tglc 0.6.5__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- tglc/__init__.py +3 -0
- tglc/background_mask/__init__.py +0 -0
- tglc/background_mask/median_mask.fits +0 -0
- tglc/effective_psf.py +484 -0
- tglc/ffi.py +376 -0
- tglc/ffi_cut.py +279 -0
- tglc/lc_plot.py +2662 -0
- tglc/mast.py +116 -0
- tglc/quick_lc.py +526 -0
- tglc/run.py +95 -0
- tglc/source_output.py +85 -0
- tglc/target_lightcurve.py +362 -0
- tglc-0.6.5.dist-info/LICENSE +21 -0
- tglc-0.6.5.dist-info/METADATA +80 -0
- tglc-0.6.5.dist-info/RECORD +17 -0
- tglc-0.6.5.dist-info/WHEEL +5 -0
- tglc-0.6.5.dist-info/top_level.txt +1 -0
tglc/mast.py
ADDED
|
@@ -0,0 +1,116 @@
|
|
|
1
|
+
import ftplib
|
|
2
|
+
import getpass
|
|
3
|
+
from glob import glob
|
|
4
|
+
import numpy as np
|
|
5
|
+
from tqdm import trange
|
|
6
|
+
from multiprocessing import Pool
|
|
7
|
+
from functools import partial
|
|
8
|
+
from astropy.io import fits
|
|
9
|
+
import shutil
|
|
10
|
+
import time
|
|
11
|
+
import os
|
|
12
|
+
from astropy.io import ascii
|
|
13
|
+
import zipfile
|
|
14
|
+
|
|
15
|
+
|
|
16
|
+
def filter_no_tic_(i, sector=1):
|
|
17
|
+
time.sleep(i)
|
|
18
|
+
cam = 1 + i // 4
|
|
19
|
+
ccd = 1 + i % 4
|
|
20
|
+
files = glob(f'/home/tehan/data/sector{sector:04d}/lc/{cam}-{ccd}/*.fits')
|
|
21
|
+
for j in range(len(files)):
|
|
22
|
+
hdul = fits.open(files[j])
|
|
23
|
+
if hdul[0].header['TICID'] == '':
|
|
24
|
+
shutil.move(files[j], f'/home/tehan/data/sector{sector:04d}/extra_lc/{os.path.basename(files[j])}')
|
|
25
|
+
|
|
26
|
+
|
|
27
|
+
def filter_no_tic(sector=1):
|
|
28
|
+
os.makedirs(f'/home/tehan/data/sector{sector:04d}/extra_lc/', exist_ok=True)
|
|
29
|
+
with Pool(16) as p:
|
|
30
|
+
p.map(partial(filter_no_tic_, sector=sector), range(16))
|
|
31
|
+
|
|
32
|
+
|
|
33
|
+
def zip_folder(i, sector=1, do_zip=True, lc_num_per_zip=1e6):
|
|
34
|
+
time.sleep(i)
|
|
35
|
+
cam = 1 + i // 4
|
|
36
|
+
ccd = 1 + i % 4
|
|
37
|
+
zip_file = f'/home/tehan/data/mast/sector{sector:04d}/sector_{sector}_cam_{cam}_ccd_{ccd}'
|
|
38
|
+
original_file = f'/home/tehan/data/sector{sector:04d}/lc/{cam}-{ccd}/'
|
|
39
|
+
files = glob(f'{original_file}*.fits')
|
|
40
|
+
if do_zip:
|
|
41
|
+
# num_zips = int(len(files) // lc_num_per_zip + 1)
|
|
42
|
+
# for i in range(num_zips):
|
|
43
|
+
# with zipfile.ZipFile(f'{zip_file}_{i:02d}.zip', 'w') as zipMe:
|
|
44
|
+
# for file in files[int(i * lc_num_per_zip):int((i + 1) * lc_num_per_zip)]:
|
|
45
|
+
# zipMe.write(file, compress_type=zipfile.ZIP_DEFLATED)
|
|
46
|
+
shutil.make_archive(zip_file, 'zip', original_file)
|
|
47
|
+
return
|
|
48
|
+
else:
|
|
49
|
+
ftps = ftplib.FTP_TLS('archive.stsci.edu')
|
|
50
|
+
ftps.login('tehanhunter@gmail.com', getpass.getpass())
|
|
51
|
+
ftps.prot_p()
|
|
52
|
+
ftps.cwd('pub/hlsp/tglc/')
|
|
53
|
+
print(f"Sector {sector}")
|
|
54
|
+
sector_dir = f"s{sector:04d}"
|
|
55
|
+
# print current directory
|
|
56
|
+
dir_list = []
|
|
57
|
+
ftps.retrlines('LIST', dir_list.append)
|
|
58
|
+
dir_list = [d.split()[-1] for d in dir_list]
|
|
59
|
+
# check if sector_dir already exists
|
|
60
|
+
if sector_dir in dir_list:
|
|
61
|
+
pass
|
|
62
|
+
# print(f"Directory {sector_dir}/ already exists.")
|
|
63
|
+
# if not, mkdir new sector directory (use relative path, NOT absolute path)
|
|
64
|
+
else:
|
|
65
|
+
print(ftps.mkd(sector_dir))
|
|
66
|
+
# cd into sector directory (use relative path, NOT absolute path)
|
|
67
|
+
ftps.cwd(sector_dir)
|
|
68
|
+
# print('\n')
|
|
69
|
+
with open(f'{zip_file}.zip', 'rb') as f:
|
|
70
|
+
ftps.storbinary(f"STOR sector_{sector}_cam_{cam}_ccd_{ccd}.zip", f)
|
|
71
|
+
|
|
72
|
+
|
|
73
|
+
def hlsp_transfer(sector=1, do_zip=True):
|
|
74
|
+
with Pool(16) as p:
|
|
75
|
+
p.map(partial(zip_folder, sector=sector, do_zip=do_zip), range(16))
|
|
76
|
+
|
|
77
|
+
|
|
78
|
+
def search_stars(i, sector=1, star_list=None):
|
|
79
|
+
cam = 1 + i // 4
|
|
80
|
+
ccd = 1 + i % 4
|
|
81
|
+
files = glob(f'/home/tehan/data/sector{sector:04d}/lc/{cam}-{ccd}/hlsp_*.fits')
|
|
82
|
+
for j in trange(len(files)):
|
|
83
|
+
with fits.open(files[j], mode='denywrite') as hdul:
|
|
84
|
+
try:
|
|
85
|
+
if int(hdul[0].header['TICID']) in star_list:
|
|
86
|
+
hdul.writeto(f"/home/tehan/data/cosmos/dominic_EB/sector{sector:04d}/{files[j].split('/')[-1]}",
|
|
87
|
+
overwrite=True)
|
|
88
|
+
except ValueError:
|
|
89
|
+
pass
|
|
90
|
+
|
|
91
|
+
|
|
92
|
+
def star_spliter(server=1, # or 2
|
|
93
|
+
star_list='/home/tehan/data/cosmos/dominic_EB/eb_cat.txt'):
|
|
94
|
+
prsa_ebs = ascii.read(star_list)['ID'].data
|
|
95
|
+
# sector_list = tuple([] for _ in range(55)) ##1 extended mission
|
|
96
|
+
# for j in range(len(prsa_ebs)):
|
|
97
|
+
# try:
|
|
98
|
+
# sectors = prsa_ebs['sectors'][j].split(',')
|
|
99
|
+
# for k in range(len(sectors)):
|
|
100
|
+
# sector_list[int(sectors[k]) - 1].append(prsa_ebs['tess_id'][j])
|
|
101
|
+
# except AttributeError:
|
|
102
|
+
# pass
|
|
103
|
+
for i in range(server, 27, 2):
|
|
104
|
+
os.makedirs(f'/home/tehan/data/cosmos/dominic_EB/sector{i:04d}/', exist_ok=True)
|
|
105
|
+
with Pool(16) as p:
|
|
106
|
+
p.map(partial(search_stars, sector=i, star_list=prsa_ebs), range(16))
|
|
107
|
+
return
|
|
108
|
+
|
|
109
|
+
|
|
110
|
+
if __name__ == '__main__':
|
|
111
|
+
sector = 1
|
|
112
|
+
filter_no_tic(sector=sector)
|
|
113
|
+
hlsp_transfer(sector=sector, do_zip=True)
|
|
114
|
+
# hlsp_transfer(sector=sector, do_zip=False)
|
|
115
|
+
# star_spliter(server=1)
|
|
116
|
+
# star_list='/home/tehan/Documents/tglc/dominic_EB/eb_cat.txt'
|
tglc/quick_lc.py
ADDED
|
@@ -0,0 +1,526 @@
|
|
|
1
|
+
import os
|
|
2
|
+
import pickle
|
|
3
|
+
from glob import glob
|
|
4
|
+
from tqdm import trange
|
|
5
|
+
from wotan import flatten
|
|
6
|
+
from astropy.io import ascii
|
|
7
|
+
from astropy.io import fits
|
|
8
|
+
import matplotlib.pyplot as plt
|
|
9
|
+
from multiprocessing import Pool
|
|
10
|
+
from functools import partial
|
|
11
|
+
from tglc.target_lightcurve import epsf
|
|
12
|
+
from tglc.ffi_cut import ffi_cut
|
|
13
|
+
from astroquery.mast import Catalogs
|
|
14
|
+
import astropy.units as u
|
|
15
|
+
from astropy.coordinates import SkyCoord
|
|
16
|
+
from astroquery.mast import Tesscut
|
|
17
|
+
# Tesscut._service_api_connection.TIMEOUT = 6000
|
|
18
|
+
|
|
19
|
+
# warnings.simplefilter('ignore', UserWarning)
|
|
20
|
+
from threadpoolctl import ThreadpoolController, threadpool_limits
|
|
21
|
+
import numpy as np
|
|
22
|
+
import seaborn as sns
|
|
23
|
+
import itertools
|
|
24
|
+
controller = ThreadpoolController()
|
|
25
|
+
|
|
26
|
+
|
|
27
|
+
@controller.wrap(limits=1, user_api='blas')
|
|
28
|
+
def tglc_lc(target='TIC 264468702', local_directory='', size=90, save_aper=True, limit_mag=16, get_all_lc=False,
|
|
29
|
+
first_sector_only=False, last_sector_only=False, sector=None, prior=None, transient=None):
|
|
30
|
+
'''
|
|
31
|
+
Generate light curve for a single target.
|
|
32
|
+
|
|
33
|
+
:param target: target identifier
|
|
34
|
+
:kind target: str, required
|
|
35
|
+
:param local_directory: output directory
|
|
36
|
+
:kind local_directory: str, required
|
|
37
|
+
:param size: size of the FFI cut, default size is 90. Recommend large number for better quality. Cannot exceed 100.
|
|
38
|
+
:kind size: int, optional
|
|
39
|
+
'''
|
|
40
|
+
os.makedirs(local_directory + f'logs/', exist_ok=True)
|
|
41
|
+
os.makedirs(local_directory + f'lc/', exist_ok=True)
|
|
42
|
+
os.makedirs(local_directory + f'epsf/', exist_ok=True)
|
|
43
|
+
os.makedirs(local_directory + f'source/', exist_ok=True)
|
|
44
|
+
print(f'Target: {target}')
|
|
45
|
+
target_ = Catalogs.query_object(target, radius=42 * 0.707 / 3600, catalog="Gaia", version=2)
|
|
46
|
+
if len(target_) == 0:
|
|
47
|
+
target_ = Catalogs.query_object(target.name, radius=5 * 21 * 0.707 / 3600, catalog="Gaia", version=2)
|
|
48
|
+
ra = target_[0]['ra']
|
|
49
|
+
dec = target_[0]['dec']
|
|
50
|
+
coord = SkyCoord(ra=ra, dec=dec, unit=(u.degree, u.degree), frame='icrs')
|
|
51
|
+
sector_table = Tesscut.get_sectors(coordinates=coord)
|
|
52
|
+
print(sector_table)
|
|
53
|
+
if get_all_lc:
|
|
54
|
+
name = None
|
|
55
|
+
else:
|
|
56
|
+
catalogdata = Catalogs.query_object(str(target), radius=0.02, catalog="TIC")
|
|
57
|
+
if target[0:3] == 'TIC':
|
|
58
|
+
name = int(target[4:])
|
|
59
|
+
elif transient is not None:
|
|
60
|
+
name = transient[0]
|
|
61
|
+
else:
|
|
62
|
+
name = int(np.array(catalogdata['ID'])[0])
|
|
63
|
+
print("Since the provided target is not TIC ID, the resulted light curve with get_all_lc=False can not be "
|
|
64
|
+
"guaranteed to be the target's light curve. Please check the TIC ID of the output file before using "
|
|
65
|
+
"the light curve or try use TIC ID as the target in the format of 'TIC 12345678'.")
|
|
66
|
+
if type(sector) == int:
|
|
67
|
+
print(f'Only processing Sector {sector}.')
|
|
68
|
+
print('Downloading Data from MAST and Gaia ...')
|
|
69
|
+
source = ffi_cut(target=target, size=size, local_directory=local_directory, sector=sector,
|
|
70
|
+
limit_mag=limit_mag, transient=transient) # sector
|
|
71
|
+
source.select_sector(sector=sector)
|
|
72
|
+
epsf(source, factor=2, sector=source.sector, target=target, local_directory=local_directory,
|
|
73
|
+
name=name, limit_mag=limit_mag, save_aper=save_aper, prior=prior)
|
|
74
|
+
elif first_sector_only:
|
|
75
|
+
print(f'Only processing the first sector the target is observed in: Sector {sector_table["sector"][0]}.')
|
|
76
|
+
print('Downloading Data from MAST and Gaia ...')
|
|
77
|
+
sector = sector_table["sector"][0]
|
|
78
|
+
source = ffi_cut(target=target, size=size, local_directory=local_directory, sector=sector,
|
|
79
|
+
limit_mag=limit_mag, transient=transient) # sector
|
|
80
|
+
source.select_sector(sector=source.sector_table['sector'][0])
|
|
81
|
+
epsf(source, factor=2, sector=source.sector, target=target, local_directory=local_directory,
|
|
82
|
+
name=name, limit_mag=limit_mag, save_aper=save_aper, prior=prior)
|
|
83
|
+
elif last_sector_only:
|
|
84
|
+
print(f'Only processing the last sector the target is observed in: Sector {sector_table["sector"][-1]}.')
|
|
85
|
+
print('Downloading Data from MAST and Gaia ...')
|
|
86
|
+
sector = sector_table["sector"][-1]
|
|
87
|
+
source = ffi_cut(target=target, size=size, local_directory=local_directory, sector=sector,
|
|
88
|
+
limit_mag=limit_mag, transient=transient) # sector
|
|
89
|
+
source.select_sector(sector=source.sector_table['sector'][-1])
|
|
90
|
+
epsf(source, factor=2, sector=source.sector, target=target, local_directory=local_directory,
|
|
91
|
+
name=name, limit_mag=limit_mag, save_aper=save_aper, prior=prior)
|
|
92
|
+
elif sector == None:
|
|
93
|
+
print(f'Processing all available sectors of the target.')
|
|
94
|
+
print('Downloading Data from MAST and Gaia ...')
|
|
95
|
+
for j in range(len(sector_table)):
|
|
96
|
+
print(f'################################################')
|
|
97
|
+
print(f'Downloading Sector {sector_table["sector"][j]}.')
|
|
98
|
+
source = ffi_cut(target=target, size=size, local_directory=local_directory,
|
|
99
|
+
sector=sector_table['sector'][j],
|
|
100
|
+
limit_mag=limit_mag, transient=transient)
|
|
101
|
+
epsf(source, factor=2, sector=source.sector, target=target, local_directory=local_directory,
|
|
102
|
+
name=name, limit_mag=limit_mag, save_aper=save_aper, prior=prior)
|
|
103
|
+
else:
|
|
104
|
+
print(
|
|
105
|
+
f'Processing all available sectors of the target in a single run. Note that if the number of sectors is '
|
|
106
|
+
f'large, the download might cause a timeout error from MAST.')
|
|
107
|
+
print('Downloading Data from MAST and Gaia ...')
|
|
108
|
+
source = ffi_cut(target=target, size=size, local_directory=local_directory, sector=sector,
|
|
109
|
+
limit_mag=limit_mag, transient=transient) # sector
|
|
110
|
+
for j in range(len(source.sector_table)):
|
|
111
|
+
source.select_sector(sector=source.sector_table['sector'][j])
|
|
112
|
+
epsf(source, factor=2, sector=source.sector, target=target, local_directory=local_directory,
|
|
113
|
+
name=name, limit_mag=limit_mag, save_aper=save_aper, prior=prior)
|
|
114
|
+
|
|
115
|
+
|
|
116
|
+
def search_stars(i, sector=1, tics=None, local_directory=None):
|
|
117
|
+
cam = 1 + i // 4
|
|
118
|
+
ccd = 1 + i % 4
|
|
119
|
+
files = glob(f'/home/tehan/data/sector{sector:04d}/lc/{cam}-{ccd}/hlsp_*.fits')
|
|
120
|
+
for j in trange(len(files)):
|
|
121
|
+
with fits.open(files[j], mode='denywrite') as hdul:
|
|
122
|
+
try:
|
|
123
|
+
if int(hdul[0].header['TICID']) in tics:
|
|
124
|
+
hdul.writeto(f"{local_directory}{files[j].split('/')[-1]}",
|
|
125
|
+
overwrite=True)
|
|
126
|
+
except:
|
|
127
|
+
pass
|
|
128
|
+
|
|
129
|
+
|
|
130
|
+
def timebin(time, meas, meas_err, binsize):
|
|
131
|
+
ind_order = np.argsort(time)
|
|
132
|
+
time = time[ind_order]
|
|
133
|
+
meas = meas[ind_order]
|
|
134
|
+
meas_err = meas_err[ind_order]
|
|
135
|
+
ct = 0
|
|
136
|
+
while ct < len(time):
|
|
137
|
+
ind = np.where((time >= time[ct]) & (time < time[ct] + binsize))[0]
|
|
138
|
+
num = len(ind)
|
|
139
|
+
wt = (1. / meas_err[ind]) ** 2. # weights based in errors
|
|
140
|
+
wt = wt / np.sum(wt) # normalized weights
|
|
141
|
+
if ct == 0:
|
|
142
|
+
time_out = [np.sum(wt * time[ind])]
|
|
143
|
+
meas_out = [np.sum(wt * meas[ind])]
|
|
144
|
+
meas_err_out = [1. / np.sqrt(np.sum(1. / (meas_err[ind]) ** 2))]
|
|
145
|
+
else:
|
|
146
|
+
time_out.append(np.sum(wt * time[ind]))
|
|
147
|
+
meas_out.append(np.sum(wt * meas[ind]))
|
|
148
|
+
meas_err_out.append(1. / np.sqrt(np.sum(1. / (meas_err[ind]) ** 2)))
|
|
149
|
+
ct += num
|
|
150
|
+
|
|
151
|
+
return time_out, meas_out, meas_err_out
|
|
152
|
+
|
|
153
|
+
|
|
154
|
+
def star_spliter(server=1, # or 2
|
|
155
|
+
tics=None, local_directory=None):
|
|
156
|
+
for i in range(server, 27, 2):
|
|
157
|
+
with Pool(16) as p:
|
|
158
|
+
p.map(partial(search_stars, sector=i, tics=tics, local_directory=local_directory), range(16))
|
|
159
|
+
return
|
|
160
|
+
|
|
161
|
+
|
|
162
|
+
def plot_lc(local_directory=None, kind='cal_aper_flux', xlow=None, xhigh=None, ylow=None, yhigh=None):
|
|
163
|
+
files = glob(f'{local_directory}lc/*.fits')
|
|
164
|
+
os.makedirs(f'{local_directory}plots/', exist_ok=True)
|
|
165
|
+
for i in range(len(files)):
|
|
166
|
+
with fits.open(files[i], mode='denywrite') as hdul:
|
|
167
|
+
q = [a and b for a, b in zip(list(hdul[1].data['TESS_flags'] == 0), list(hdul[1].data['TGLC_flags'] == 0))]
|
|
168
|
+
plt.figure(constrained_layout=False, figsize=(8, 4))
|
|
169
|
+
plt.plot(hdul[1].data['time'], hdul[1].data[kind], '.', c='silver', label=kind)
|
|
170
|
+
plt.plot(hdul[1].data['time'][q], hdul[1].data[kind][q], '.k', label=f'{kind}_flagged')
|
|
171
|
+
plt.xlim(xlow, xhigh)
|
|
172
|
+
plt.ylim(ylow, yhigh)
|
|
173
|
+
plt.title(f'TIC_{hdul[0].header["TICID"]}_sector_{hdul[0].header["SECTOR"]:04d}_{kind}')
|
|
174
|
+
plt.legend()
|
|
175
|
+
# plt.show()
|
|
176
|
+
plt.savefig(
|
|
177
|
+
f'{local_directory}plots/TIC_{hdul[0].header["TICID"]}_sector_{hdul[0].header["SECTOR"]:04d}_{kind}.png',
|
|
178
|
+
dpi=300)
|
|
179
|
+
plt.close()
|
|
180
|
+
|
|
181
|
+
|
|
182
|
+
def plot_aperture(local_directory=None, kind='cal_aper_flux'):
|
|
183
|
+
files = glob(f'{local_directory}*.fits')
|
|
184
|
+
os.makedirs(f'{local_directory}plots/', exist_ok=True)
|
|
185
|
+
portion = [0.9361215204370542, 0.9320709087810205]
|
|
186
|
+
data = np.empty((3, 0))
|
|
187
|
+
|
|
188
|
+
for i in range(len(files)):
|
|
189
|
+
with fits.open(files[i], mode='denywrite') as hdul:
|
|
190
|
+
print(files[i], portion[i])
|
|
191
|
+
q = [a and b for a, b in zip(list(hdul[1].data['TESS_flags'] == 0), list(hdul[1].data['TGLC_flags'] == 0))]
|
|
192
|
+
plt.figure(constrained_layout=False, figsize=(8, 4))
|
|
193
|
+
plt.plot(hdul[1].data['time'] % 3.79262026, hdul[1].data[kind], '.', c='silver', label=kind)
|
|
194
|
+
plt.plot(hdul[1].data['time'][q] % 3.79262026, hdul[1].data[kind][q], '.k', label=f'{kind}_flagged')
|
|
195
|
+
aperture_bar = 709.5512462444653 * portion[i]
|
|
196
|
+
aper_lc = np.nansum(hdul[0].data, axis=(1, 2))
|
|
197
|
+
local_bg = np.nanmedian(aper_lc) - aperture_bar
|
|
198
|
+
aper_lc = (aper_lc - local_bg) / portion[i]
|
|
199
|
+
cal_aper_lc = aper_lc / np.nanmedian(aper_lc)
|
|
200
|
+
cal_aper_lc[np.where(cal_aper_lc > 100)] = np.nan
|
|
201
|
+
_, trend = flatten(hdul[1].data['time'], cal_aper_lc - np.nanmin(cal_aper_lc) + 1000,
|
|
202
|
+
window_length=1, method='biweight', return_trend=True)
|
|
203
|
+
cal_aper_lc = (cal_aper_lc - np.nanmin(cal_aper_lc) + 1000 - trend) / np.nanmedian(cal_aper_lc) + 1
|
|
204
|
+
non_outliers = np.where(cal_aper_lc[q] > 0.6)[0]
|
|
205
|
+
plt.plot(hdul[1].data['time'][q][non_outliers] % 3.79262026, cal_aper_lc[q][non_outliers], '.r',
|
|
206
|
+
label=f'5_5_pixel_flagged')
|
|
207
|
+
plt.xlim(0.5, 1.0)
|
|
208
|
+
plt.ylim(0.95, 1.1)
|
|
209
|
+
plt.title(f'TIC_{hdul[0].header["TICID"]}_sector_{hdul[0].header["SECTOR"]:04d}')
|
|
210
|
+
plt.legend()
|
|
211
|
+
# plt.show()
|
|
212
|
+
plt.savefig(
|
|
213
|
+
f'{local_directory}plots/TIC_{hdul[0].header["TICID"]}_sector_{hdul[0].header["SECTOR"]:04d}.png',
|
|
214
|
+
dpi=300)
|
|
215
|
+
time = hdul[1].data['time'][q][non_outliers]
|
|
216
|
+
flux = cal_aper_lc[q][non_outliers]
|
|
217
|
+
f_err = 1.4826 * np.nanmedian(np.abs(flux - np.nanmedian(flux)))
|
|
218
|
+
not_nan = np.invert(np.isnan(flux))
|
|
219
|
+
data_ = np.array([time[not_nan],
|
|
220
|
+
flux[not_nan],
|
|
221
|
+
np.array([f_err] * len(time[not_nan]))
|
|
222
|
+
])
|
|
223
|
+
data = np.append(data, data_, axis=1)
|
|
224
|
+
np.savetxt(f'{local_directory}TESS_TOI-5344_5_5_aper.csv', data, delimiter=',')
|
|
225
|
+
|
|
226
|
+
|
|
227
|
+
def plot_pf_lc(local_directory=None, period=None, mid_transit_tbjd=None, kind='cal_aper_flux'):
|
|
228
|
+
files = glob(f'{local_directory}*.fits')
|
|
229
|
+
os.makedirs(f'{local_directory}plots/', exist_ok=True)
|
|
230
|
+
fig = plt.figure(figsize=(13, 5))
|
|
231
|
+
t_all = np.array([])
|
|
232
|
+
f_all = np.array([])
|
|
233
|
+
f_err_all = np.array([])
|
|
234
|
+
for j in range(len(files)):
|
|
235
|
+
not_plotted_num = 0
|
|
236
|
+
with fits.open(files[j], mode='denywrite') as hdul:
|
|
237
|
+
q = [a and b for a, b in
|
|
238
|
+
zip(list(hdul[1].data['TESS_flags'] == 0), list(hdul[1].data['TGLC_flags'] == 0))]
|
|
239
|
+
# q = [a and b for a, b in zip(q, list(hdul[1].data[kind] > 0.85))]
|
|
240
|
+
# if hdul[0].header['sector'] == 15:
|
|
241
|
+
# q = [a and b for a, b in zip(q, list(hdul[1].data['time'] < 1736))]
|
|
242
|
+
if len(hdul[1].data['cal_aper_flux']) == len(hdul[1].data['time']):
|
|
243
|
+
if hdul[0].header["SECTOR"] <= 26:
|
|
244
|
+
t = hdul[1].data['time'][q]
|
|
245
|
+
f = hdul[1].data[kind][q]
|
|
246
|
+
elif hdul[0].header["SECTOR"] <= 55:
|
|
247
|
+
t = np.mean(hdul[1].data['time'][q][:len(hdul[1].data['time'][q]) // 3 * 3].reshape(-1, 3), axis=1)
|
|
248
|
+
f = np.mean(
|
|
249
|
+
hdul[1].data[kind][q][:len(hdul[1].data[kind][q]) // 3 * 3].reshape(-1, 3), axis=1)
|
|
250
|
+
else:
|
|
251
|
+
t = np.mean(hdul[1].data['time'][q][:len(hdul[1].data['time'][q]) // 9 * 9].reshape(-1, 9), axis=1)
|
|
252
|
+
f = np.mean(
|
|
253
|
+
hdul[1].data[kind][q][:len(hdul[1].data[kind][q]) // 9 * 9].reshape(-1, 9), axis=1)
|
|
254
|
+
t_all = np.append(t_all, t)
|
|
255
|
+
f_all = np.append(f_all, f)
|
|
256
|
+
f_err_all = np.append(f_err_all, np.array([hdul[1].header['CAPE_ERR']] * len(t)))
|
|
257
|
+
|
|
258
|
+
# plt.plot(hdul[1].data['time'] % period / period, hdul[1].data[kind], '.', c='silver', ms=3)
|
|
259
|
+
plt.errorbar(t % period / period, f, hdul[1].header['CAPE_ERR'], c='silver', ls='', elinewidth=0.1,
|
|
260
|
+
marker='.', ms=3, zorder=2)
|
|
261
|
+
# time_out, meas_out, meas_err_out = timebin(time=t % period, meas=f,
|
|
262
|
+
# meas_err=np.array([hdul[1].header['CAPE_ERR']] * len(t)),
|
|
263
|
+
# binsize=600 / 86400)
|
|
264
|
+
# plt.errorbar(np.array(time_out) / period, meas_out, meas_err_out, c=f'C{j}', ls='', elinewidth=1.5,
|
|
265
|
+
# marker='.', ms=8, zorder=3, label=f'Sector {hdul[0].header["sector"]}')
|
|
266
|
+
else:
|
|
267
|
+
not_plotted_num += 1
|
|
268
|
+
title = f'TIC_{hdul[0].header["TICID"]} with {len(files) - not_plotted_num} sector(s) of data, {kind}'
|
|
269
|
+
# PDCSAP_files = glob('/home/tehan/Documents/GEMS/TIC 172370679/PDCSAP/*.txt')
|
|
270
|
+
# for i in range(len(files)):
|
|
271
|
+
# PDCSAP = ascii.read(PDCSAP_files[i])
|
|
272
|
+
# t = np.mean(PDCSAP['col1'][:len(PDCSAP['col1']) // 15 * 15].reshape(-1, 15), axis=1)
|
|
273
|
+
# f = np.mean(PDCSAP['col2'][:len(PDCSAP['col2']) // 15 * 15].reshape(-1, 15), axis=1)
|
|
274
|
+
# ferr = np.mean(PDCSAP['col3'][:len(PDCSAP['col3']) // 15 * 15].reshape(-1, 15), axis=1)
|
|
275
|
+
# plt.errorbar((t - 2457000) % period / period, f, ferr, c='C0', ls='', elinewidth=0, marker='.', ms=2, zorder=1)
|
|
276
|
+
time_out, meas_out, meas_err_out = timebin(time=t_all % period, meas=f_all,
|
|
277
|
+
meas_err=f_err_all,
|
|
278
|
+
binsize=300 / 86400)
|
|
279
|
+
plt.errorbar(np.array(time_out) / period, meas_out, meas_err_out, c=f'r', ls='', elinewidth=1.5,
|
|
280
|
+
marker='.', ms=8, zorder=3, label=f'All sectors')
|
|
281
|
+
|
|
282
|
+
plt.ylim(0.998, 1.001)
|
|
283
|
+
# plt.xlim(0.3, 0.43)
|
|
284
|
+
plt.legend()
|
|
285
|
+
plt.title(title)
|
|
286
|
+
# plt.xlim(mid_transit_tbjd % period - 0.1 * period, mid_transit_tbjd % period + 0.1 * period)
|
|
287
|
+
# plt.ylim(0.9, 1.1)
|
|
288
|
+
# plt.hlines(y=0.92, xmin=0, xmax=1, ls='dotted', colors='k')
|
|
289
|
+
# plt.hlines(y=0.93, xmin=0, xmax=1, ls='dotted', colors='k')
|
|
290
|
+
plt.vlines(x=(mid_transit_tbjd % period), ymin=0, ymax=2, ls='dotted', colors='grey')
|
|
291
|
+
plt.xlabel('Phase')
|
|
292
|
+
plt.ylabel('Normalized flux')
|
|
293
|
+
plt.savefig(f'{local_directory}/plots/{title}.png', dpi=300)
|
|
294
|
+
plt.close(fig)
|
|
295
|
+
|
|
296
|
+
|
|
297
|
+
def plot_contamination(local_directory=None, gaia_dr3=None, ymin=None, ymax=None, pm_years=3000):
|
|
298
|
+
sns.set(rc={'font.family': 'serif', 'font.serif': 'DejaVu Serif', 'font.size': 12,
|
|
299
|
+
'axes.edgecolor': '0.2', 'axes.labelcolor': '0.', 'xtick.color': '0.', 'ytick.color': '0.',
|
|
300
|
+
'axes.facecolor': '0.95', "axes.grid": False})
|
|
301
|
+
|
|
302
|
+
files = glob(f'{local_directory}lc/*{gaia_dr3}*.fits')
|
|
303
|
+
os.makedirs(f'{local_directory}plots/', exist_ok=True)
|
|
304
|
+
for i in range(len(files)):
|
|
305
|
+
with fits.open(files[i], mode='denywrite') as hdul:
|
|
306
|
+
sector = hdul[0].header['SECTOR']
|
|
307
|
+
q = [a and b for a, b in
|
|
308
|
+
zip(list(hdul[1].data['TESS_flags'] == 0), list(hdul[1].data['TGLC_flags'] == 0))]
|
|
309
|
+
if ymin is None and ymax is None:
|
|
310
|
+
ymin = np.nanmin(hdul[1].data['cal_aper_flux'][q]) - 0.05
|
|
311
|
+
ymax = np.nanmax(hdul[1].data['cal_aper_flux'][q]) + 0.05
|
|
312
|
+
with open(glob(f'{local_directory}source/*_{sector}.pkl')[0], 'rb') as input_:
|
|
313
|
+
source = pickle.load(input_)
|
|
314
|
+
source.select_sector(sector=sector)
|
|
315
|
+
star_num = np.where(source.gaia['DESIGNATION'] == f'Gaia DR3 {gaia_dr3}')
|
|
316
|
+
|
|
317
|
+
distances = np.sqrt(
|
|
318
|
+
(source.gaia[f'sector_{sector}_x'][:500] - source.gaia[star_num][f'sector_{sector}_x']) ** 2 +
|
|
319
|
+
(source.gaia[f'sector_{sector}_y'][:500] - source.gaia[star_num][f'sector_{sector}_y']) ** 2)
|
|
320
|
+
|
|
321
|
+
# Find closest 5 stars (6-self) or those within 5 pixels
|
|
322
|
+
nearby_stars = np.argsort(distances)[:6]
|
|
323
|
+
nearby_stars = nearby_stars[distances[nearby_stars] <= 5]
|
|
324
|
+
star_x = source.gaia[star_num][f'sector_{sector}_x'][0]
|
|
325
|
+
star_y = source.gaia[star_num][f'sector_{sector}_y'][0]
|
|
326
|
+
max_flux = np.nanmax(
|
|
327
|
+
np.nanmedian(
|
|
328
|
+
source.flux[:, round(star_y) - 2:round(star_y) + 3, round(star_x) - 2:round(star_x) + 3],
|
|
329
|
+
axis=0))
|
|
330
|
+
fig = plt.figure(constrained_layout=False, figsize=(20, 12))
|
|
331
|
+
gs = fig.add_gridspec(21, 10)
|
|
332
|
+
gs.update(wspace=0.03, hspace=0.1)
|
|
333
|
+
ax0 = fig.add_subplot(gs[:10, :3])
|
|
334
|
+
ax0.imshow(np.median(source.flux, axis=0), cmap='RdBu', vmin=-max_flux, vmax=max_flux, origin='lower')
|
|
335
|
+
ax0.set_xlabel('x pixel')
|
|
336
|
+
ax0.set_ylabel('y pixel')
|
|
337
|
+
ax0.scatter(star_x, star_y, s=300, c='r', marker='*', label='target star')
|
|
338
|
+
ax0.scatter(source.gaia[f'sector_{sector}_x'][:500], source.gaia[f'sector_{sector}_y'][:500], s=30,
|
|
339
|
+
c='r', label='background stars')
|
|
340
|
+
ax0.scatter(source.gaia[f'sector_{sector}_x'][nearby_stars[nearby_stars != star_num[0][0]]],
|
|
341
|
+
source.gaia[f'sector_{sector}_y'][nearby_stars[nearby_stars != star_num[0][0]]],
|
|
342
|
+
s=30, c='r', edgecolor='black', linewidth=1, label='background stars')
|
|
343
|
+
|
|
344
|
+
for l in range(len(nearby_stars)):
|
|
345
|
+
index = np.where(
|
|
346
|
+
source.tic['dr3_source_id'] == int(source.gaia['DESIGNATION'][nearby_stars[l]].split(' ')[-1]))
|
|
347
|
+
gaia_targets = source.gaia
|
|
348
|
+
median_time = np.median(source.time)
|
|
349
|
+
interval = (median_time - 388.5) / 365.25 + pm_years
|
|
350
|
+
ra = gaia_targets['ra'][nearby_stars[l]]
|
|
351
|
+
dec = gaia_targets['dec'][nearby_stars[l]]
|
|
352
|
+
if not np.isnan(gaia_targets['pmra'][nearby_stars[l]]):
|
|
353
|
+
ra += gaia_targets['pmra'][nearby_stars[l]] * np.cos(np.deg2rad(dec)) * interval / 1000 / 3600
|
|
354
|
+
if not np.isnan(gaia_targets['pmdec'][nearby_stars[l]]):
|
|
355
|
+
dec += gaia_targets['pmdec'][nearby_stars[l]] * interval / 1000 / 3600
|
|
356
|
+
pixel = source.wcs.all_world2pix(np.array([ra, dec]).reshape((1, 2)), 0)
|
|
357
|
+
x_gaia = pixel[0][0]
|
|
358
|
+
y_gaia = pixel[0][1]
|
|
359
|
+
ax0.arrow(source.gaia[f'sector_{sector}_x'][nearby_stars[l]],
|
|
360
|
+
source.gaia[f'sector_{sector}_y'][nearby_stars[l]],
|
|
361
|
+
x_gaia - source.gaia[f'sector_{sector}_x'][nearby_stars[l]],
|
|
362
|
+
y_gaia - source.gaia[f'sector_{sector}_y'][nearby_stars[l]],
|
|
363
|
+
width=0.02, color='r', edgecolor=None, head_width=0.1)
|
|
364
|
+
try:
|
|
365
|
+
txt = ax0.text(source.gaia[f'sector_{sector}_x'][nearby_stars[l]] + 0.5,
|
|
366
|
+
source.gaia[f'sector_{sector}_y'][nearby_stars[l]] - 0.05,
|
|
367
|
+
f'TIC {int(source.tic["TIC"][index])}', size=7)
|
|
368
|
+
|
|
369
|
+
except TypeError:
|
|
370
|
+
designation = source.gaia[f"DESIGNATION"][nearby_stars[l]]
|
|
371
|
+
formatted_text = '\n'.join([designation[i:i + 15] for i in range(0, len(designation), 15)])
|
|
372
|
+
|
|
373
|
+
txt = ax0.text(source.gaia[f'sector_{sector}_x'][nearby_stars[l]] + 0.5,
|
|
374
|
+
source.gaia[f'sector_{sector}_y'][nearby_stars[l]] - 0.05,
|
|
375
|
+
formatted_text, size=7)
|
|
376
|
+
ax0.set_xlim(round(star_x) - 5.5, round(star_x) + 5.5)
|
|
377
|
+
ax0.set_ylim(round(star_y) - 5.5, round(star_y) + 5.5)
|
|
378
|
+
ax0.set_title(f'TIC_{hdul[0].header["TICID"]}_Sector_{hdul[0].header["SECTOR"]:04d}')
|
|
379
|
+
ax0.vlines(round(star_x) - 2.5, round(star_y) - 2.5, round(star_y) + 2.5, colors='k', lw=1.2)
|
|
380
|
+
ax0.vlines(round(star_x) + 2.5, round(star_y) - 2.5, round(star_y) + 2.5, colors='k', lw=1.2)
|
|
381
|
+
ax0.hlines(round(star_y) - 2.5, round(star_x) - 2.5, round(star_x) + 2.5, colors='k', lw=1.2)
|
|
382
|
+
ax0.hlines(round(star_y) + 2.5, round(star_x) - 2.5, round(star_x) + 2.5, colors='k', lw=1.2)
|
|
383
|
+
t_, y_, x_ = np.shape(hdul[0].data)
|
|
384
|
+
max_flux = np.max(
|
|
385
|
+
np.median(source.flux[:, int(star_y) - 2:int(star_y) + 3, int(star_x) - 2:int(star_x) + 3], axis=0))
|
|
386
|
+
sns.set(rc={'font.family': 'serif', 'font.serif': 'DejaVu Serif', 'font.size': 12,
|
|
387
|
+
'axes.edgecolor': '0.2', 'axes.labelcolor': '0.', 'xtick.color': '0.', 'ytick.color': '0.',
|
|
388
|
+
'axes.facecolor': '0.95', 'grid.color': '0.9'})
|
|
389
|
+
arrays = []
|
|
390
|
+
for j in range(y_):
|
|
391
|
+
for k in range(x_):
|
|
392
|
+
ax_ = fig.add_subplot(gs[(19 - 2 * j):(21 - 2 * j), (2 * k):(2 + 2 * k)])
|
|
393
|
+
ax_.patch.set_facecolor('#4682B4')
|
|
394
|
+
ax_.patch.set_alpha(min(1, max(0, 5 * np.nanmedian(hdul[0].data[:, j, k]) / max_flux)))
|
|
395
|
+
|
|
396
|
+
_, trend = flatten(hdul[1].data['time'][q],
|
|
397
|
+
hdul[0].data[:, j, k][q] - np.nanmin(hdul[0].data[:, j, k][q]) + 1000,
|
|
398
|
+
window_length=1, method='biweight', return_trend=True)
|
|
399
|
+
cal_aper = (hdul[0].data[:, j, k][q] - np.nanmin(
|
|
400
|
+
hdul[0].data[:, j, k][q]) + 1000 - trend) / np.nanmedian(
|
|
401
|
+
hdul[0].data[:, j, k][q]) + 1
|
|
402
|
+
if 1 <= j <= 3 and 1 <= k <= 3:
|
|
403
|
+
arrays.append(cal_aper)
|
|
404
|
+
ax_.plot(hdul[1].data['time'][q], cal_aper, '.k', ms=0.5)
|
|
405
|
+
# ax_.plot(hdul[1].data['time'][q], hdul[0].data[:, j, k][q], '.k', ms=0.5)
|
|
406
|
+
ax_.set_ylim(ymin, ymax)
|
|
407
|
+
ax_.set_xlabel('TBJD')
|
|
408
|
+
ax_.set_ylabel('')
|
|
409
|
+
if j != 0:
|
|
410
|
+
ax_.set_xticklabels([])
|
|
411
|
+
ax_.set_xlabel('')
|
|
412
|
+
if k != 0:
|
|
413
|
+
ax_.set_yticklabels([])
|
|
414
|
+
if j == 2 and k == 0:
|
|
415
|
+
ax_.set_ylabel('Normalized and detrended Flux of each pixel')
|
|
416
|
+
|
|
417
|
+
combinations = itertools.combinations(arrays, 2)
|
|
418
|
+
median_abs_diffs = []
|
|
419
|
+
for arr_a, arr_b in combinations:
|
|
420
|
+
abs_diff = np.abs(arr_a - arr_b)
|
|
421
|
+
median_diff = np.median(abs_diff)
|
|
422
|
+
median_abs_diffs.append(median_diff)
|
|
423
|
+
median_abs_diffs = np.array(median_abs_diffs)
|
|
424
|
+
iqr = np.percentile(median_abs_diffs, 75) - np.percentile(median_abs_diffs, 25)
|
|
425
|
+
print(f"Interquartile Range (IQR): {iqr}")
|
|
426
|
+
std_dev = np.std(median_abs_diffs)
|
|
427
|
+
print(f"Standard Deviation: {std_dev}")
|
|
428
|
+
ax1 = fig.add_subplot(gs[:10, 4:7])
|
|
429
|
+
ax1.hist(median_abs_diffs, color='k', edgecolor='k', facecolor='none', rwidth=0.8, linewidth=2)
|
|
430
|
+
ax1.set_box_aspect(1)
|
|
431
|
+
ax1.set_title(f'Distribution of the MADs among combinations of the center 3*3 pixels')
|
|
432
|
+
ax1.set_xlabel('MAD between combinations of center 3*3 pixel fluxes')
|
|
433
|
+
ax1.set_ylabel('Counts')
|
|
434
|
+
text_ax = fig.add_axes([0.71, 0.9, 0.3, 0.3]) # [left, bottom, width, height] in figure coordinates
|
|
435
|
+
text_ax.axis('off') # Turn off axis lines, ticks, etc.
|
|
436
|
+
text_ax.text(0., 0., f"Gaia DR3 {gaia_dr3} \n"
|
|
437
|
+
f" ←← TESS SPOC FFI and TIC/Gaia stars with proper motions. \n"
|
|
438
|
+
f" Arrows show Gaia proper motion after {pm_years} years. \n"
|
|
439
|
+
f" ← Histogram of the MADs between 3*3 pixel fluxes. \n"
|
|
440
|
+
f" ↓ Fluxes of each pixels after contaminations are removed. \n"
|
|
441
|
+
f" The fluxes are normalized and detrended. The background \n"
|
|
442
|
+
f" color shows the pixel brightness after the decontamination. \n"
|
|
443
|
+
f"\n"
|
|
444
|
+
f"How to interpret these plots: \n"
|
|
445
|
+
f" If the signals you are interested in (i.e. transits, \n"
|
|
446
|
+
f" eclipses, variable stars) show similar amplitudes in \n"
|
|
447
|
+
f" all (especially the center 3*3) pixels, then the star \n"
|
|
448
|
+
f" is likely to be the source. The median absolute \n"
|
|
449
|
+
f" differences (MADs) taken between all combinations \n"
|
|
450
|
+
f" of the center pixel fluxes are shown in the histogram \n"
|
|
451
|
+
f" for a quantititive comparison to other possible sources. \n"
|
|
452
|
+
f" The star with smaller distribution width (IQR or \n"
|
|
453
|
+
f" STD) is more likely to be the source of the signal. \n"
|
|
454
|
+
f"\n"
|
|
455
|
+
f"Interquartile Range (IQR): {iqr:05f} \n"
|
|
456
|
+
f"Standard Deviation: {std_dev:05f}", transform=text_ax.transAxes, ha='left',
|
|
457
|
+
va='top')
|
|
458
|
+
plt.subplots_adjust(top=.98, bottom=0.05, left=0.05, right=0.95)
|
|
459
|
+
plt.savefig(
|
|
460
|
+
f'{local_directory}plots/contamination_sector_{hdul[0].header["SECTOR"]:04d}_Gaia_DR3_{gaia_dr3}.pdf',
|
|
461
|
+
dpi=300)
|
|
462
|
+
# plt.savefig(f'{local_directory}plots/contamination_sector_{hdul[0].header["SECTOR"]:04d}_Gaia_DR3_{gaia_dr3}.png',
|
|
463
|
+
# dpi=600)
|
|
464
|
+
plt.close()
|
|
465
|
+
|
|
466
|
+
|
|
467
|
+
def plot_epsf(local_directory=None):
|
|
468
|
+
files = glob(f'{local_directory}epsf/*.npy')
|
|
469
|
+
os.makedirs(f'{local_directory}plots/', exist_ok=True)
|
|
470
|
+
for i in range(len(files)):
|
|
471
|
+
psf = np.load(files[i])
|
|
472
|
+
plt.imshow(psf[0, :23 ** 2].reshape(23, 23), cmap='bone', origin='lower')
|
|
473
|
+
plt.tick_params(axis='x', bottom=False)
|
|
474
|
+
plt.tick_params(axis='y', left=False)
|
|
475
|
+
plt.title(f'{files[i].split("/")[-1].split(".")[0]}')
|
|
476
|
+
plt.savefig(f'{local_directory}plots/{files[i].split("/")[-1]}.png', bbox_inches='tight', dpi=300)
|
|
477
|
+
|
|
478
|
+
|
|
479
|
+
def choose_prior(tics, local_directory=None, priors=np.logspace(-5, 0, 100)):
|
|
480
|
+
mad = np.zeros((2, 100))
|
|
481
|
+
for i in trange(len(priors)):
|
|
482
|
+
resid = get_tglc_lc(tics=tics, method='query', server=1, directory=local_directory, prior=priors[i])
|
|
483
|
+
print(resid)
|
|
484
|
+
mad[:, i] = resid
|
|
485
|
+
# with fits.open(
|
|
486
|
+
# '/home/tehan/data/cosmos/GEMS/TIC 16005254/lc/hlsp_tglc_tess_ffi_gaiaid-52359538285081728-s0043-cam3-ccd3_tess_v1_llc.fits',
|
|
487
|
+
# mode='denywrite') as hdul:
|
|
488
|
+
# mad[0, i] = np.nanmedian(abs(hdul[1].data['cal_psf_flux'] - np.nanmedian(hdul[1].data['cal_psf_flux'])))
|
|
489
|
+
# with fits.open(
|
|
490
|
+
# '/home/tehan/data/cosmos/GEMS/TIC 16005254/lc/hlsp_tglc_tess_ffi_gaiaid-52359538285081728-s0044-cam1-ccd1_tess_v1_llc.fits',
|
|
491
|
+
# mode='denywrite') as hdul:
|
|
492
|
+
# mad[1, i] = np.nanmedian(abs(hdul[1].data['cal_psf_flux'] - np.nanmedian(hdul[1].data['cal_psf_flux'])))
|
|
493
|
+
np.save('/home/tehan/Documents/GEMS/TIC 16005254/mad.npy', mad)
|
|
494
|
+
# plt.plot(priors, mad)
|
|
495
|
+
# plt.xscale('log')
|
|
496
|
+
# plt.title(f'best prior = {priors[np.argmin(mad)]:04d}')
|
|
497
|
+
# plt.show()
|
|
498
|
+
|
|
499
|
+
|
|
500
|
+
def get_tglc_lc(tics=None, method='query', server=1, directory=None, prior=None):
|
|
501
|
+
if method == 'query':
|
|
502
|
+
for i in range(len(tics)):
|
|
503
|
+
target = f'TIC {tics[i]}'
|
|
504
|
+
local_directory = f'{directory}{target}/'
|
|
505
|
+
os.makedirs(local_directory, exist_ok=True)
|
|
506
|
+
tglc_lc(target=target, local_directory=local_directory, size=90, save_aper=True, limit_mag=16,
|
|
507
|
+
get_all_lc=False, first_sector_only=False, last_sector_only=False, sector=None, prior=prior,
|
|
508
|
+
transient=None)
|
|
509
|
+
plot_lc(local_directory=f'{directory}TIC {tics[i]}/', kind='cal_aper_flux')
|
|
510
|
+
if method == 'search':
|
|
511
|
+
star_spliter(server=server, tics=tics, local_directory=directory)
|
|
512
|
+
|
|
513
|
+
|
|
514
|
+
if __name__ == '__main__':
|
|
515
|
+
tics = [16005254]
|
|
516
|
+
directory = f'/home/tehan/data/'
|
|
517
|
+
os.makedirs(directory, exist_ok=True)
|
|
518
|
+
get_tglc_lc(tics=tics, method='query', server=1, directory=directory)
|
|
519
|
+
# plot_lc(local_directory=f'{directory}TIC {tics[0]}/', kind='cal_aper_flux')
|
|
520
|
+
# plot_lc(local_directory=f'/home/tehan/Documents/tglc/TIC 16005254/', kind='cal_aper_flux', ylow=0.9, yhigh=1.1)
|
|
521
|
+
# plot_contamination(local_directory=f'{directory}TIC {tics[0]}/', gaia_dr3=5751990597042725632)
|
|
522
|
+
# plot_epsf(local_directory=f'{directory}TIC {tics[0]}/')
|
|
523
|
+
# plot_pf_lc(local_directory=f'{directory}TIC {tics[0]}/lc/', period=0.71912603, mid_transit_tbjd=2790.58344,
|
|
524
|
+
# kind='cal_psf_flux')
|
|
525
|
+
# plot_pf_lc(local_directory=f'{directory}TIC {tics[0]}/lc/', period=0.23818244, mid_transit_tbjd=1738.71248,
|
|
526
|
+
# kind='cal_aper_flux')
|