tfds-nightly 4.9.9.dev202507220045__py3-none-any.whl → 4.9.9.dev202507240045__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- tensorflow_datasets/core/dataset_builders/croissant_builder.py +13 -9
- tensorflow_datasets/core/dataset_builders/croissant_builder_test.py +128 -23
- tensorflow_datasets/core/subsplits_utils.py +2 -2
- tensorflow_datasets/testing/dataset_builder_testing.py +2 -2
- tensorflow_datasets/testing/test_utils.py +1 -1
- {tfds_nightly-4.9.9.dev202507220045.dist-info → tfds_nightly-4.9.9.dev202507240045.dist-info}/METADATA +1 -1
- {tfds_nightly-4.9.9.dev202507220045.dist-info → tfds_nightly-4.9.9.dev202507240045.dist-info}/RECORD +12 -12
- {tfds_nightly-4.9.9.dev202507220045.dist-info → tfds_nightly-4.9.9.dev202507240045.dist-info}/WHEEL +0 -0
- {tfds_nightly-4.9.9.dev202507220045.dist-info → tfds_nightly-4.9.9.dev202507240045.dist-info}/entry_points.txt +0 -0
- {tfds_nightly-4.9.9.dev202507220045.dist-info → tfds_nightly-4.9.9.dev202507240045.dist-info}/licenses/AUTHORS +0 -0
- {tfds_nightly-4.9.9.dev202507220045.dist-info → tfds_nightly-4.9.9.dev202507240045.dist-info}/licenses/LICENSE +0 -0
- {tfds_nightly-4.9.9.dev202507220045.dist-info → tfds_nightly-4.9.9.dev202507240045.dist-info}/top_level.txt +0 -0
@@ -134,10 +134,11 @@ def datatype_converter(
|
|
134
134
|
np.float32.
|
135
135
|
|
136
136
|
Returns:
|
137
|
-
Converted datatype for TFDS.
|
137
|
+
Converted datatype for TFDS, or None when a Field does not specify a type.
|
138
138
|
|
139
139
|
Raises:
|
140
|
-
NotImplementedError
|
140
|
+
NotImplementedError when the feature is not supported yet, or ValueError
|
141
|
+
when a Field is malformed.
|
141
142
|
"""
|
142
143
|
if field.is_enumeration:
|
143
144
|
raise NotImplementedError('Not implemented yet.')
|
@@ -151,7 +152,7 @@ def datatype_converter(
|
|
151
152
|
field_data_type = field.data_type
|
152
153
|
|
153
154
|
if not field_data_type:
|
154
|
-
# Fields with sub fields are of type None
|
155
|
+
# Fields with sub fields are of type None.
|
155
156
|
if field.sub_fields:
|
156
157
|
feature = features_dict.FeaturesDict(
|
157
158
|
{
|
@@ -170,8 +171,8 @@ def datatype_converter(
|
|
170
171
|
feature = dtype_mapping[field_data_type]
|
171
172
|
elif enp.lazy.is_np_dtype(field_data_type):
|
172
173
|
feature = field_data_type
|
173
|
-
# We return a text feature for
|
174
|
-
#
|
174
|
+
# We return a text feature for date-time features (mlc.DataType.DATE,
|
175
|
+
# mlc.DataType.DATETIME, and mlc.DataType.TIME).
|
175
176
|
elif field_data_type == pd.Timestamp or field_data_type == datetime.time:
|
176
177
|
feature = text_feature.Text(doc=field.description)
|
177
178
|
elif field_data_type == mlc.DataType.IMAGE_OBJECT:
|
@@ -195,7 +196,9 @@ def datatype_converter(
|
|
195
196
|
doc=field.description, sample_rate=field.source.sampling_rate
|
196
197
|
)
|
197
198
|
else:
|
198
|
-
raise ValueError(
|
199
|
+
raise ValueError(
|
200
|
+
f'Unknown data type: {field_data_type} for field {field.id}.'
|
201
|
+
)
|
199
202
|
|
200
203
|
if feature and field.is_array:
|
201
204
|
feature = array_datatype_converter(
|
@@ -211,7 +214,7 @@ def datatype_converter(
|
|
211
214
|
return feature
|
212
215
|
|
213
216
|
|
214
|
-
def _extract_license(license_: Any) -> str
|
217
|
+
def _extract_license(license_: Any) -> str:
|
215
218
|
"""Extracts the full terms of a license as a string.
|
216
219
|
|
217
220
|
In case the license is a CreativeWork, we join the name, description and url
|
@@ -231,12 +234,13 @@ def _extract_license(license_: Any) -> str | None:
|
|
231
234
|
fields = [field for field in possible_fields if field]
|
232
235
|
return '[' + ']['.join(fields) + ']'
|
233
236
|
raise ValueError(
|
234
|
-
|
237
|
+
'license_ should be mlc.CreativeWork | str. Got'
|
238
|
+
f' {type(license_)}: {license_}.'
|
235
239
|
)
|
236
240
|
|
237
241
|
|
238
242
|
def _get_license(metadata: Any) -> str | None:
|
239
|
-
"""Gets the license from the metadata."""
|
243
|
+
"""Gets the license from the metadata (if any) else returns None."""
|
240
244
|
if not isinstance(metadata, mlc.Metadata):
|
241
245
|
raise ValueError(f'metadata should be mlc.Metadata. Got {type(metadata)}')
|
242
246
|
licenses = metadata.license
|
@@ -32,6 +32,8 @@ from tensorflow_datasets.core.utils.lazy_imports_utils import mlcroissant as mlc
|
|
32
32
|
|
33
33
|
FileFormat = file_adapters.FileFormat
|
34
34
|
|
35
|
+
DUMMY_DESCRIPTION = "Dummy description."
|
36
|
+
|
35
37
|
|
36
38
|
DUMMY_ENTRIES = [
|
37
39
|
{
|
@@ -51,8 +53,30 @@ DUMMY_ENTRIES_WITH_CONVERTED_NONE_VALUES = [
|
|
51
53
|
]
|
52
54
|
|
53
55
|
|
56
|
+
def _create_mlc_field(
|
57
|
+
data_types: mlc.DataType | list[mlc.DataType],
|
58
|
+
description: str,
|
59
|
+
is_array: bool = False,
|
60
|
+
array_shape: str | None = None,
|
61
|
+
repeated: bool = False,
|
62
|
+
source: mlc.Source | None = None,
|
63
|
+
sub_fields: list[mlc.Field] | None = None,
|
64
|
+
) -> mlc.Field:
|
65
|
+
field = mlc.Field(
|
66
|
+
data_types=data_types,
|
67
|
+
description=description,
|
68
|
+
is_array=is_array,
|
69
|
+
array_shape=array_shape,
|
70
|
+
repeated=repeated,
|
71
|
+
sub_fields=sub_fields,
|
72
|
+
)
|
73
|
+
if source is not None:
|
74
|
+
field.source = source
|
75
|
+
return field
|
76
|
+
|
77
|
+
|
54
78
|
@pytest.mark.parametrize(
|
55
|
-
["
|
79
|
+
["mlc_field", "expected_feature", "int_dtype", "float_dtype"],
|
56
80
|
[
|
57
81
|
(
|
58
82
|
mlc.Field(
|
@@ -121,18 +145,18 @@ DUMMY_ENTRIES_WITH_CONVERTED_NONE_VALUES = [
|
|
121
145
|
],
|
122
146
|
)
|
123
147
|
def test_simple_datatype_converter(
|
124
|
-
|
148
|
+
mlc_field, expected_feature, int_dtype, float_dtype
|
125
149
|
):
|
126
150
|
actual_feature = croissant_builder.datatype_converter(
|
127
|
-
|
151
|
+
mlc_field,
|
128
152
|
int_dtype=int_dtype or np.int64,
|
129
153
|
float_dtype=float_dtype or np.float32,
|
130
154
|
)
|
131
155
|
assert actual_feature == expected_feature
|
132
156
|
|
133
157
|
|
134
|
-
def
|
135
|
-
field =
|
158
|
+
def test_datatype_converter_bbox():
|
159
|
+
field = _create_mlc_field(
|
136
160
|
data_types=mlc.DataType.BOUNDING_BOX,
|
137
161
|
description="Bounding box feature",
|
138
162
|
source=mlc.Source(format="XYWH"),
|
@@ -142,8 +166,8 @@ def test_bbox_datatype_converter():
|
|
142
166
|
assert actual_feature.bbox_format == bb_utils.BBoxFormat.XYWH
|
143
167
|
|
144
168
|
|
145
|
-
def
|
146
|
-
field =
|
169
|
+
def test_datatype_converter_bbox_with_invalid_format():
|
170
|
+
field = _create_mlc_field(
|
147
171
|
data_types=mlc.DataType.BOUNDING_BOX,
|
148
172
|
description="Bounding box feature",
|
149
173
|
source=mlc.Source(format="InvalidFormat"),
|
@@ -153,7 +177,7 @@ def test_bbox_datatype_converter_with_invalid_format():
|
|
153
177
|
|
154
178
|
|
155
179
|
@pytest.mark.parametrize(
|
156
|
-
["
|
180
|
+
["mlc_field", "feature_type", "subfield_types"],
|
157
181
|
[
|
158
182
|
(
|
159
183
|
mlc.Field(data_types=mlc.DataType.TEXT, description="Text feature"),
|
@@ -165,6 +189,13 @@ def test_bbox_datatype_converter_with_invalid_format():
|
|
165
189
|
text_feature.Text,
|
166
190
|
None,
|
167
191
|
),
|
192
|
+
(
|
193
|
+
mlc.Field(
|
194
|
+
data_types=mlc.DataType.DATETIME, description="DateTime feature"
|
195
|
+
),
|
196
|
+
text_feature.Text,
|
197
|
+
None,
|
198
|
+
),
|
168
199
|
(
|
169
200
|
mlc.Field(data_types=mlc.DataType.TIME, description="Time feature"),
|
170
201
|
text_feature.Text,
|
@@ -212,79 +243,153 @@ def test_bbox_datatype_converter_with_invalid_format():
|
|
212
243
|
),
|
213
244
|
],
|
214
245
|
)
|
215
|
-
def
|
216
|
-
actual_feature = croissant_builder.datatype_converter(
|
217
|
-
assert actual_feature.doc.desc ==
|
246
|
+
def test_datatype_converter_complex(mlc_field, feature_type, subfield_types):
|
247
|
+
actual_feature = croissant_builder.datatype_converter(mlc_field)
|
248
|
+
assert actual_feature.doc.desc == mlc_field.description
|
218
249
|
assert isinstance(actual_feature, feature_type)
|
219
|
-
if subfield_types:
|
250
|
+
if subfield_types is not None:
|
220
251
|
for feature_name in actual_feature.keys():
|
221
252
|
assert isinstance(
|
222
253
|
actual_feature[feature_name], subfield_types[feature_name]
|
223
254
|
)
|
224
255
|
|
225
256
|
|
226
|
-
def
|
257
|
+
def test_datatype_converter_none():
|
227
258
|
field = mlc.Field(
|
259
|
+
name="my_field", id="my_field", description="Field with empty data type."
|
260
|
+
)
|
261
|
+
assert croissant_builder.datatype_converter(field) is None
|
262
|
+
|
263
|
+
|
264
|
+
def test_multidimensional_datatype_converter():
|
265
|
+
mlc_field = _create_mlc_field(
|
228
266
|
data_types=mlc.DataType.TEXT,
|
229
267
|
description="Text feature",
|
230
268
|
is_array=True,
|
231
269
|
array_shape="2,2",
|
232
270
|
)
|
233
|
-
actual_feature = croissant_builder.datatype_converter(
|
271
|
+
actual_feature = croissant_builder.datatype_converter(mlc_field)
|
234
272
|
assert isinstance(actual_feature, tensor_feature.Tensor)
|
235
273
|
assert actual_feature.shape == (2, 2)
|
236
274
|
assert actual_feature.dtype == np.str_
|
237
275
|
|
238
276
|
|
239
277
|
def test_multidimensional_datatype_converter_image_object():
|
240
|
-
|
278
|
+
mlc_field = _create_mlc_field(
|
241
279
|
data_types=mlc.DataType.IMAGE_OBJECT,
|
242
280
|
description="Text feature",
|
243
281
|
is_array=True,
|
244
282
|
array_shape="2,2",
|
245
283
|
)
|
246
|
-
actual_feature = croissant_builder.datatype_converter(
|
284
|
+
actual_feature = croissant_builder.datatype_converter(mlc_field)
|
247
285
|
assert isinstance(actual_feature, sequence_feature.Sequence)
|
248
286
|
assert isinstance(actual_feature.feature, sequence_feature.Sequence)
|
249
287
|
assert isinstance(actual_feature.feature.feature, image_feature.Image)
|
250
288
|
|
251
289
|
|
252
290
|
def test_multidimensional_datatype_converter_plain_list():
|
253
|
-
|
291
|
+
mlc_field = _create_mlc_field(
|
254
292
|
data_types=mlc.DataType.TEXT,
|
255
293
|
description="Text feature",
|
256
294
|
is_array=True,
|
257
295
|
array_shape="-1",
|
258
296
|
)
|
259
|
-
actual_feature = croissant_builder.datatype_converter(
|
297
|
+
actual_feature = croissant_builder.datatype_converter(mlc_field)
|
260
298
|
assert isinstance(actual_feature, sequence_feature.Sequence)
|
261
299
|
assert isinstance(actual_feature.feature, text_feature.Text)
|
262
300
|
|
263
301
|
|
264
302
|
def test_multidimensional_datatype_converter_unknown_shape():
|
265
|
-
|
303
|
+
mlc_field = _create_mlc_field(
|
266
304
|
data_types=mlc.DataType.TEXT,
|
267
305
|
description="Text feature",
|
268
306
|
is_array=True,
|
269
307
|
array_shape="-1,2",
|
270
308
|
)
|
271
|
-
actual_feature = croissant_builder.datatype_converter(
|
309
|
+
actual_feature = croissant_builder.datatype_converter(mlc_field)
|
272
310
|
assert isinstance(actual_feature, sequence_feature.Sequence)
|
273
311
|
assert isinstance(actual_feature.feature, sequence_feature.Sequence)
|
274
312
|
assert isinstance(actual_feature.feature.feature, text_feature.Text)
|
275
313
|
|
276
314
|
|
277
315
|
def test_sequence_feature_datatype_converter():
|
278
|
-
|
316
|
+
mlc_field = _create_mlc_field(
|
279
317
|
data_types=mlc.DataType.TEXT,
|
280
318
|
description="Text feature",
|
281
319
|
repeated=True,
|
282
320
|
)
|
283
|
-
actual_feature = croissant_builder.datatype_converter(
|
321
|
+
actual_feature = croissant_builder.datatype_converter(mlc_field)
|
284
322
|
assert isinstance(actual_feature, sequence_feature.Sequence)
|
285
323
|
assert isinstance(actual_feature.feature, text_feature.Text)
|
286
324
|
|
287
325
|
|
326
|
+
@pytest.mark.parametrize(
|
327
|
+
["license_", "expected_license"],
|
328
|
+
[
|
329
|
+
("MIT", "MIT"),
|
330
|
+
(
|
331
|
+
mlc.CreativeWork(
|
332
|
+
name="Creative Commons",
|
333
|
+
description="Attribution 4.0 International",
|
334
|
+
url="https://creativecommons.org/licenses/by/4.0/",
|
335
|
+
),
|
336
|
+
(
|
337
|
+
"[Creative Commons][Attribution 4.0"
|
338
|
+
" International][https://creativecommons.org/licenses/by/4.0/]"
|
339
|
+
),
|
340
|
+
),
|
341
|
+
(
|
342
|
+
mlc.CreativeWork(
|
343
|
+
name="Creative Commons",
|
344
|
+
),
|
345
|
+
"[Creative Commons]",
|
346
|
+
),
|
347
|
+
(
|
348
|
+
mlc.CreativeWork(
|
349
|
+
description="Attribution 4.0 International",
|
350
|
+
),
|
351
|
+
"[Attribution 4.0 International]",
|
352
|
+
),
|
353
|
+
(
|
354
|
+
mlc.CreativeWork(
|
355
|
+
url="https://creativecommons.org/licenses/by/4.0/",
|
356
|
+
),
|
357
|
+
"[https://creativecommons.org/licenses/by/4.0/]",
|
358
|
+
),
|
359
|
+
(
|
360
|
+
mlc.CreativeWork(),
|
361
|
+
"[]",
|
362
|
+
),
|
363
|
+
],
|
364
|
+
)
|
365
|
+
def test_extract_license(license_, expected_license):
|
366
|
+
actual_license = croissant_builder._extract_license(license_)
|
367
|
+
assert actual_license == expected_license
|
368
|
+
|
369
|
+
|
370
|
+
def test_extract_license_with_invalid_input():
|
371
|
+
with pytest.raises(
|
372
|
+
ValueError, match="^license_ should be mlc.CreativeWork | str"
|
373
|
+
):
|
374
|
+
croissant_builder._extract_license(123)
|
375
|
+
|
376
|
+
|
377
|
+
def test_get_license():
|
378
|
+
metadata = mlc.Metadata(license=["MIT", "Apache 2.0"])
|
379
|
+
actual_license = croissant_builder._get_license(metadata)
|
380
|
+
assert actual_license == "MIT, Apache 2.0"
|
381
|
+
|
382
|
+
|
383
|
+
def test_get_license_with_invalid_input():
|
384
|
+
with pytest.raises(ValueError, match="metadata should be mlc.Metadata"):
|
385
|
+
croissant_builder._get_license(123)
|
386
|
+
|
387
|
+
|
388
|
+
def test_get_license_with_empty_license():
|
389
|
+
metadata = mlc.Metadata(license=[])
|
390
|
+
assert croissant_builder._get_license(metadata) is None
|
391
|
+
|
392
|
+
|
288
393
|
def test_version_converter(tmp_path):
|
289
394
|
with testing.dummy_croissant_file(version="1.0") as croissant_file:
|
290
395
|
builder = croissant_builder.CroissantBuilder(
|
@@ -330,7 +435,7 @@ def test_croissant_builder(crs_builder):
|
|
330
435
|
crs_builder._info().citation
|
331
436
|
== "@article{dummyarticle, title={title}, author={author}, year={2020}}"
|
332
437
|
)
|
333
|
-
assert crs_builder._info().description ==
|
438
|
+
assert crs_builder._info().description == DUMMY_DESCRIPTION
|
334
439
|
assert crs_builder._info().homepage == "https://dummy_url"
|
335
440
|
assert crs_builder._info().redistribution_info.license == "Public"
|
336
441
|
# One `split` and one `jsonl` recordset.
|
@@ -119,7 +119,7 @@ def even_splits(
|
|
119
119
|
not evenly divisible by `n`. If `False`, examples are distributed evenly
|
120
120
|
across subsplits, starting by the first. For example, if there is 11
|
121
121
|
examples with `n=3`, splits will contain `[4, 4, 3]` examples
|
122
|
-
|
122
|
+
respectively.
|
123
123
|
|
124
124
|
Returns:
|
125
125
|
The list of subsplits. Those splits can be combined together (with
|
@@ -169,7 +169,7 @@ def split_for_jax_process(
|
|
169
169
|
not evenly divisible by `n`. If `False`, examples are distributed evenly
|
170
170
|
across subsplits, starting by the first. For example, if there is 11
|
171
171
|
examples with `n=3`, splits will contain `[4, 4, 3]` examples
|
172
|
-
|
172
|
+
respectively.
|
173
173
|
|
174
174
|
Returns:
|
175
175
|
subsplit: The sub-split of the given `split` for the current
|
@@ -191,7 +191,7 @@ class DatasetBuilderTestCase(
|
|
191
191
|
# The `dl_manager.download` and `dl_manager.download_and_extract` are
|
192
192
|
# patched to record the urls in `_download_urls`.
|
193
193
|
# Calling `dl_manager.download_checksums` stop the url
|
194
|
-
# registration (as checksums are stored
|
194
|
+
# registration (as checksums are stored remotely)
|
195
195
|
# `_test_checksums` validates the recorded urls.
|
196
196
|
self._download_urls = set()
|
197
197
|
self._stop_record_download = False
|
@@ -291,7 +291,7 @@ class DatasetBuilderTestCase(
|
|
291
291
|
def _add_url(self, url_or_urls):
|
292
292
|
if self._stop_record_download:
|
293
293
|
# Stop record the checksums if dl_manager.download_checksums has been
|
294
|
-
# called (as checksums may be stored
|
294
|
+
# called (as checksums may be stored remotely).
|
295
295
|
return
|
296
296
|
if isinstance(url_or_urls, download.resource.Resource):
|
297
297
|
self._download_urls.add(url_or_urls.url)
|
@@ -147,7 +147,7 @@ class MockFs(object):
|
|
147
147
|
with self._mock() as m:
|
148
148
|
yield m
|
149
149
|
self._tmp_dir = None
|
150
|
-
# TODO(epot):
|
150
|
+
# TODO(epot): recursively record all.
|
151
151
|
|
152
152
|
def _to_tmp(self, p, *, with_state: bool = False):
|
153
153
|
"""Normalize the path by returning `tmp_path / p`."""
|
@@ -1,6 +1,6 @@
|
|
1
1
|
Metadata-Version: 2.4
|
2
2
|
Name: tfds-nightly
|
3
|
-
Version: 4.9.9.
|
3
|
+
Version: 4.9.9.dev202507240045
|
4
4
|
Summary: tensorflow/datasets is a library of datasets ready to use with TensorFlow.
|
5
5
|
Home-page: https://github.com/tensorflow/datasets
|
6
6
|
Download-URL: https://github.com/tensorflow/datasets/tags
|
{tfds_nightly-4.9.9.dev202507220045.dist-info → tfds_nightly-4.9.9.dev202507240045.dist-info}/RECORD
RENAMED
@@ -104,7 +104,7 @@ tensorflow_datasets/core/split_builder.py,sha256=cpz-YowMhmiZZVp7eQPNrh23KvE0-Ef
|
|
104
104
|
tensorflow_datasets/core/split_builder_test.py,sha256=kBUVUnQQB_c82AhgjhK3hoYfiAqLt7tDFTzsvZRGQCw,3223
|
105
105
|
tensorflow_datasets/core/splits.py,sha256=O3jK4Dalp4tEPeZ9AHbkpW1UkJ6uv5m4YRu2x_ZZTJ4,29418
|
106
106
|
tensorflow_datasets/core/splits_test.py,sha256=KrM82r0YsJRTGfpYUCkBxiGDC7BjZFcTvJ-Hbo6HwF0,24987
|
107
|
-
tensorflow_datasets/core/subsplits_utils.py,sha256=
|
107
|
+
tensorflow_datasets/core/subsplits_utils.py,sha256=6mVCr-QNZfNgX0Ka_htsqmr-JgFXJXJ7IFfl1ytCQio,6125
|
108
108
|
tensorflow_datasets/core/subsplits_utils_test.py,sha256=TIRLtfaf2n38pByhpqYTXEEvs8hrWe2eXk9RFdBMrFQ,5159
|
109
109
|
tensorflow_datasets/core/tf_compat.py,sha256=qdZUtaO9FsZUds7Wf0w0MoRydPPRsuZ0_8ebRJg19gg,1820
|
110
110
|
tensorflow_datasets/core/units.py,sha256=m3ht8oM8wr6oTU3tCbKOj1yaPyXn1MCu7dUjzw0LrPY,1975
|
@@ -141,8 +141,8 @@ tensorflow_datasets/core/data_sources/python_test.py,sha256=O3yqMPx40JlHN0uFfZPN
|
|
141
141
|
tensorflow_datasets/core/dataset_builders/__init__.py,sha256=StTA3euephqDZdpTzJQgfWNqB5inZosrAhaWg2BOeio,1945
|
142
142
|
tensorflow_datasets/core/dataset_builders/adhoc_builder.py,sha256=QVE8wWGPOgILPTC27Q28QZ3KIi5N64OGOfKpTq4W4_0,9216
|
143
143
|
tensorflow_datasets/core/dataset_builders/adhoc_builder_test.py,sha256=yhRwrznK78MvHeWGRggnMTiyx_SlR1z30iD5VU3Gweo,13096
|
144
|
-
tensorflow_datasets/core/dataset_builders/croissant_builder.py,sha256=
|
145
|
-
tensorflow_datasets/core/dataset_builders/croissant_builder_test.py,sha256=
|
144
|
+
tensorflow_datasets/core/dataset_builders/croissant_builder.py,sha256=sWSjouj98I2yCUtr8KbmHtR_dp8tgnbBA7BvBKZeI1Q,16918
|
145
|
+
tensorflow_datasets/core/dataset_builders/croissant_builder_test.py,sha256=AgNmnmnHOAhsdIzuwN7EugeoDe83_8G_95WSmDXJIIA,14803
|
146
146
|
tensorflow_datasets/core/dataset_builders/huggingface_dataset_builder.py,sha256=Loq3qeGk1Ias-d2oT_dK47BRNgTA4LKJchNGh7aA4a0,18313
|
147
147
|
tensorflow_datasets/core/dataset_builders/huggingface_dataset_builder_test.py,sha256=6N3DLsry9LhDqhpleaoXrrhaGiLJMBgUlwDnAji-1fI,4389
|
148
148
|
tensorflow_datasets/core/dataset_builders/view_builder.py,sha256=eaCtjN5Vg4rK8JD3auA4PhF9mjH5HvQ9dslDX8LbwyM,11907
|
@@ -2122,7 +2122,7 @@ tensorflow_datasets/summarization/media_sum/media_sum.py,sha256=CIhR_cfQb1aEfu9B
|
|
2122
2122
|
tensorflow_datasets/summarization/summscreen/__init__.py,sha256=ADxohrpUPJjug4r2kGCCJEWZzVD4s2S0smqLfjkc8YY,718
|
2123
2123
|
tensorflow_datasets/summarization/summscreen/summscreen.py,sha256=DfwGr3vsRhOC62ODJ1Sp7-v219bPjJ93KK043YReV7I,884
|
2124
2124
|
tensorflow_datasets/testing/__init__.py,sha256=aSwY_kciK-EZXp1D_JRkuuCJwtbFljGZ72c9YNB6yfE,6049
|
2125
|
-
tensorflow_datasets/testing/dataset_builder_testing.py,sha256=
|
2125
|
+
tensorflow_datasets/testing/dataset_builder_testing.py,sha256=ziE2twrc1-LQExGp4g5Nbq9hlbFow3VdX8RTC83R6bM,25093
|
2126
2126
|
tensorflow_datasets/testing/dataset_builder_testing_test.py,sha256=Nf7Ykg5bY5o9ZatQKrRJhr-qGTtNKle4aZph4rt72i4,1283
|
2127
2127
|
tensorflow_datasets/testing/dataset_collection_builder_testing.py,sha256=tUv2l53rc9GEo4sWvM9OP9r-Ze54dcDakeLQBMS7yos,4825
|
2128
2128
|
tensorflow_datasets/testing/dataset_collection_builder_testing_test.py,sha256=Dw5tACaDjVt9CZi0V84tMAh2JJexrRwWF1N3DID1Mbs,1155
|
@@ -2132,7 +2132,7 @@ tensorflow_datasets/testing/mocking.py,sha256=4mIq0ngxfs3w0hFlosGOSTp-mAQVfBfoFw
|
|
2132
2132
|
tensorflow_datasets/testing/mocking_test.py,sha256=9DMkxcQw_dZTKULNHiKv91e0VcBsUTa6FIhUOLvJKls,13796
|
2133
2133
|
tensorflow_datasets/testing/test_case.py,sha256=_H_M3pp6Vp3dbtPyVy5Um7X8S4V4EKPLrao1mbS2IdU,2554
|
2134
2134
|
tensorflow_datasets/testing/test_case_in_context.py,sha256=7YrdTI_rqR01Q-ToVqewIm1OKDwvxIidPhaffYmjP1E,1872
|
2135
|
-
tensorflow_datasets/testing/test_utils.py,sha256=
|
2135
|
+
tensorflow_datasets/testing/test_utils.py,sha256=sQTTXa8YHPXml514vayxiu_E6qHFQ_1Maizy3OR0J8Y,26736
|
2136
2136
|
tensorflow_datasets/testing/test_utils_test.py,sha256=nL2niozCO5Gh4cWPWbDW5_w3w-mHRYZEQmmfej2fpjY,9576
|
2137
2137
|
tensorflow_datasets/testing/version_test.py,sha256=fNMSX1FSNs_66MHcRGAWzoPZWJ-sAvmc-rceKXGK-uM,2791
|
2138
2138
|
tensorflow_datasets/text/__init__.py,sha256=_PtJTw2LQqgxFNVeBCEXrLGF2qg5NNOiXTW9oKZR_ZA,5319
|
@@ -2468,10 +2468,10 @@ tensorflow_datasets/vision_language/wit/wit_test.py,sha256=PXS8DMNW-MDrT2p5oy4Ic
|
|
2468
2468
|
tensorflow_datasets/vision_language/wit_kaggle/__init__.py,sha256=vGwSGeM8WE4Q-l0-eEE1sBojmk6YT0l1OO60AWa4Q40,719
|
2469
2469
|
tensorflow_datasets/vision_language/wit_kaggle/wit_kaggle.py,sha256=q-vX_FBzIwsFxL4sY9vuyQ3UQD2PLM4yhUR4U6l-qao,16903
|
2470
2470
|
tensorflow_datasets/vision_language/wit_kaggle/wit_kaggle_test.py,sha256=ZymHT1NkmD-pUnh3BmM3_g30c5afsWYnmqDD9dVyDSA,1778
|
2471
|
-
tfds_nightly-4.9.9.
|
2472
|
-
tfds_nightly-4.9.9.
|
2473
|
-
tfds_nightly-4.9.9.
|
2474
|
-
tfds_nightly-4.9.9.
|
2475
|
-
tfds_nightly-4.9.9.
|
2476
|
-
tfds_nightly-4.9.9.
|
2477
|
-
tfds_nightly-4.9.9.
|
2471
|
+
tfds_nightly-4.9.9.dev202507240045.dist-info/licenses/AUTHORS,sha256=nvBG4WwfgjuOu1oZkuQKw9kg7X6rve679ObS-YDDmXg,309
|
2472
|
+
tfds_nightly-4.9.9.dev202507240045.dist-info/licenses/LICENSE,sha256=z8d0m5b2O9McPEK1xHG_dWgUBT6EfBDz6wA0F7xSPTA,11358
|
2473
|
+
tfds_nightly-4.9.9.dev202507240045.dist-info/METADATA,sha256=i6hLozWdLo7f5LL_H3jd_y2Hx-nZ0xZ6YPYGelS2jXM,11694
|
2474
|
+
tfds_nightly-4.9.9.dev202507240045.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
|
2475
|
+
tfds_nightly-4.9.9.dev202507240045.dist-info/entry_points.txt,sha256=eHEL7nF5y1uCY2FgkuYIdE062epJXlAQTSdq89px4p4,73
|
2476
|
+
tfds_nightly-4.9.9.dev202507240045.dist-info/top_level.txt,sha256=bAevmk9209s_oxVZVlN6hSDIVS423qrMQvmcWSvW4do,20
|
2477
|
+
tfds_nightly-4.9.9.dev202507240045.dist-info/RECORD,,
|
{tfds_nightly-4.9.9.dev202507220045.dist-info → tfds_nightly-4.9.9.dev202507240045.dist-info}/WHEEL
RENAMED
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|