tfds-nightly 4.9.9.dev202507210045__py3-none-any.whl → 4.9.9.dev202507230045__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- tensorflow_datasets/core/dataset_builders/croissant_builder.py +11 -6
- tensorflow_datasets/core/dataset_builders/croissant_builder_test.py +19 -0
- tensorflow_datasets/core/features/video_feature.py +11 -8
- tensorflow_datasets/core/features/video_feature_test.py +16 -1
- tensorflow_datasets/core/subsplits_utils.py +2 -2
- tensorflow_datasets/core/utils/huggingface_utils.py +2 -0
- tensorflow_datasets/testing/dataset_builder_testing.py +2 -2
- tensorflow_datasets/testing/test_utils.py +1 -1
- {tfds_nightly-4.9.9.dev202507210045.dist-info → tfds_nightly-4.9.9.dev202507230045.dist-info}/METADATA +1 -1
- {tfds_nightly-4.9.9.dev202507210045.dist-info → tfds_nightly-4.9.9.dev202507230045.dist-info}/RECORD +15 -15
- {tfds_nightly-4.9.9.dev202507210045.dist-info → tfds_nightly-4.9.9.dev202507230045.dist-info}/WHEEL +0 -0
- {tfds_nightly-4.9.9.dev202507210045.dist-info → tfds_nightly-4.9.9.dev202507230045.dist-info}/entry_points.txt +0 -0
- {tfds_nightly-4.9.9.dev202507210045.dist-info → tfds_nightly-4.9.9.dev202507230045.dist-info}/licenses/AUTHORS +0 -0
- {tfds_nightly-4.9.9.dev202507210045.dist-info → tfds_nightly-4.9.9.dev202507230045.dist-info}/licenses/LICENSE +0 -0
- {tfds_nightly-4.9.9.dev202507210045.dist-info → tfds_nightly-4.9.9.dev202507230045.dist-info}/top_level.txt +0 -0
@@ -37,6 +37,7 @@ print(ds['default'][0])
|
|
37
37
|
from __future__ import annotations
|
38
38
|
|
39
39
|
from collections.abc import Mapping, Sequence
|
40
|
+
import datetime
|
40
41
|
import json
|
41
42
|
from typing import Any
|
42
43
|
|
@@ -133,10 +134,11 @@ def datatype_converter(
|
|
133
134
|
np.float32.
|
134
135
|
|
135
136
|
Returns:
|
136
|
-
Converted datatype for TFDS.
|
137
|
+
Converted datatype for TFDS, or None when a Field does not specify a type.
|
137
138
|
|
138
139
|
Raises:
|
139
|
-
NotImplementedError
|
140
|
+
NotImplementedError when the feature is not supported yet, or ValueError
|
141
|
+
when a Field is malformed.
|
140
142
|
"""
|
141
143
|
if field.is_enumeration:
|
142
144
|
raise NotImplementedError('Not implemented yet.')
|
@@ -150,7 +152,7 @@ def datatype_converter(
|
|
150
152
|
field_data_type = field.data_type
|
151
153
|
|
152
154
|
if not field_data_type:
|
153
|
-
# Fields with sub fields are of type None
|
155
|
+
# Fields with sub fields are of type None.
|
154
156
|
if field.sub_fields:
|
155
157
|
feature = features_dict.FeaturesDict(
|
156
158
|
{
|
@@ -169,8 +171,9 @@ def datatype_converter(
|
|
169
171
|
feature = dtype_mapping[field_data_type]
|
170
172
|
elif enp.lazy.is_np_dtype(field_data_type):
|
171
173
|
feature = field_data_type
|
172
|
-
# We return a text feature for mlc.DataType.DATE
|
173
|
-
|
174
|
+
# We return a text feature for date-time features (mlc.DataType.DATE,
|
175
|
+
# mlc.DataType.DATETIME, and mlc.DataType.TIME).
|
176
|
+
elif field_data_type == pd.Timestamp or field_data_type == datetime.time:
|
174
177
|
feature = text_feature.Text(doc=field.description)
|
175
178
|
elif field_data_type == mlc.DataType.IMAGE_OBJECT:
|
176
179
|
feature = image_feature.Image(doc=field.description)
|
@@ -193,7 +196,9 @@ def datatype_converter(
|
|
193
196
|
doc=field.description, sample_rate=field.source.sampling_rate
|
194
197
|
)
|
195
198
|
else:
|
196
|
-
raise ValueError(
|
199
|
+
raise ValueError(
|
200
|
+
f'Unknown data type: {field_data_type} for field {field.id}.'
|
201
|
+
)
|
197
202
|
|
198
203
|
if feature and field.is_array:
|
199
204
|
feature = array_datatype_converter(
|
@@ -165,6 +165,18 @@ def test_bbox_datatype_converter_with_invalid_format():
|
|
165
165
|
text_feature.Text,
|
166
166
|
None,
|
167
167
|
),
|
168
|
+
(
|
169
|
+
mlc.Field(
|
170
|
+
data_types=mlc.DataType.DATETIME, description="DateTime feature"
|
171
|
+
),
|
172
|
+
text_feature.Text,
|
173
|
+
None,
|
174
|
+
),
|
175
|
+
(
|
176
|
+
mlc.Field(data_types=mlc.DataType.TIME, description="Time feature"),
|
177
|
+
text_feature.Text,
|
178
|
+
None,
|
179
|
+
),
|
168
180
|
(
|
169
181
|
mlc.Field(
|
170
182
|
data_types=mlc.DataType.IMAGE_OBJECT,
|
@@ -218,6 +230,13 @@ def test_complex_datatype_converter(field, feature_type, subfield_types):
|
|
218
230
|
)
|
219
231
|
|
220
232
|
|
233
|
+
def test_datatype_converter_none():
|
234
|
+
field = mlc.Field(
|
235
|
+
name="my_field", id="my_field", description="Field with empty data type."
|
236
|
+
)
|
237
|
+
assert croissant_builder.datatype_converter(field) is None
|
238
|
+
|
239
|
+
|
221
240
|
def test_multidimensional_datatype_converter():
|
222
241
|
field = mlc.Field(
|
223
242
|
data_types=mlc.DataType.TEXT,
|
@@ -93,7 +93,7 @@ class Video(sequence_feature.Sequence):
|
|
93
93
|
|
94
94
|
def __init__(
|
95
95
|
self,
|
96
|
-
shape: Sequence[Optional[int]],
|
96
|
+
shape: Sequence[Optional[int]] | None = None,
|
97
97
|
encoding_format: str = 'png',
|
98
98
|
ffmpeg_extra_args: Sequence[str] = (),
|
99
99
|
use_colormap: bool = False,
|
@@ -103,8 +103,8 @@ class Video(sequence_feature.Sequence):
|
|
103
103
|
"""Initializes the connector.
|
104
104
|
|
105
105
|
Args:
|
106
|
-
shape:
|
107
|
-
channels
|
106
|
+
shape: The shape of the video (num_frames, height, width, channels), where
|
107
|
+
channels is 1 or 3.
|
108
108
|
encoding_format: The video is stored as a sequence of encoded images. You
|
109
109
|
can use any encoding format supported by image_feature.Feature.
|
110
110
|
ffmpeg_extra_args: A sequence of additional args to be passed to the
|
@@ -121,19 +121,22 @@ class Video(sequence_feature.Sequence):
|
|
121
121
|
ValueError: If the shape is invalid
|
122
122
|
"""
|
123
123
|
dtype = tf.dtypes.as_dtype(dtype)
|
124
|
-
|
125
|
-
if
|
126
|
-
|
124
|
+
frame_shape = None
|
125
|
+
if shape:
|
126
|
+
shape = tuple(shape)
|
127
|
+
if len(shape) != 4:
|
128
|
+
raise ValueError('Video shape should be of rank 4')
|
129
|
+
frame_shape = shape[1:]
|
127
130
|
self._encoding_format = encoding_format
|
128
131
|
self._extra_ffmpeg_args = list(ffmpeg_extra_args or [])
|
129
132
|
super(Video, self).__init__(
|
130
133
|
image_feature.Image(
|
131
|
-
shape=
|
134
|
+
shape=frame_shape,
|
132
135
|
dtype=dtype,
|
133
136
|
encoding_format=encoding_format,
|
134
137
|
use_colormap=use_colormap,
|
135
138
|
),
|
136
|
-
length=shape[0],
|
139
|
+
length=shape[0] if shape else None,
|
137
140
|
)
|
138
141
|
|
139
142
|
def _ffmpeg_decode(self, path_or_fobj):
|
@@ -48,6 +48,22 @@ class VideoFeatureTest(testing.FeatureExpectationsTestCase):
|
|
48
48
|
test_attributes=dict(_encoding_format='png', _extra_ffmpeg_args=[]),
|
49
49
|
)
|
50
50
|
|
51
|
+
def test_video_with_none_shape(self):
|
52
|
+
np_video = np.random.randint(256, size=(128, 64, 64, 3), dtype=np.uint8)
|
53
|
+
|
54
|
+
self.assertFeature(
|
55
|
+
feature=features.Video(shape=None),
|
56
|
+
shape=(None, None, None, 3),
|
57
|
+
dtype=tf.uint8,
|
58
|
+
tests=[
|
59
|
+
testing.FeatureExpectationItem(
|
60
|
+
value=np_video,
|
61
|
+
expected=np_video,
|
62
|
+
),
|
63
|
+
],
|
64
|
+
test_attributes=dict(_encoding_format='png', _extra_ffmpeg_args=[]),
|
65
|
+
)
|
66
|
+
|
51
67
|
def test_video_concatenated_frames(self):
|
52
68
|
video_shape = (None, 400, 640, 3)
|
53
69
|
lsun_examples_path = os.path.join(self._test_data_path, 'lsun_examples')
|
@@ -119,6 +135,5 @@ class VideoFeatureTest(testing.FeatureExpectationsTestCase):
|
|
119
135
|
],
|
120
136
|
)
|
121
137
|
|
122
|
-
|
123
138
|
if __name__ == '__main__':
|
124
139
|
testing.test_main()
|
@@ -119,7 +119,7 @@ def even_splits(
|
|
119
119
|
not evenly divisible by `n`. If `False`, examples are distributed evenly
|
120
120
|
across subsplits, starting by the first. For example, if there is 11
|
121
121
|
examples with `n=3`, splits will contain `[4, 4, 3]` examples
|
122
|
-
|
122
|
+
respectively.
|
123
123
|
|
124
124
|
Returns:
|
125
125
|
The list of subsplits. Those splits can be combined together (with
|
@@ -169,7 +169,7 @@ def split_for_jax_process(
|
|
169
169
|
not evenly divisible by `n`. If `False`, examples are distributed evenly
|
170
170
|
across subsplits, starting by the first. For example, if there is 11
|
171
171
|
examples with `n=3`, splits will contain `[4, 4, 3]` examples
|
172
|
-
|
172
|
+
respectively.
|
173
173
|
|
174
174
|
Returns:
|
175
175
|
subsplit: The sub-split of the given `split` for the current
|
@@ -119,6 +119,8 @@ def convert_hf_features(hf_features) -> feature_lib.FeatureConnector:
|
|
119
119
|
sample_rate=hf_features.sampling_rate,
|
120
120
|
dtype=np.int32,
|
121
121
|
)
|
122
|
+
case hf_datasets.Video():
|
123
|
+
return feature_lib.Video()
|
122
124
|
|
123
125
|
raise TypeError(f'Type {type(hf_features)} is not supported.')
|
124
126
|
|
@@ -191,7 +191,7 @@ class DatasetBuilderTestCase(
|
|
191
191
|
# The `dl_manager.download` and `dl_manager.download_and_extract` are
|
192
192
|
# patched to record the urls in `_download_urls`.
|
193
193
|
# Calling `dl_manager.download_checksums` stop the url
|
194
|
-
# registration (as checksums are stored
|
194
|
+
# registration (as checksums are stored remotely)
|
195
195
|
# `_test_checksums` validates the recorded urls.
|
196
196
|
self._download_urls = set()
|
197
197
|
self._stop_record_download = False
|
@@ -291,7 +291,7 @@ class DatasetBuilderTestCase(
|
|
291
291
|
def _add_url(self, url_or_urls):
|
292
292
|
if self._stop_record_download:
|
293
293
|
# Stop record the checksums if dl_manager.download_checksums has been
|
294
|
-
# called (as checksums may be stored
|
294
|
+
# called (as checksums may be stored remotely).
|
295
295
|
return
|
296
296
|
if isinstance(url_or_urls, download.resource.Resource):
|
297
297
|
self._download_urls.add(url_or_urls.url)
|
@@ -147,7 +147,7 @@ class MockFs(object):
|
|
147
147
|
with self._mock() as m:
|
148
148
|
yield m
|
149
149
|
self._tmp_dir = None
|
150
|
-
# TODO(epot):
|
150
|
+
# TODO(epot): recursively record all.
|
151
151
|
|
152
152
|
def _to_tmp(self, p, *, with_state: bool = False):
|
153
153
|
"""Normalize the path by returning `tmp_path / p`."""
|
@@ -1,6 +1,6 @@
|
|
1
1
|
Metadata-Version: 2.4
|
2
2
|
Name: tfds-nightly
|
3
|
-
Version: 4.9.9.
|
3
|
+
Version: 4.9.9.dev202507230045
|
4
4
|
Summary: tensorflow/datasets is a library of datasets ready to use with TensorFlow.
|
5
5
|
Home-page: https://github.com/tensorflow/datasets
|
6
6
|
Download-URL: https://github.com/tensorflow/datasets/tags
|
{tfds_nightly-4.9.9.dev202507210045.dist-info → tfds_nightly-4.9.9.dev202507230045.dist-info}/RECORD
RENAMED
@@ -104,7 +104,7 @@ tensorflow_datasets/core/split_builder.py,sha256=cpz-YowMhmiZZVp7eQPNrh23KvE0-Ef
|
|
104
104
|
tensorflow_datasets/core/split_builder_test.py,sha256=kBUVUnQQB_c82AhgjhK3hoYfiAqLt7tDFTzsvZRGQCw,3223
|
105
105
|
tensorflow_datasets/core/splits.py,sha256=O3jK4Dalp4tEPeZ9AHbkpW1UkJ6uv5m4YRu2x_ZZTJ4,29418
|
106
106
|
tensorflow_datasets/core/splits_test.py,sha256=KrM82r0YsJRTGfpYUCkBxiGDC7BjZFcTvJ-Hbo6HwF0,24987
|
107
|
-
tensorflow_datasets/core/subsplits_utils.py,sha256=
|
107
|
+
tensorflow_datasets/core/subsplits_utils.py,sha256=6mVCr-QNZfNgX0Ka_htsqmr-JgFXJXJ7IFfl1ytCQio,6125
|
108
108
|
tensorflow_datasets/core/subsplits_utils_test.py,sha256=TIRLtfaf2n38pByhpqYTXEEvs8hrWe2eXk9RFdBMrFQ,5159
|
109
109
|
tensorflow_datasets/core/tf_compat.py,sha256=qdZUtaO9FsZUds7Wf0w0MoRydPPRsuZ0_8ebRJg19gg,1820
|
110
110
|
tensorflow_datasets/core/units.py,sha256=m3ht8oM8wr6oTU3tCbKOj1yaPyXn1MCu7dUjzw0LrPY,1975
|
@@ -141,8 +141,8 @@ tensorflow_datasets/core/data_sources/python_test.py,sha256=O3yqMPx40JlHN0uFfZPN
|
|
141
141
|
tensorflow_datasets/core/dataset_builders/__init__.py,sha256=StTA3euephqDZdpTzJQgfWNqB5inZosrAhaWg2BOeio,1945
|
142
142
|
tensorflow_datasets/core/dataset_builders/adhoc_builder.py,sha256=QVE8wWGPOgILPTC27Q28QZ3KIi5N64OGOfKpTq4W4_0,9216
|
143
143
|
tensorflow_datasets/core/dataset_builders/adhoc_builder_test.py,sha256=yhRwrznK78MvHeWGRggnMTiyx_SlR1z30iD5VU3Gweo,13096
|
144
|
-
tensorflow_datasets/core/dataset_builders/croissant_builder.py,sha256=
|
145
|
-
tensorflow_datasets/core/dataset_builders/croissant_builder_test.py,sha256=
|
144
|
+
tensorflow_datasets/core/dataset_builders/croissant_builder.py,sha256=CCiXOgcr5VJYaQlSf_ss_712BtrDuP6QCyP0K4UgKFs,16876
|
145
|
+
tensorflow_datasets/core/dataset_builders/croissant_builder_test.py,sha256=O5j9pUKpgtZKpFQYPAYKQ7DMHXVtuaF_7lwjZZxFRzc,12151
|
146
146
|
tensorflow_datasets/core/dataset_builders/huggingface_dataset_builder.py,sha256=Loq3qeGk1Ias-d2oT_dK47BRNgTA4LKJchNGh7aA4a0,18313
|
147
147
|
tensorflow_datasets/core/dataset_builders/huggingface_dataset_builder_test.py,sha256=6N3DLsry9LhDqhpleaoXrrhaGiLJMBgUlwDnAji-1fI,4389
|
148
148
|
tensorflow_datasets/core/dataset_builders/view_builder.py,sha256=eaCtjN5Vg4rK8JD3auA4PhF9mjH5HvQ9dslDX8LbwyM,11907
|
@@ -213,8 +213,8 @@ tensorflow_datasets/core/features/top_level_feature.py,sha256=JeOnaBUqp-xFLuPxUt
|
|
213
213
|
tensorflow_datasets/core/features/top_level_feature_test.py,sha256=JutGHU-08tg5KWiB3mIB6Q3a80CvS5_F6jG0bfAYXWM,3628
|
214
214
|
tensorflow_datasets/core/features/translation_feature.py,sha256=Qmx39XwMJy18u9eoZlT3Spc0VT0qtqsTHahWoETLZZo,8284
|
215
215
|
tensorflow_datasets/core/features/translation_feature_test.py,sha256=iK8ckwApuMu13BS1-vkny-m_NV6uNTz6ky5gbZEfxoc,6060
|
216
|
-
tensorflow_datasets/core/features/video_feature.py,sha256=
|
217
|
-
tensorflow_datasets/core/features/video_feature_test.py,sha256=
|
216
|
+
tensorflow_datasets/core/features/video_feature.py,sha256=o4tuH4HxkG_sYCYUx8R-LVHcuIgFcfCNe8n0cE5MISk,7813
|
217
|
+
tensorflow_datasets/core/features/video_feature_test.py,sha256=k0qpYvZIC_-xXTG9EN1Mo2d9RA77CcvJYl9c0U3oXcQ,4255
|
218
218
|
tensorflow_datasets/core/folder_dataset/__init__.py,sha256=Pn2mSU-CPxC89lvywHAD-XrhQj0mvAaqZogpekjr-bs,1515
|
219
219
|
tensorflow_datasets/core/folder_dataset/compute_split_utils.py,sha256=Ob_ZaqfS00zViAtRhHK_ff7R8eJAtYDDh6XjQGXdcP4,13515
|
220
220
|
tensorflow_datasets/core/folder_dataset/compute_split_utils_test.py,sha256=XBo4UC1IydAPuIP1SY2psrEVeEr3y0KPmCEje6yQWhs,3784
|
@@ -256,7 +256,7 @@ tensorflow_datasets/core/utils/file_utils.py,sha256=vL-ulAVClrvkA71DvEvdGR2EdNmO
|
|
256
256
|
tensorflow_datasets/core/utils/file_utils_test.py,sha256=SCw_XFRhyxGCFEVjt9pOdupsoULPdi8iT38JBrnUuDM,13708
|
257
257
|
tensorflow_datasets/core/utils/gcs_utils.py,sha256=8mBOgEepkah1Rw36F6DNIVhLzfXbR8iS8KMLQUM5sPk,5154
|
258
258
|
tensorflow_datasets/core/utils/gcs_utils_test.py,sha256=Ig8S37AvFG2g7kNjYxqgmqNKlLPeXt31XD7RY4UzsDg,2578
|
259
|
-
tensorflow_datasets/core/utils/huggingface_utils.py,sha256=
|
259
|
+
tensorflow_datasets/core/utils/huggingface_utils.py,sha256=NeYaUoO3vIFH8M0hZ8k4w7AchFZJIGsuV1XwKJVttfw,5325
|
260
260
|
tensorflow_datasets/core/utils/huggingface_utils_test.py,sha256=wYKY5vh5q4ImpkvDjZWwcTbH1s2YORKpsklA-9Qwfxs,4792
|
261
261
|
tensorflow_datasets/core/utils/image_utils.py,sha256=5xHKJO8wsPGZpuFoBsvwaXp_-pnrtwXvyLBSK7itAm4,5939
|
262
262
|
tensorflow_datasets/core/utils/image_utils_test.py,sha256=6QLpWwveq4Jtw0nLxG4S-VGpVsI9qwr6bJm0Vgunbu0,3127
|
@@ -2122,7 +2122,7 @@ tensorflow_datasets/summarization/media_sum/media_sum.py,sha256=CIhR_cfQb1aEfu9B
|
|
2122
2122
|
tensorflow_datasets/summarization/summscreen/__init__.py,sha256=ADxohrpUPJjug4r2kGCCJEWZzVD4s2S0smqLfjkc8YY,718
|
2123
2123
|
tensorflow_datasets/summarization/summscreen/summscreen.py,sha256=DfwGr3vsRhOC62ODJ1Sp7-v219bPjJ93KK043YReV7I,884
|
2124
2124
|
tensorflow_datasets/testing/__init__.py,sha256=aSwY_kciK-EZXp1D_JRkuuCJwtbFljGZ72c9YNB6yfE,6049
|
2125
|
-
tensorflow_datasets/testing/dataset_builder_testing.py,sha256=
|
2125
|
+
tensorflow_datasets/testing/dataset_builder_testing.py,sha256=ziE2twrc1-LQExGp4g5Nbq9hlbFow3VdX8RTC83R6bM,25093
|
2126
2126
|
tensorflow_datasets/testing/dataset_builder_testing_test.py,sha256=Nf7Ykg5bY5o9ZatQKrRJhr-qGTtNKle4aZph4rt72i4,1283
|
2127
2127
|
tensorflow_datasets/testing/dataset_collection_builder_testing.py,sha256=tUv2l53rc9GEo4sWvM9OP9r-Ze54dcDakeLQBMS7yos,4825
|
2128
2128
|
tensorflow_datasets/testing/dataset_collection_builder_testing_test.py,sha256=Dw5tACaDjVt9CZi0V84tMAh2JJexrRwWF1N3DID1Mbs,1155
|
@@ -2132,7 +2132,7 @@ tensorflow_datasets/testing/mocking.py,sha256=4mIq0ngxfs3w0hFlosGOSTp-mAQVfBfoFw
|
|
2132
2132
|
tensorflow_datasets/testing/mocking_test.py,sha256=9DMkxcQw_dZTKULNHiKv91e0VcBsUTa6FIhUOLvJKls,13796
|
2133
2133
|
tensorflow_datasets/testing/test_case.py,sha256=_H_M3pp6Vp3dbtPyVy5Um7X8S4V4EKPLrao1mbS2IdU,2554
|
2134
2134
|
tensorflow_datasets/testing/test_case_in_context.py,sha256=7YrdTI_rqR01Q-ToVqewIm1OKDwvxIidPhaffYmjP1E,1872
|
2135
|
-
tensorflow_datasets/testing/test_utils.py,sha256=
|
2135
|
+
tensorflow_datasets/testing/test_utils.py,sha256=sQTTXa8YHPXml514vayxiu_E6qHFQ_1Maizy3OR0J8Y,26736
|
2136
2136
|
tensorflow_datasets/testing/test_utils_test.py,sha256=nL2niozCO5Gh4cWPWbDW5_w3w-mHRYZEQmmfej2fpjY,9576
|
2137
2137
|
tensorflow_datasets/testing/version_test.py,sha256=fNMSX1FSNs_66MHcRGAWzoPZWJ-sAvmc-rceKXGK-uM,2791
|
2138
2138
|
tensorflow_datasets/text/__init__.py,sha256=_PtJTw2LQqgxFNVeBCEXrLGF2qg5NNOiXTW9oKZR_ZA,5319
|
@@ -2468,10 +2468,10 @@ tensorflow_datasets/vision_language/wit/wit_test.py,sha256=PXS8DMNW-MDrT2p5oy4Ic
|
|
2468
2468
|
tensorflow_datasets/vision_language/wit_kaggle/__init__.py,sha256=vGwSGeM8WE4Q-l0-eEE1sBojmk6YT0l1OO60AWa4Q40,719
|
2469
2469
|
tensorflow_datasets/vision_language/wit_kaggle/wit_kaggle.py,sha256=q-vX_FBzIwsFxL4sY9vuyQ3UQD2PLM4yhUR4U6l-qao,16903
|
2470
2470
|
tensorflow_datasets/vision_language/wit_kaggle/wit_kaggle_test.py,sha256=ZymHT1NkmD-pUnh3BmM3_g30c5afsWYnmqDD9dVyDSA,1778
|
2471
|
-
tfds_nightly-4.9.9.
|
2472
|
-
tfds_nightly-4.9.9.
|
2473
|
-
tfds_nightly-4.9.9.
|
2474
|
-
tfds_nightly-4.9.9.
|
2475
|
-
tfds_nightly-4.9.9.
|
2476
|
-
tfds_nightly-4.9.9.
|
2477
|
-
tfds_nightly-4.9.9.
|
2471
|
+
tfds_nightly-4.9.9.dev202507230045.dist-info/licenses/AUTHORS,sha256=nvBG4WwfgjuOu1oZkuQKw9kg7X6rve679ObS-YDDmXg,309
|
2472
|
+
tfds_nightly-4.9.9.dev202507230045.dist-info/licenses/LICENSE,sha256=z8d0m5b2O9McPEK1xHG_dWgUBT6EfBDz6wA0F7xSPTA,11358
|
2473
|
+
tfds_nightly-4.9.9.dev202507230045.dist-info/METADATA,sha256=fha1BBcJdcuOuYN_oHawuzQx_EsXdW6fWiqn1eDa3OI,11694
|
2474
|
+
tfds_nightly-4.9.9.dev202507230045.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
|
2475
|
+
tfds_nightly-4.9.9.dev202507230045.dist-info/entry_points.txt,sha256=eHEL7nF5y1uCY2FgkuYIdE062epJXlAQTSdq89px4p4,73
|
2476
|
+
tfds_nightly-4.9.9.dev202507230045.dist-info/top_level.txt,sha256=bAevmk9209s_oxVZVlN6hSDIVS423qrMQvmcWSvW4do,20
|
2477
|
+
tfds_nightly-4.9.9.dev202507230045.dist-info/RECORD,,
|
{tfds_nightly-4.9.9.dev202507210045.dist-info → tfds_nightly-4.9.9.dev202507230045.dist-info}/WHEEL
RENAMED
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|