671
9
+ themefinder/prompts/theme_condensation.txt,sha256=pHWuCtfU58gdtP2BfGZWOTvcb0MnTpb9OhOCGtkJv8U,1672
10
+ themefinder/prompts/theme_generation.txt,sha256=QRKW7DtcMSb2olT6j5jmdEPcXPMeZgogM-NYddEIKRk,1871
11
+ themefinder/prompts/theme_mapping.txt,sha256=HtGuStm-622TIEaqdb9LTaBs9xE-n9lvmcGQTG2_JOQ,2042
12
+ themefinder/prompts/theme_refinement.txt,sha256=evWMCIEdeZCJ8zn4SBNgP6bmfAb0vzKiR5C5wfAjkUk,2649
13
+ themefinder/prompts/theme_target_alignment.txt,sha256=g7AVZLiP_xIH010X5SIZyG3q7gA6OBAplPv3xvmstOY,855
14
+ themefinder/theme_clustering_agent.py,sha256=Ie-5MFvIo7ukeeDXNpLawJXqLqBb6kvUGgSH6uTGL20,12826
15
+ themefinder/themefinder_logging.py,sha256=n5SUQovEZLC4skEbxicjz_fOGF9mOk3S-Wpj5uXsaL8,314
16
+ themefinder-0.7.0.dist-info/LICENCE,sha256=C9ULIN0ctF60ZxUWH_hw1H434bDLg49Z-Qzn6BUHgqs,1060
17
+ themefinder-0.7.0.dist-info/METADATA,sha256=-PRjz0RTxp-yJsuavj8tw5NwtC1amsw12JyKNOitxZw,6737
18
+ themefinder-0.7.0.dist-info/WHEEL,sha256=b4K_helf-jlQoXBBETfwnf4B04YC67LOev0jo4fX5m8,88
19
+ themefinder-0.7.0.dist-info/RECORD,,
@@ -1,4 +1,4 @@
1
1
  Wheel-Version: 1.0
2
- Generator: poetry-core 2.1.2
2
+ Generator: poetry-core 2.1.3
3
3
  Root-Is-Purelib: true
4
4
  Tag: py3-none-any
@@ -1,16 +0,0 @@
1
- themefinder/__init__.py,sha256=wSpW2fEnC4gTzbeNC78nSD3DpJq43-h_H-LK_cqt1cw,327
2
- themefinder/core.py,sha256=u1DY9gbzn-tFhQS3hrXQ8_1mIbR-iBWYVAdKeAX1BdE,18304
3
- themefinder/llm_batch_processor.py,sha256=OrFEl1nSi5ninbSZSiE1HFMcYZiQ-NzuYPj_iDcPPoE,19988
4
- themefinder/models.py,sha256=Y5-okndYwtBO09n_qUlYNVmHRVNEnJviArQZukm8Ox8,4251
5
- themefinder/prompts/consultation_system_prompt.txt,sha256=_A07oY_an4hnRx-9pQ0y-TLXJz0dd8vDI-MZne7Mdb4,89
6
- themefinder/prompts/sentiment_analysis.txt,sha256=9-LkdR95JTHXRKUXknAgNf86uVdv6jSaXMf-OtFL9_0,1948
7
- themefinder/prompts/theme_condensation.txt,sha256=DB4pqUmMpo0OG4AZWGTj0FfLFfjbX6wOMUr44HBxZ1o,2433
8
- themefinder/prompts/theme_generation.txt,sha256=JMXuNojxdSAcxPRU1Jg12Xunv_dX4hNvXYU2pXMWTAw,2500
9
- themefinder/prompts/theme_mapping.txt,sha256=YcRGMkuTyTPzPQPtsDY31DUwX60c8AdmdHKw0XeUejQ,2258
10
- themefinder/prompts/theme_refinement.txt,sha256=hBXwZnNZmhmoEFXpY5OJinp-7xxdoDRf_5LmgrilYgc,2713
11
- themefinder/prompts/theme_target_alignment.txt,sha256=-_ghr4--KAN6Tz8ExO9s2IXvI6pjWaEA_nG5L83GV5I,1035
12
- themefinder/themefinder_logging.py,sha256=n5SUQovEZLC4skEbxicjz_fOGF9mOk3S-Wpj5uXsaL8,314
13
- themefinder-0.6.2.dist-info/LICENCE,sha256=C9ULIN0ctF60ZxUWH_hw1H434bDLg49Z-Qzn6BUHgqs,1060
14
- themefinder-0.6.2.dist-info/METADATA,sha256=gI9Hp754EjopJQWw0QZIPb9dex8TalPMGnorUEOJlp0,6498
15
- themefinder-0.6.2.dist-info/WHEEL,sha256=fGIA9gx4Qxk2KDKeNJCbOEwSrmLtjWCwzBz351GyrPQ,88
16
- themefinder-0.6.2.dist-info/RECORD,,