tfp-nightly 0.26.0.dev20251128__py2.py3-none-any.whl → 0.26.0.dev20251227__py2.py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -140,7 +140,7 @@ class Pad(bijector.AutoCompositeTensorBijector):
140
140
  self._constant_values = tensor_util.convert_nonref_to_tensor(
141
141
  constant_values, dtype_hint=tf.float32, name='constant_values')
142
142
  min_event_ndims_ = int(-np.min(np.pad(
143
- np.reshape(axis_, newshape=[-1]),
143
+ np.reshape(axis_, [-1]),
144
144
  mode='constant', pad_width=[[0, 1]])))
145
145
  super(Pad, self).__init__(
146
146
  forward_min_event_ndims=min_event_ndims_,
@@ -217,7 +217,7 @@ def _bootstrap_means(samples, mean_size, fuel):
217
217
  if num_bootstraps * mean_size <= len(samples):
218
218
  # Inputs are huge relative to fuel; fake a bootstrap by just slicing
219
219
  # the input array
220
- return np.mean(np.reshape(samples, newshape=(-1, mean_size)), axis=-1)
220
+ return np.mean(np.reshape(samples, (-1, mean_size)), axis=-1)
221
221
  # Compute this in batches to never materialize an over-large
222
222
  # intermediate array.
223
223
  n_batches = 10
@@ -34,4 +34,4 @@ __version__ = '.'.join([
34
34
  ])
35
35
  if _VERSION_SUFFIX:
36
36
  __version__ = '{}-{}'.format(__version__, _VERSION_SUFFIX)
37
- if __version__.endswith('dev'): __version__ += '20251128'
37
+ if __version__.endswith('dev'): __version__ += '20251227'
@@ -140,7 +140,7 @@ class Pad(bijector.AutoCompositeTensorBijector):
140
140
  self._constant_values = tensor_util.convert_nonref_to_tensor(
141
141
  constant_values, dtype_hint=tf.float32, name='constant_values')
142
142
  min_event_ndims_ = int(-np.min(np.pad(
143
- np.reshape(axis_, newshape=[-1]),
143
+ np.reshape(axis_, [-1]),
144
144
  mode='constant', pad_width=[[0, 1]])))
145
145
  super(Pad, self).__init__(
146
146
  forward_min_event_ndims=min_event_ndims_,
@@ -217,7 +217,7 @@ def _bootstrap_means(samples, mean_size, fuel):
217
217
  if num_bootstraps * mean_size <= len(samples):
218
218
  # Inputs are huge relative to fuel; fake a bootstrap by just slicing
219
219
  # the input array
220
- return np.mean(np.reshape(samples, newshape=(-1, mean_size)), axis=-1)
220
+ return np.mean(np.reshape(samples, (-1, mean_size)), axis=-1)
221
221
  # Compute this in batches to never materialize an over-large
222
222
  # intermediate array.
223
223
  n_batches = 10
@@ -140,7 +140,7 @@ class Pad(bijector.AutoCompositeTensorBijector):
140
140
  self._constant_values = tensor_util.convert_nonref_to_tensor(
141
141
  constant_values, dtype_hint=tf.float32, name='constant_values')
142
142
  min_event_ndims_ = int(-np.min(np.pad(
143
- np.reshape(axis_, newshape=[-1]),
143
+ np.reshape(axis_, [-1]),
144
144
  mode='constant', pad_width=[[0, 1]])))
145
145
  super(Pad, self).__init__(
146
146
  forward_min_event_ndims=min_event_ndims_,
@@ -217,7 +217,7 @@ def _bootstrap_means(samples, mean_size, fuel):
217
217
  if num_bootstraps * mean_size <= len(samples):
218
218
  # Inputs are huge relative to fuel; fake a bootstrap by just slicing
219
219
  # the input array
220
- return np.mean(np.reshape(samples, newshape=(-1, mean_size)), axis=-1)
220
+ return np.mean(np.reshape(samples, (-1, mean_size)), axis=-1)
221
221
  # Compute this in batches to never materialize an over-large
222
222
  # intermediate array.
223
223
  n_batches = 10
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: tfp-nightly
3
- Version: 0.26.0.dev20251128
3
+ Version: 0.26.0.dev20251227
4
4
  Summary: Probabilistic modeling and statistical inference in TensorFlow
5
5
  Home-page: http://github.com/tensorflow/probability
6
6
  Author: Google LLC
@@ -1,6 +1,6 @@
1
1
  tensorflow_probability/__init__.py,sha256=qyOYw4eGComQ1GLNlJ0-OvaWBjQ5B0-Hjo02hlJ40VI,1222
2
2
  tensorflow_probability/python/__init__.py,sha256=qQRo06XbmO2sHYKllnDEpq9v1IhMUbO3bt9QoRyTwL8,5879
3
- tensorflow_probability/python/version.py,sha256=szW-zGjyR4Nibt7X0Yy2BF1cM39UT4EtjXLZSqaE6rA,1476
3
+ tensorflow_probability/python/version.py,sha256=ixwzvNv7CvBo81XsGMR9HJ7vatuMT8vCtT1Fn1XomMY,1476
4
4
  tensorflow_probability/python/bijectors/__init__.py,sha256=t_jgecHvPmsxGIfqfayVn8UvdhKwODhftsn7mN6SGqM,8822
5
5
  tensorflow_probability/python/bijectors/absolute_value.py,sha256=Lwfp3Px3YacTaxf3qqarsloiuMUtqugPRlVtf54wv3k,3664
6
6
  tensorflow_probability/python/bijectors/ascending.py,sha256=BeXeuA1tKDGsqP0GofGwGDwzZzYGd1I15MAsuswnc8Y,3124
@@ -39,7 +39,7 @@ tensorflow_probability/python/bijectors/masked_autoregressive.py,sha256=eGQm3jjy
39
39
  tensorflow_probability/python/bijectors/matrix_inverse_tril.py,sha256=ST2asD00RlRMxK30o68nBE7MjfOMg9DFbzpJ6ggqeEs,4156
40
40
  tensorflow_probability/python/bijectors/moyal_cdf.py,sha256=ReLcSSpHDIswhGMerLud5k5BJ-htOYU-88Fra62m7Lc,5308
41
41
  tensorflow_probability/python/bijectors/normal_cdf.py,sha256=DyJjfe8AJCcWBP0I7Xdi7urA8QG3QR4CBcFGK0e3mwU,2927
42
- tensorflow_probability/python/bijectors/pad.py,sha256=OtxGjMevtB9ONFF_fCxKMsqamNaXjG_QGd_lQTouiFM,13056
42
+ tensorflow_probability/python/bijectors/pad.py,sha256=8-oICPb8L220N_c3Wuf5L2hdfwwKFIJzDvtIbYvUkog,13047
43
43
  tensorflow_probability/python/bijectors/permute.py,sha256=q_yeFVnA4wyxRXyFvLRTKxZroN9IpfKgYK9ZTtRZBRY,6656
44
44
  tensorflow_probability/python/bijectors/power.py,sha256=-kgrz8xhUf9gw63Lr_cd1-kgUWQLFLzeChSTB9KOBts,4204
45
45
  tensorflow_probability/python/bijectors/power_transform.py,sha256=ZJ-USuOEkZY_z-HgtATnkgEEVhMlgjAvvrK-CzLVCdc,4632
@@ -365,7 +365,7 @@ tensorflow_probability/python/internal/distribute_lib.py,sha256=RadeQBdsNtqUXYBF
365
365
  tensorflow_probability/python/internal/distribution_util.py,sha256=nNR8K_wnNUgxk4UclI0r2XUzk6Z-8BIR2z-ZBke3oq4,57599
366
366
  tensorflow_probability/python/internal/docstring_util.py,sha256=hCJRTyCoTk65vsl2kwKtgcrtT9iTVZ0LEGA-z3nznM8,1588
367
367
  tensorflow_probability/python/internal/dtype_util.py,sha256=HHUADLzQTqnGqX27SmLe5W_MF3qsnC4TbHpNbErxYRk,14758
368
- tensorflow_probability/python/internal/empirical_statistical_testing.py,sha256=1U78-qIbeBKuqu2C40Re0rAvqD5JBahIQT5QB2dzGbA,22679
368
+ tensorflow_probability/python/internal/empirical_statistical_testing.py,sha256=ywZFTktQ0IXp3b4DvgMsE9KrxcCBLWTEZ6kL7OX005M,22670
369
369
  tensorflow_probability/python/internal/implementation_selection.py,sha256=E5sD1kXckXm_fLVC9bJnRl-MnWKNGpSU5U-Q57n0v6U,5866
370
370
  tensorflow_probability/python/internal/lazy_loader.py,sha256=gDJjHhmNqiX3H5UddYHjz399qf7pqCqeofpIdZF0PGE,2168
371
371
  tensorflow_probability/python/internal/loop_util.py,sha256=tTax46UCzzoAixlR07GU0cUctAZoH_j9YQ_MexEUd20,11066
@@ -699,7 +699,7 @@ tensorflow_probability/substrates/jax/bijectors/masked_autoregressive.py,sha256=
699
699
  tensorflow_probability/substrates/jax/bijectors/matrix_inverse_tril.py,sha256=NKNPZjhctohasJyka7xLG69E_zx6h6Iws21KfC-82jg,4652
700
700
  tensorflow_probability/substrates/jax/bijectors/moyal_cdf.py,sha256=GTsQ54MfrhaC6unLPJsiSjI9WOQm4X4plAsmAYlsn_Y,5826
701
701
  tensorflow_probability/substrates/jax/bijectors/normal_cdf.py,sha256=O2LC53rJefWKWc7YEVHglx5Iyi9mLit2BTgY5rDnA_M,3422
702
- tensorflow_probability/substrates/jax/bijectors/pad.py,sha256=K3r_f2gd-8I7Ik3B8hbAKgowjtGA52XRT6C9vuB7tv0,13560
702
+ tensorflow_probability/substrates/jax/bijectors/pad.py,sha256=UwHybSEkz8RmhwX5gY2rPLVb-_Tik2OdxELYCiZzOLk,13551
703
703
  tensorflow_probability/substrates/jax/bijectors/permute.py,sha256=sDSzKnv_agqyphRiTHrl3uO0wtXLGrI7q8oUeXGvbJg,7164
704
704
  tensorflow_probability/substrates/jax/bijectors/power.py,sha256=QtmupgPxzecCVbQH0JVYbZkHGkYW-KlZyJyyr_GKI4c,4702
705
705
  tensorflow_probability/substrates/jax/bijectors/power_transform.py,sha256=xRPYs5LiyObo30vmrCgIUGfy9b-M6L7XzNzYi5AwVTg,5124
@@ -961,7 +961,7 @@ tensorflow_probability/substrates/jax/internal/custom_gradient.py,sha256=E_t8AJL
961
961
  tensorflow_probability/substrates/jax/internal/distribute_lib.py,sha256=RBvSxFcVcol5BrZ5Uo82TLjNT1Hqrhrqxc0CroUVFXk,13771
962
962
  tensorflow_probability/substrates/jax/internal/distribution_util.py,sha256=yBVYBmMeLuxOejje42OUDrSR6sGh029c4FyS3lp3ejY,58138
963
963
  tensorflow_probability/substrates/jax/internal/dtype_util.py,sha256=0MkFifM1gXeZzI9hZS0W_4NWewAUqGfPyPTvq_paeII,15247
964
- tensorflow_probability/substrates/jax/internal/empirical_statistical_testing.py,sha256=C45X-XxYh2HTIFiQ3oLCOT8ehEdxVvJQKDXgjvuoMiY,23115
964
+ tensorflow_probability/substrates/jax/internal/empirical_statistical_testing.py,sha256=sWkb0ieeMoP48FZ9hOc2uD_3DOumds7NAZQNujakjlk,23106
965
965
  tensorflow_probability/substrates/jax/internal/implementation_selection.py,sha256=avYl23pMo04siIRNZrHL5PYpPh5aC0CGiei1NA6TfuM,6404
966
966
  tensorflow_probability/substrates/jax/internal/loop_util.py,sha256=jNaiViVRpTn5ffgr-3zMRjoQ37MI0hvLyvx8Mx3iTKY,11627
967
967
  tensorflow_probability/substrates/jax/internal/monte_carlo.py,sha256=ZsFYYvRiiZ_uCJalEVTazhmv24IvlMF2LiH4KbqMcw8,5962
@@ -1135,7 +1135,7 @@ tensorflow_probability/substrates/numpy/bijectors/masked_autoregressive.py,sha25
1135
1135
  tensorflow_probability/substrates/numpy/bijectors/matrix_inverse_tril.py,sha256=PB033sImauw3AuPjvDVPp_KrJVaUNqC1610_D6YYUdU,4662
1136
1136
  tensorflow_probability/substrates/numpy/bijectors/moyal_cdf.py,sha256=ADY0xXh1UaqxYj3uZ7o_hbCZmUbnSIEhKfmc3qOsI-w,5844
1137
1137
  tensorflow_probability/substrates/numpy/bijectors/normal_cdf.py,sha256=O4gz82DdXlh56Ucf2ST7SqwJP44ewQ4v5tY-vkOw-L0,3434
1138
- tensorflow_probability/substrates/numpy/bijectors/pad.py,sha256=Hf97_EFSWm0pjyPP-FmnDt_ZX43YXwqL3Mu4b4cKpa8,13576
1138
+ tensorflow_probability/substrates/numpy/bijectors/pad.py,sha256=xFho6ae3oEEfRMhbEWWeUIk9ncscOWbtYZbRknnV51s,13567
1139
1139
  tensorflow_probability/substrates/numpy/bijectors/permute.py,sha256=U93x22ws1k9KUk175_jRxu0yNJx92aLUbpNg1oESo0E,7180
1140
1140
  tensorflow_probability/substrates/numpy/bijectors/power.py,sha256=LlMP_PnN21YVBXeYkO5nE_LCZmCb4Lguw3nkSsJMlnY,4716
1141
1141
  tensorflow_probability/substrates/numpy/bijectors/power_transform.py,sha256=3I2PCArW9H2POIw84Nz3MMZaf9EvxejE3so6BL0VJaY,5134
@@ -1397,7 +1397,7 @@ tensorflow_probability/substrates/numpy/internal/custom_gradient.py,sha256=MpacP
1397
1397
  tensorflow_probability/substrates/numpy/internal/distribute_lib.py,sha256=5_deiaYNuswnQcxuNpaBFtTspzo6C9pnWDMgMpP9Gjs,13784
1398
1398
  tensorflow_probability/substrates/numpy/internal/distribution_util.py,sha256=4SbuRDExDqFCsUjtygJNDJsPeq2mRQu_qiHr7mNpyFI,58152
1399
1399
  tensorflow_probability/substrates/numpy/internal/dtype_util.py,sha256=fX_1AQS9YNM_ljHAUK4sUoZ-qYG-b46c0CbFcDAZHSg,15252
1400
- tensorflow_probability/substrates/numpy/internal/empirical_statistical_testing.py,sha256=2c1_SWQuSCGLHJ8TII2UqzbIj2swIhXOKtg1GXuDm1M,23117
1400
+ tensorflow_probability/substrates/numpy/internal/empirical_statistical_testing.py,sha256=Xc2ReiTODE879-C8QpgGz1r-tb803zEzkA8NCWxDgb4,23108
1401
1401
  tensorflow_probability/substrates/numpy/internal/implementation_selection.py,sha256=5L5nD9U4MacDFy_90VYcKQ6kIsx9wFQiODpYsc6ZwHk,6412
1402
1402
  tensorflow_probability/substrates/numpy/internal/loop_util.py,sha256=2MjzQNQlIvg7i-gLK7BAMUYVuowOZ-L7ng5Wwdu9Fiw,11640
1403
1403
  tensorflow_probability/substrates/numpy/internal/monte_carlo.py,sha256=61zPeA-wwthUKFGb6CDr0CnBb4UO7BJTdoFGAP9UDGY,5966
@@ -1535,7 +1535,7 @@ tensorflow_probability/substrates/numpy/util/seed_stream.py,sha256=Zqz5ctJoSpzHQ
1535
1535
  tensorflow_probability/substrates/numpy/vi/__init__.py,sha256=NNJPo76kolD21ec0xIFRROooxIKibeFh3Q9gsANzX3I,3828
1536
1536
  tensorflow_probability/substrates/numpy/vi/csiszar_divergence.py,sha256=804ioHtZkBBT1P65a89PABxOC-GYxYf_4ch3w7dIqKs,45484
1537
1537
  tensorflow_probability/substrates/numpy/vi/optimization.py,sha256=MyYaWbRzYIwVz6ka7X5nB8ryAFqvHKoRBWih-acaAbs,33690
1538
- tfp_nightly-0.26.0.dev20251128.dist-info/METADATA,sha256=CxfdKmtb20mir-FBr5KIG7mywud9y4Gs6226qeq9cJE,13609
1539
- tfp_nightly-0.26.0.dev20251128.dist-info/WHEEL,sha256=Ll72iyqtt6Rbxp-Q7FSafYA1LeRv98X15xcZWRsFEmY,109
1540
- tfp_nightly-0.26.0.dev20251128.dist-info/top_level.txt,sha256=Jb6JYoMHGjOqCQ1Wdlk-IJ5vPYkPr5PsNVH8K4KjYK4,23
1541
- tfp_nightly-0.26.0.dev20251128.dist-info/RECORD,,
1538
+ tfp_nightly-0.26.0.dev20251227.dist-info/METADATA,sha256=rR-olHgcdOWs1TgdLTzrhy1CmsQMZZ6SryQbgHIPFVM,13609
1539
+ tfp_nightly-0.26.0.dev20251227.dist-info/WHEEL,sha256=Ll72iyqtt6Rbxp-Q7FSafYA1LeRv98X15xcZWRsFEmY,109
1540
+ tfp_nightly-0.26.0.dev20251227.dist-info/top_level.txt,sha256=Jb6JYoMHGjOqCQ1Wdlk-IJ5vPYkPr5PsNVH8K4KjYK4,23
1541
+ tfp_nightly-0.26.0.dev20251227.dist-info/RECORD,,