tfp-nightly 0.26.0.dev20250820__py2.py3-none-any.whl → 0.26.0.dev20251201__py2.py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -203,6 +203,8 @@ def _bincount(arr, weights=None, minlength=None, maxlength=None, # pylint: disa
203
203
  """Counts number of occurences of each value in `arr`."""
204
204
  # TODO(https://github.com/google/jax/issues/5719): Use np.bincount directly?
205
205
  if not JAX_MODE:
206
+ if minlength is None:
207
+ minlength = 0
206
208
  return np.bincount(arr, weights, minlength).astype(utils.numpy_dtype(dtype))
207
209
 
208
210
  dtype = utils.numpy_dtype(dtype)
@@ -414,6 +416,8 @@ def _reduce_logsumexp(input_tensor, axis=None, keepdims=False, name=None): # py
414
416
  or np.issubdtype(dtype, np.complexfloating)):
415
417
  # Match TF error
416
418
  raise TypeError('Input must be either real or complex')
419
+ if not input_tensor.shape:
420
+ return input_tensor
417
421
  if input_tensor.size == 0:
418
422
  # On empty arrays, mimic TF in returning `-inf` instead of failing, and
419
423
  # preserve error message if `axis` arg is incompatible with an empty array.
@@ -203,6 +203,8 @@ def _bincount(arr, weights=None, minlength=None, maxlength=None, # pylint: disa
203
203
  """Counts number of occurences of each value in `arr`."""
204
204
  # TODO(https://github.com/google/jax/issues/5719): Use np.bincount directly?
205
205
  if not JAX_MODE:
206
+ if minlength is None:
207
+ minlength = 0
206
208
  return np.bincount(arr, weights, minlength).astype(utils.numpy_dtype(dtype))
207
209
 
208
210
  dtype = utils.numpy_dtype(dtype)
@@ -414,6 +416,8 @@ def _reduce_logsumexp(input_tensor, axis=None, keepdims=False, name=None): # py
414
416
  or np.issubdtype(dtype, np.complexfloating)):
415
417
  # Match TF error
416
418
  raise TypeError('Input must be either real or complex')
419
+ if not input_tensor.shape:
420
+ return input_tensor
417
421
  if input_tensor.size == 0:
418
422
  # On empty arrays, mimic TF in returning `-inf` instead of failing, and
419
423
  # preserve error message if `axis` arg is incompatible with an empty array.
@@ -1281,6 +1281,7 @@ def parent_frame_arguments():
1281
1281
 
1282
1282
  # Remove the *varargs, and flatten the **kwargs. Both are
1283
1283
  # nested lists.
1284
+ local_vars = dict(local_vars)
1284
1285
  local_vars.pop(variable_arg_name, {})
1285
1286
  keyword_args = local_vars.pop(keyword_arg_name, {})
1286
1287
 
@@ -34,4 +34,4 @@ __version__ = '.'.join([
34
34
  ])
35
35
  if _VERSION_SUFFIX:
36
36
  __version__ = '{}-{}'.format(__version__, _VERSION_SUFFIX)
37
- if __version__.endswith('dev'): __version__ += '20250820'
37
+ if __version__.endswith('dev'): __version__ += '20251201'
@@ -1281,6 +1281,7 @@ def parent_frame_arguments():
1281
1281
 
1282
1282
  # Remove the *varargs, and flatten the **kwargs. Both are
1283
1283
  # nested lists.
1284
+ local_vars = dict(local_vars)
1284
1285
  local_vars.pop(variable_arg_name, {})
1285
1286
  keyword_args = local_vars.pop(keyword_arg_name, {})
1286
1287
 
@@ -1281,6 +1281,7 @@ def parent_frame_arguments():
1281
1281
 
1282
1282
  # Remove the *varargs, and flatten the **kwargs. Both are
1283
1283
  # nested lists.
1284
+ local_vars = dict(local_vars)
1284
1285
  local_vars.pop(variable_arg_name, {})
1285
1286
  keyword_args = local_vars.pop(keyword_arg_name, {})
1286
1287
 
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: tfp-nightly
3
- Version: 0.26.0.dev20250820
3
+ Version: 0.26.0.dev20251201
4
4
  Summary: Probabilistic modeling and statistical inference in TensorFlow
5
5
  Home-page: http://github.com/tensorflow/probability
6
6
  Author: Google LLC
@@ -1,6 +1,6 @@
1
1
  tensorflow_probability/__init__.py,sha256=qyOYw4eGComQ1GLNlJ0-OvaWBjQ5B0-Hjo02hlJ40VI,1222
2
2
  tensorflow_probability/python/__init__.py,sha256=qQRo06XbmO2sHYKllnDEpq9v1IhMUbO3bt9QoRyTwL8,5879
3
- tensorflow_probability/python/version.py,sha256=UifHnDLJohroRNyoJeaLAbZ-HnNlz5Bk9kTEDWlcgPg,1476
3
+ tensorflow_probability/python/version.py,sha256=FXu5FnEtdchC3x98VlDVY-_YxS4RnOOigVJFmwVMoyM,1476
4
4
  tensorflow_probability/python/bijectors/__init__.py,sha256=t_jgecHvPmsxGIfqfayVn8UvdhKwODhftsn7mN6SGqM,8822
5
5
  tensorflow_probability/python/bijectors/absolute_value.py,sha256=Lwfp3Px3YacTaxf3qqarsloiuMUtqugPRlVtf54wv3k,3664
6
6
  tensorflow_probability/python/bijectors/ascending.py,sha256=BeXeuA1tKDGsqP0GofGwGDwzZzYGd1I15MAsuswnc8Y,3124
@@ -362,7 +362,7 @@ tensorflow_probability/python/internal/cache_util.py,sha256=3Bg-3yyg6PrD5HbGJeql
362
362
  tensorflow_probability/python/internal/callable_util.py,sha256=e4BV15DuxzTlstGdmTd97CG_zjch32vKUf8KaZ9NO5I,2556
363
363
  tensorflow_probability/python/internal/custom_gradient.py,sha256=imYsiQra8qTY1quuSFekxjR9jzICBhsree4749rEKps,5618
364
364
  tensorflow_probability/python/internal/distribute_lib.py,sha256=RadeQBdsNtqUXYBFXE4Om6W8BJAMMXM_OXbKgxuVzfQ,13254
365
- tensorflow_probability/python/internal/distribution_util.py,sha256=JjXlVtd4N-SJztfeLGBLlLdmtPcWE-wNyWAQzyUuiAU,57567
365
+ tensorflow_probability/python/internal/distribution_util.py,sha256=nNR8K_wnNUgxk4UclI0r2XUzk6Z-8BIR2z-ZBke3oq4,57599
366
366
  tensorflow_probability/python/internal/docstring_util.py,sha256=hCJRTyCoTk65vsl2kwKtgcrtT9iTVZ0LEGA-z3nznM8,1588
367
367
  tensorflow_probability/python/internal/dtype_util.py,sha256=HHUADLzQTqnGqX27SmLe5W_MF3qsnC4TbHpNbErxYRk,14758
368
368
  tensorflow_probability/python/internal/empirical_statistical_testing.py,sha256=1U78-qIbeBKuqu2C40Re0rAvqD5JBahIQT5QB2dzGbA,22679
@@ -414,7 +414,7 @@ tensorflow_probability/python/internal/backend/jax/nn.py,sha256=K9-Xy9L2dxM0cWCR
414
414
  tensorflow_probability/python/internal/backend/jax/numpy_array.py,sha256=Fos2U2Y534-EFLGu5nO73I0NPE7g5cSpVuY2XYKRhDI,16036
415
415
  tensorflow_probability/python/internal/backend/jax/numpy_keras.py,sha256=TxdcvCnfl2XqhdX5PhTOSKkE1e5y4leiNYb7Ioui9_U,856
416
416
  tensorflow_probability/python/internal/backend/jax/numpy_logging.py,sha256=ilfbgVoQImReqK7oGCJCAA2K9D4J0gIx2v0b-yfRKUQ,3496
417
- tensorflow_probability/python/internal/backend/jax/numpy_math.py,sha256=hk7hOXtC5hwgIwq9On15mpgi4kBACgGMBO5xcS-2fB4,31782
417
+ tensorflow_probability/python/internal/backend/jax/numpy_math.py,sha256=V2efAtvtGMZb7QAnBFIKdn3eJMIBrcOIbgWuBbOrfaA,31881
418
418
  tensorflow_probability/python/internal/backend/jax/numpy_signal.py,sha256=ZPtGu59PxlaMBUFxHnrx1kX8EbIHAtu_YaBw6teiDEs,3442
419
419
  tensorflow_probability/python/internal/backend/jax/ops.py,sha256=tm7wDOCgGWt51y-69zBX5LR0hyDuBqHxP1qkvP3Y9HU,23480
420
420
  tensorflow_probability/python/internal/backend/jax/private.py,sha256=3bObq-w9uujbkRfLcRopOo0c8HMC1Iw5-3pDuj70HdM,4484
@@ -481,7 +481,7 @@ tensorflow_probability/python/internal/backend/numpy/nn.py,sha256=R7pSVAlteOlwYG
481
481
  tensorflow_probability/python/internal/backend/numpy/numpy_array.py,sha256=cTvK3H76ZVI2vKjSeLsXcHiGtngHg-YoFJ0tp86XrC4,16019
482
482
  tensorflow_probability/python/internal/backend/numpy/numpy_keras.py,sha256=AmaNa8HFEJZAJkOGIfrb13d2sZu_pMkPRGa7n_qHNeo,857
483
483
  tensorflow_probability/python/internal/backend/numpy/numpy_logging.py,sha256=yth3X0yznR2xg6_wIgKft2SE9T1d3zg6RGn1rbsbPBU,3497
484
- tensorflow_probability/python/internal/backend/numpy/numpy_math.py,sha256=ZJ-8v_z6PAqIuVel0WHdganVkWDQIdpYJpS0lHnOooQ,31761
484
+ tensorflow_probability/python/internal/backend/numpy/numpy_math.py,sha256=Br_plGiYKGTW-UQ57QfSc18DNzVjd2cizptpWfX07mI,31860
485
485
  tensorflow_probability/python/internal/backend/numpy/numpy_signal.py,sha256=9BTjqYwR4Y4DeuWVm7RLL8AyAw9CLwA35n-EuXhVrqc,3420
486
486
  tensorflow_probability/python/internal/backend/numpy/ops.py,sha256=MeZw1cp-MNjqhec-t4Fbeq5nlsCQDiVhlEFoKeSbeIk,23456
487
487
  tensorflow_probability/python/internal/backend/numpy/private.py,sha256=CrT8Hi1WNhM5VX6DtOZpd4MozdW6rhf4Q0jYYqR4yY4,4461
@@ -959,7 +959,7 @@ tensorflow_probability/substrates/jax/internal/cache_util.py,sha256=PapeGtG-0_db
959
959
  tensorflow_probability/substrates/jax/internal/callable_util.py,sha256=vDxXtQNl4ewhALdUvgx5P_WekVqtt1zfsmrEWDB99D8,3020
960
960
  tensorflow_probability/substrates/jax/internal/custom_gradient.py,sha256=E_t8AJLMKR6CW-jwqA4SudBw2wmJ2MXBiTO05YCLYdM,6124
961
961
  tensorflow_probability/substrates/jax/internal/distribute_lib.py,sha256=RBvSxFcVcol5BrZ5Uo82TLjNT1Hqrhrqxc0CroUVFXk,13771
962
- tensorflow_probability/substrates/jax/internal/distribution_util.py,sha256=ODxAz8ImAAKujQW2GbndMOFa374ZgmU5e3plGwERq2Y,58106
962
+ tensorflow_probability/substrates/jax/internal/distribution_util.py,sha256=yBVYBmMeLuxOejje42OUDrSR6sGh029c4FyS3lp3ejY,58138
963
963
  tensorflow_probability/substrates/jax/internal/dtype_util.py,sha256=0MkFifM1gXeZzI9hZS0W_4NWewAUqGfPyPTvq_paeII,15247
964
964
  tensorflow_probability/substrates/jax/internal/empirical_statistical_testing.py,sha256=C45X-XxYh2HTIFiQ3oLCOT8ehEdxVvJQKDXgjvuoMiY,23115
965
965
  tensorflow_probability/substrates/jax/internal/implementation_selection.py,sha256=avYl23pMo04siIRNZrHL5PYpPh5aC0CGiei1NA6TfuM,6404
@@ -1395,7 +1395,7 @@ tensorflow_probability/substrates/numpy/internal/cache_util.py,sha256=ABf4gQNMB1
1395
1395
  tensorflow_probability/substrates/numpy/internal/callable_util.py,sha256=73EYzbKYRV1LE1KNTXyWxihXDiXNWhYWbNavsNI8mHE,3024
1396
1396
  tensorflow_probability/substrates/numpy/internal/custom_gradient.py,sha256=MpacPtKvJ4bh_vgambxcM7n_di5_r7kqkm7g6yJJEpk,6131
1397
1397
  tensorflow_probability/substrates/numpy/internal/distribute_lib.py,sha256=5_deiaYNuswnQcxuNpaBFtTspzo6C9pnWDMgMpP9Gjs,13784
1398
- tensorflow_probability/substrates/numpy/internal/distribution_util.py,sha256=oguqTLBg2vaqgs8vKvW-cm2G6JDedOBpkFPIuTmGFa8,58120
1398
+ tensorflow_probability/substrates/numpy/internal/distribution_util.py,sha256=4SbuRDExDqFCsUjtygJNDJsPeq2mRQu_qiHr7mNpyFI,58152
1399
1399
  tensorflow_probability/substrates/numpy/internal/dtype_util.py,sha256=fX_1AQS9YNM_ljHAUK4sUoZ-qYG-b46c0CbFcDAZHSg,15252
1400
1400
  tensorflow_probability/substrates/numpy/internal/empirical_statistical_testing.py,sha256=2c1_SWQuSCGLHJ8TII2UqzbIj2swIhXOKtg1GXuDm1M,23117
1401
1401
  tensorflow_probability/substrates/numpy/internal/implementation_selection.py,sha256=5L5nD9U4MacDFy_90VYcKQ6kIsx9wFQiODpYsc6ZwHk,6412
@@ -1535,7 +1535,7 @@ tensorflow_probability/substrates/numpy/util/seed_stream.py,sha256=Zqz5ctJoSpzHQ
1535
1535
  tensorflow_probability/substrates/numpy/vi/__init__.py,sha256=NNJPo76kolD21ec0xIFRROooxIKibeFh3Q9gsANzX3I,3828
1536
1536
  tensorflow_probability/substrates/numpy/vi/csiszar_divergence.py,sha256=804ioHtZkBBT1P65a89PABxOC-GYxYf_4ch3w7dIqKs,45484
1537
1537
  tensorflow_probability/substrates/numpy/vi/optimization.py,sha256=MyYaWbRzYIwVz6ka7X5nB8ryAFqvHKoRBWih-acaAbs,33690
1538
- tfp_nightly-0.26.0.dev20250820.dist-info/METADATA,sha256=Wph7b--4e0nv_deDXl2Qfi0InFBolguYlWs_WbaGme4,13609
1539
- tfp_nightly-0.26.0.dev20250820.dist-info/WHEEL,sha256=Ll72iyqtt6Rbxp-Q7FSafYA1LeRv98X15xcZWRsFEmY,109
1540
- tfp_nightly-0.26.0.dev20250820.dist-info/top_level.txt,sha256=Jb6JYoMHGjOqCQ1Wdlk-IJ5vPYkPr5PsNVH8K4KjYK4,23
1541
- tfp_nightly-0.26.0.dev20250820.dist-info/RECORD,,
1538
+ tfp_nightly-0.26.0.dev20251201.dist-info/METADATA,sha256=QPmSq8SEm6IsWAm0auDJgYmaQthzjP0crFbLjVWYYfQ,13609
1539
+ tfp_nightly-0.26.0.dev20251201.dist-info/WHEEL,sha256=Ll72iyqtt6Rbxp-Q7FSafYA1LeRv98X15xcZWRsFEmY,109
1540
+ tfp_nightly-0.26.0.dev20251201.dist-info/top_level.txt,sha256=Jb6JYoMHGjOqCQ1Wdlk-IJ5vPYkPr5PsNVH8K4KjYK4,23
1541
+ tfp_nightly-0.26.0.dev20251201.dist-info/RECORD,,