tfp-nightly 0.26.0.dev20251205__py2.py3-none-any.whl → 0.26.0.dev20251206__py2.py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- tensorflow_probability/python/bijectors/pad.py +1 -1
- tensorflow_probability/python/internal/empirical_statistical_testing.py +1 -1
- tensorflow_probability/python/version.py +1 -1
- tensorflow_probability/substrates/jax/bijectors/pad.py +1 -1
- tensorflow_probability/substrates/jax/internal/empirical_statistical_testing.py +1 -1
- tensorflow_probability/substrates/numpy/bijectors/pad.py +1 -1
- tensorflow_probability/substrates/numpy/internal/empirical_statistical_testing.py +1 -1
- {tfp_nightly-0.26.0.dev20251205.dist-info → tfp_nightly-0.26.0.dev20251206.dist-info}/METADATA +1 -1
- {tfp_nightly-0.26.0.dev20251205.dist-info → tfp_nightly-0.26.0.dev20251206.dist-info}/RECORD +11 -11
- {tfp_nightly-0.26.0.dev20251205.dist-info → tfp_nightly-0.26.0.dev20251206.dist-info}/WHEEL +0 -0
- {tfp_nightly-0.26.0.dev20251205.dist-info → tfp_nightly-0.26.0.dev20251206.dist-info}/top_level.txt +0 -0
|
@@ -140,7 +140,7 @@ class Pad(bijector.AutoCompositeTensorBijector):
|
|
|
140
140
|
self._constant_values = tensor_util.convert_nonref_to_tensor(
|
|
141
141
|
constant_values, dtype_hint=tf.float32, name='constant_values')
|
|
142
142
|
min_event_ndims_ = int(-np.min(np.pad(
|
|
143
|
-
np.reshape(axis_,
|
|
143
|
+
np.reshape(axis_, [-1]),
|
|
144
144
|
mode='constant', pad_width=[[0, 1]])))
|
|
145
145
|
super(Pad, self).__init__(
|
|
146
146
|
forward_min_event_ndims=min_event_ndims_,
|
|
@@ -217,7 +217,7 @@ def _bootstrap_means(samples, mean_size, fuel):
|
|
|
217
217
|
if num_bootstraps * mean_size <= len(samples):
|
|
218
218
|
# Inputs are huge relative to fuel; fake a bootstrap by just slicing
|
|
219
219
|
# the input array
|
|
220
|
-
return np.mean(np.reshape(samples,
|
|
220
|
+
return np.mean(np.reshape(samples, (-1, mean_size)), axis=-1)
|
|
221
221
|
# Compute this in batches to never materialize an over-large
|
|
222
222
|
# intermediate array.
|
|
223
223
|
n_batches = 10
|
|
@@ -140,7 +140,7 @@ class Pad(bijector.AutoCompositeTensorBijector):
|
|
|
140
140
|
self._constant_values = tensor_util.convert_nonref_to_tensor(
|
|
141
141
|
constant_values, dtype_hint=tf.float32, name='constant_values')
|
|
142
142
|
min_event_ndims_ = int(-np.min(np.pad(
|
|
143
|
-
np.reshape(axis_,
|
|
143
|
+
np.reshape(axis_, [-1]),
|
|
144
144
|
mode='constant', pad_width=[[0, 1]])))
|
|
145
145
|
super(Pad, self).__init__(
|
|
146
146
|
forward_min_event_ndims=min_event_ndims_,
|
|
@@ -217,7 +217,7 @@ def _bootstrap_means(samples, mean_size, fuel):
|
|
|
217
217
|
if num_bootstraps * mean_size <= len(samples):
|
|
218
218
|
# Inputs are huge relative to fuel; fake a bootstrap by just slicing
|
|
219
219
|
# the input array
|
|
220
|
-
return np.mean(np.reshape(samples,
|
|
220
|
+
return np.mean(np.reshape(samples, (-1, mean_size)), axis=-1)
|
|
221
221
|
# Compute this in batches to never materialize an over-large
|
|
222
222
|
# intermediate array.
|
|
223
223
|
n_batches = 10
|
|
@@ -140,7 +140,7 @@ class Pad(bijector.AutoCompositeTensorBijector):
|
|
|
140
140
|
self._constant_values = tensor_util.convert_nonref_to_tensor(
|
|
141
141
|
constant_values, dtype_hint=tf.float32, name='constant_values')
|
|
142
142
|
min_event_ndims_ = int(-np.min(np.pad(
|
|
143
|
-
np.reshape(axis_,
|
|
143
|
+
np.reshape(axis_, [-1]),
|
|
144
144
|
mode='constant', pad_width=[[0, 1]])))
|
|
145
145
|
super(Pad, self).__init__(
|
|
146
146
|
forward_min_event_ndims=min_event_ndims_,
|
|
@@ -217,7 +217,7 @@ def _bootstrap_means(samples, mean_size, fuel):
|
|
|
217
217
|
if num_bootstraps * mean_size <= len(samples):
|
|
218
218
|
# Inputs are huge relative to fuel; fake a bootstrap by just slicing
|
|
219
219
|
# the input array
|
|
220
|
-
return np.mean(np.reshape(samples,
|
|
220
|
+
return np.mean(np.reshape(samples, (-1, mean_size)), axis=-1)
|
|
221
221
|
# Compute this in batches to never materialize an over-large
|
|
222
222
|
# intermediate array.
|
|
223
223
|
n_batches = 10
|
{tfp_nightly-0.26.0.dev20251205.dist-info → tfp_nightly-0.26.0.dev20251206.dist-info}/RECORD
RENAMED
|
@@ -1,6 +1,6 @@
|
|
|
1
1
|
tensorflow_probability/__init__.py,sha256=qyOYw4eGComQ1GLNlJ0-OvaWBjQ5B0-Hjo02hlJ40VI,1222
|
|
2
2
|
tensorflow_probability/python/__init__.py,sha256=qQRo06XbmO2sHYKllnDEpq9v1IhMUbO3bt9QoRyTwL8,5879
|
|
3
|
-
tensorflow_probability/python/version.py,sha256=
|
|
3
|
+
tensorflow_probability/python/version.py,sha256=d2ePBAkG-3HneVtJB1x09ccPIf6YEsELiUgBhnhWi3M,1476
|
|
4
4
|
tensorflow_probability/python/bijectors/__init__.py,sha256=t_jgecHvPmsxGIfqfayVn8UvdhKwODhftsn7mN6SGqM,8822
|
|
5
5
|
tensorflow_probability/python/bijectors/absolute_value.py,sha256=Lwfp3Px3YacTaxf3qqarsloiuMUtqugPRlVtf54wv3k,3664
|
|
6
6
|
tensorflow_probability/python/bijectors/ascending.py,sha256=BeXeuA1tKDGsqP0GofGwGDwzZzYGd1I15MAsuswnc8Y,3124
|
|
@@ -39,7 +39,7 @@ tensorflow_probability/python/bijectors/masked_autoregressive.py,sha256=eGQm3jjy
|
|
|
39
39
|
tensorflow_probability/python/bijectors/matrix_inverse_tril.py,sha256=ST2asD00RlRMxK30o68nBE7MjfOMg9DFbzpJ6ggqeEs,4156
|
|
40
40
|
tensorflow_probability/python/bijectors/moyal_cdf.py,sha256=ReLcSSpHDIswhGMerLud5k5BJ-htOYU-88Fra62m7Lc,5308
|
|
41
41
|
tensorflow_probability/python/bijectors/normal_cdf.py,sha256=DyJjfe8AJCcWBP0I7Xdi7urA8QG3QR4CBcFGK0e3mwU,2927
|
|
42
|
-
tensorflow_probability/python/bijectors/pad.py,sha256=
|
|
42
|
+
tensorflow_probability/python/bijectors/pad.py,sha256=8-oICPb8L220N_c3Wuf5L2hdfwwKFIJzDvtIbYvUkog,13047
|
|
43
43
|
tensorflow_probability/python/bijectors/permute.py,sha256=q_yeFVnA4wyxRXyFvLRTKxZroN9IpfKgYK9ZTtRZBRY,6656
|
|
44
44
|
tensorflow_probability/python/bijectors/power.py,sha256=-kgrz8xhUf9gw63Lr_cd1-kgUWQLFLzeChSTB9KOBts,4204
|
|
45
45
|
tensorflow_probability/python/bijectors/power_transform.py,sha256=ZJ-USuOEkZY_z-HgtATnkgEEVhMlgjAvvrK-CzLVCdc,4632
|
|
@@ -365,7 +365,7 @@ tensorflow_probability/python/internal/distribute_lib.py,sha256=RadeQBdsNtqUXYBF
|
|
|
365
365
|
tensorflow_probability/python/internal/distribution_util.py,sha256=nNR8K_wnNUgxk4UclI0r2XUzk6Z-8BIR2z-ZBke3oq4,57599
|
|
366
366
|
tensorflow_probability/python/internal/docstring_util.py,sha256=hCJRTyCoTk65vsl2kwKtgcrtT9iTVZ0LEGA-z3nznM8,1588
|
|
367
367
|
tensorflow_probability/python/internal/dtype_util.py,sha256=HHUADLzQTqnGqX27SmLe5W_MF3qsnC4TbHpNbErxYRk,14758
|
|
368
|
-
tensorflow_probability/python/internal/empirical_statistical_testing.py,sha256=
|
|
368
|
+
tensorflow_probability/python/internal/empirical_statistical_testing.py,sha256=ywZFTktQ0IXp3b4DvgMsE9KrxcCBLWTEZ6kL7OX005M,22670
|
|
369
369
|
tensorflow_probability/python/internal/implementation_selection.py,sha256=E5sD1kXckXm_fLVC9bJnRl-MnWKNGpSU5U-Q57n0v6U,5866
|
|
370
370
|
tensorflow_probability/python/internal/lazy_loader.py,sha256=gDJjHhmNqiX3H5UddYHjz399qf7pqCqeofpIdZF0PGE,2168
|
|
371
371
|
tensorflow_probability/python/internal/loop_util.py,sha256=tTax46UCzzoAixlR07GU0cUctAZoH_j9YQ_MexEUd20,11066
|
|
@@ -699,7 +699,7 @@ tensorflow_probability/substrates/jax/bijectors/masked_autoregressive.py,sha256=
|
|
|
699
699
|
tensorflow_probability/substrates/jax/bijectors/matrix_inverse_tril.py,sha256=NKNPZjhctohasJyka7xLG69E_zx6h6Iws21KfC-82jg,4652
|
|
700
700
|
tensorflow_probability/substrates/jax/bijectors/moyal_cdf.py,sha256=GTsQ54MfrhaC6unLPJsiSjI9WOQm4X4plAsmAYlsn_Y,5826
|
|
701
701
|
tensorflow_probability/substrates/jax/bijectors/normal_cdf.py,sha256=O2LC53rJefWKWc7YEVHglx5Iyi9mLit2BTgY5rDnA_M,3422
|
|
702
|
-
tensorflow_probability/substrates/jax/bijectors/pad.py,sha256=
|
|
702
|
+
tensorflow_probability/substrates/jax/bijectors/pad.py,sha256=UwHybSEkz8RmhwX5gY2rPLVb-_Tik2OdxELYCiZzOLk,13551
|
|
703
703
|
tensorflow_probability/substrates/jax/bijectors/permute.py,sha256=sDSzKnv_agqyphRiTHrl3uO0wtXLGrI7q8oUeXGvbJg,7164
|
|
704
704
|
tensorflow_probability/substrates/jax/bijectors/power.py,sha256=QtmupgPxzecCVbQH0JVYbZkHGkYW-KlZyJyyr_GKI4c,4702
|
|
705
705
|
tensorflow_probability/substrates/jax/bijectors/power_transform.py,sha256=xRPYs5LiyObo30vmrCgIUGfy9b-M6L7XzNzYi5AwVTg,5124
|
|
@@ -961,7 +961,7 @@ tensorflow_probability/substrates/jax/internal/custom_gradient.py,sha256=E_t8AJL
|
|
|
961
961
|
tensorflow_probability/substrates/jax/internal/distribute_lib.py,sha256=RBvSxFcVcol5BrZ5Uo82TLjNT1Hqrhrqxc0CroUVFXk,13771
|
|
962
962
|
tensorflow_probability/substrates/jax/internal/distribution_util.py,sha256=yBVYBmMeLuxOejje42OUDrSR6sGh029c4FyS3lp3ejY,58138
|
|
963
963
|
tensorflow_probability/substrates/jax/internal/dtype_util.py,sha256=0MkFifM1gXeZzI9hZS0W_4NWewAUqGfPyPTvq_paeII,15247
|
|
964
|
-
tensorflow_probability/substrates/jax/internal/empirical_statistical_testing.py,sha256=
|
|
964
|
+
tensorflow_probability/substrates/jax/internal/empirical_statistical_testing.py,sha256=sWkb0ieeMoP48FZ9hOc2uD_3DOumds7NAZQNujakjlk,23106
|
|
965
965
|
tensorflow_probability/substrates/jax/internal/implementation_selection.py,sha256=avYl23pMo04siIRNZrHL5PYpPh5aC0CGiei1NA6TfuM,6404
|
|
966
966
|
tensorflow_probability/substrates/jax/internal/loop_util.py,sha256=jNaiViVRpTn5ffgr-3zMRjoQ37MI0hvLyvx8Mx3iTKY,11627
|
|
967
967
|
tensorflow_probability/substrates/jax/internal/monte_carlo.py,sha256=ZsFYYvRiiZ_uCJalEVTazhmv24IvlMF2LiH4KbqMcw8,5962
|
|
@@ -1135,7 +1135,7 @@ tensorflow_probability/substrates/numpy/bijectors/masked_autoregressive.py,sha25
|
|
|
1135
1135
|
tensorflow_probability/substrates/numpy/bijectors/matrix_inverse_tril.py,sha256=PB033sImauw3AuPjvDVPp_KrJVaUNqC1610_D6YYUdU,4662
|
|
1136
1136
|
tensorflow_probability/substrates/numpy/bijectors/moyal_cdf.py,sha256=ADY0xXh1UaqxYj3uZ7o_hbCZmUbnSIEhKfmc3qOsI-w,5844
|
|
1137
1137
|
tensorflow_probability/substrates/numpy/bijectors/normal_cdf.py,sha256=O4gz82DdXlh56Ucf2ST7SqwJP44ewQ4v5tY-vkOw-L0,3434
|
|
1138
|
-
tensorflow_probability/substrates/numpy/bijectors/pad.py,sha256=
|
|
1138
|
+
tensorflow_probability/substrates/numpy/bijectors/pad.py,sha256=xFho6ae3oEEfRMhbEWWeUIk9ncscOWbtYZbRknnV51s,13567
|
|
1139
1139
|
tensorflow_probability/substrates/numpy/bijectors/permute.py,sha256=U93x22ws1k9KUk175_jRxu0yNJx92aLUbpNg1oESo0E,7180
|
|
1140
1140
|
tensorflow_probability/substrates/numpy/bijectors/power.py,sha256=LlMP_PnN21YVBXeYkO5nE_LCZmCb4Lguw3nkSsJMlnY,4716
|
|
1141
1141
|
tensorflow_probability/substrates/numpy/bijectors/power_transform.py,sha256=3I2PCArW9H2POIw84Nz3MMZaf9EvxejE3so6BL0VJaY,5134
|
|
@@ -1397,7 +1397,7 @@ tensorflow_probability/substrates/numpy/internal/custom_gradient.py,sha256=MpacP
|
|
|
1397
1397
|
tensorflow_probability/substrates/numpy/internal/distribute_lib.py,sha256=5_deiaYNuswnQcxuNpaBFtTspzo6C9pnWDMgMpP9Gjs,13784
|
|
1398
1398
|
tensorflow_probability/substrates/numpy/internal/distribution_util.py,sha256=4SbuRDExDqFCsUjtygJNDJsPeq2mRQu_qiHr7mNpyFI,58152
|
|
1399
1399
|
tensorflow_probability/substrates/numpy/internal/dtype_util.py,sha256=fX_1AQS9YNM_ljHAUK4sUoZ-qYG-b46c0CbFcDAZHSg,15252
|
|
1400
|
-
tensorflow_probability/substrates/numpy/internal/empirical_statistical_testing.py,sha256=
|
|
1400
|
+
tensorflow_probability/substrates/numpy/internal/empirical_statistical_testing.py,sha256=Xc2ReiTODE879-C8QpgGz1r-tb803zEzkA8NCWxDgb4,23108
|
|
1401
1401
|
tensorflow_probability/substrates/numpy/internal/implementation_selection.py,sha256=5L5nD9U4MacDFy_90VYcKQ6kIsx9wFQiODpYsc6ZwHk,6412
|
|
1402
1402
|
tensorflow_probability/substrates/numpy/internal/loop_util.py,sha256=2MjzQNQlIvg7i-gLK7BAMUYVuowOZ-L7ng5Wwdu9Fiw,11640
|
|
1403
1403
|
tensorflow_probability/substrates/numpy/internal/monte_carlo.py,sha256=61zPeA-wwthUKFGb6CDr0CnBb4UO7BJTdoFGAP9UDGY,5966
|
|
@@ -1535,7 +1535,7 @@ tensorflow_probability/substrates/numpy/util/seed_stream.py,sha256=Zqz5ctJoSpzHQ
|
|
|
1535
1535
|
tensorflow_probability/substrates/numpy/vi/__init__.py,sha256=NNJPo76kolD21ec0xIFRROooxIKibeFh3Q9gsANzX3I,3828
|
|
1536
1536
|
tensorflow_probability/substrates/numpy/vi/csiszar_divergence.py,sha256=804ioHtZkBBT1P65a89PABxOC-GYxYf_4ch3w7dIqKs,45484
|
|
1537
1537
|
tensorflow_probability/substrates/numpy/vi/optimization.py,sha256=MyYaWbRzYIwVz6ka7X5nB8ryAFqvHKoRBWih-acaAbs,33690
|
|
1538
|
-
tfp_nightly-0.26.0.
|
|
1539
|
-
tfp_nightly-0.26.0.
|
|
1540
|
-
tfp_nightly-0.26.0.
|
|
1541
|
-
tfp_nightly-0.26.0.
|
|
1538
|
+
tfp_nightly-0.26.0.dev20251206.dist-info/METADATA,sha256=85Kdu7wIk4TlVFn_h9Bb0b2eH-lccOcWpDRVmk0JxJk,13609
|
|
1539
|
+
tfp_nightly-0.26.0.dev20251206.dist-info/WHEEL,sha256=Ll72iyqtt6Rbxp-Q7FSafYA1LeRv98X15xcZWRsFEmY,109
|
|
1540
|
+
tfp_nightly-0.26.0.dev20251206.dist-info/top_level.txt,sha256=Jb6JYoMHGjOqCQ1Wdlk-IJ5vPYkPr5PsNVH8K4KjYK4,23
|
|
1541
|
+
tfp_nightly-0.26.0.dev20251206.dist-info/RECORD,,
|
|
File without changes
|
{tfp_nightly-0.26.0.dev20251205.dist-info → tfp_nightly-0.26.0.dev20251206.dist-info}/top_level.txt
RENAMED
|
File without changes
|