tfds-nightly 4.9.9.dev202506300045__py3-none-any.whl → 4.9.9.dev202507020044__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -666,7 +666,7 @@ class ShardedFileTemplate:
666
666
  `/path/dataset_name-split.fileformat@num_shards` or
667
667
  `/path/dataset_name-split@num_shards.fileformat` depending on the format.
668
668
  If `num_shards` is not given, then it returns
669
- `/path/dataset_name-split.fileformat*`.
669
+ `/path/dataset_name-split.fileformat-[0-9][0-9][0-9][0-9][0-9]-of-[0-9][0-9][0-9][0-9][0-9]`.
670
670
 
671
671
  Args:
672
672
  num_shards: optional specification of the number of shards.
@@ -681,7 +681,7 @@ class ShardedFileTemplate:
681
681
  elif use_at_notation:
682
682
  replacement = '@*'
683
683
  else:
684
- replacement = '*'
684
+ replacement = '-[0-9][0-9][0-9][0-9][0-9]-of-[0-9][0-9][0-9][0-9][0-9]'
685
685
  return _replace_shard_pattern(os.fspath(a_filepath), replacement)
686
686
 
687
687
  def glob_pattern(self, num_shards: int | None = None) -> str:
@@ -459,7 +459,7 @@ def test_sharded_file_template_shard_index():
459
459
  )
460
460
  assert (
461
461
  os.fspath(template.sharded_filepaths_pattern())
462
- == '/my/path/data/mnist-train.tfrecord*'
462
+ == '/my/path/data/mnist-train.tfrecord-[0-9][0-9][0-9][0-9][0-9]-of-[0-9][0-9][0-9][0-9][0-9]'
463
463
  )
464
464
  assert (
465
465
  os.fspath(template.sharded_filepaths_pattern(num_shards=100))
@@ -474,7 +474,10 @@ def test_glob_pattern():
474
474
  filetype_suffix='tfrecord',
475
475
  data_dir=epath.Path('/data'),
476
476
  )
477
- assert '/data/ds-train.tfrecord*' == template.glob_pattern()
477
+ assert (
478
+ '/data/ds-train.tfrecord-[0-9][0-9][0-9][0-9][0-9]-of-[0-9][0-9][0-9][0-9][0-9]'
479
+ == template.glob_pattern()
480
+ )
478
481
  assert '/data/ds-train.tfrecord-*-of-00042' == template.glob_pattern(
479
482
  num_shards=42
480
483
  )
@@ -816,8 +816,9 @@ class NoShuffleBeamWriter:
816
816
  logging.info("Finalizing writer for %s", self._filename_template.split)
817
817
  # We don't know the number of shards, the length of each shard, nor the
818
818
  # total size, so we compute them here.
819
- prefix = epath.Path(self._filename_template.filepath_prefix())
820
- shards = self._filename_template.data_dir.glob(f"{prefix.name}*")
819
+ shards = self._filename_template.data_dir.glob(
820
+ self._filename_template.glob_pattern()
821
+ )
821
822
 
822
823
  def _get_length_and_size(shard: epath.Path) -> tuple[epath.Path, int, int]:
823
824
  length = self._file_adapter.num_examples(shard)
@@ -592,39 +592,47 @@ class NoShuffleBeamWriterTest(parameterized.TestCase):
592
592
 
593
593
  with tempfile.TemporaryDirectory() as tmp_dir:
594
594
  tmp_dir = epath.Path(tmp_dir)
595
- filename_template = naming.ShardedFileTemplate(
596
- dataset_name='foo',
597
- split='train',
598
- filetype_suffix=file_format.file_suffix,
599
- data_dir=tmp_dir,
600
- )
601
- writer = writer_lib.NoShuffleBeamWriter(
602
- serializer=testing.DummySerializer('dummy specs'),
603
- filename_template=filename_template,
604
- file_format=file_format,
605
- )
595
+
596
+ def get_writer(split):
597
+ filename_template = naming.ShardedFileTemplate(
598
+ dataset_name='foo',
599
+ split=split,
600
+ filetype_suffix=file_format.file_suffix,
601
+ data_dir=tmp_dir,
602
+ )
603
+ return writer_lib.NoShuffleBeamWriter(
604
+ serializer=testing.DummySerializer('dummy specs'),
605
+ filename_template=filename_template,
606
+ file_format=file_format,
607
+ )
608
+
606
609
  to_write = [(i, str(i).encode('utf-8')) for i in range(10)]
607
610
  # Here we need to disable type check as `beam.Create` is not capable of
608
611
  # inferring the type of the PCollection elements.
609
612
  options = beam.options.pipeline_options.PipelineOptions(
610
613
  pipeline_type_check=False
611
614
  )
612
- with beam.Pipeline(options=options, runner=_get_runner()) as pipeline:
613
-
614
- @beam.ptransform_fn
615
- def _build_pcollection(pipeline):
616
- pcollection = pipeline | 'Start' >> beam.Create(to_write)
617
- return writer.write_from_pcollection(pcollection)
618
-
619
- _ = pipeline | 'test' >> _build_pcollection() # pylint: disable=no-value-for-parameter
620
- shard_lengths, total_size = writer.finalize()
621
- self.assertNotEmpty(shard_lengths)
622
- self.assertEqual(sum(shard_lengths), 10)
623
- self.assertGreater(total_size, 10)
615
+ writers = [get_writer(split) for split in ('train-b', 'train')]
616
+
617
+ for writer in writers:
618
+ with beam.Pipeline(options=options, runner=_get_runner()) as pipeline:
619
+
620
+ @beam.ptransform_fn
621
+ def _build_pcollection(pipeline, writer):
622
+ pcollection = pipeline | 'Start' >> beam.Create(to_write)
623
+ return writer.write_from_pcollection(pcollection)
624
+
625
+ _ = pipeline | 'test' >> _build_pcollection(writer)
626
+
624
627
  files = list(tmp_dir.iterdir())
625
- self.assertGreaterEqual(len(files), 1)
628
+ self.assertGreaterEqual(len(files), 2)
626
629
  for f in files:
627
630
  self.assertIn(file_format.file_suffix, f.name)
631
+ for writer in writers:
632
+ shard_lengths, total_size = writer.finalize()
633
+ self.assertNotEmpty(shard_lengths)
634
+ self.assertEqual(sum(shard_lengths), 10)
635
+ self.assertGreater(total_size, 10)
628
636
 
629
637
 
630
638
  class CustomExampleWriter(writer_lib.ExampleWriter):
@@ -227,15 +227,14 @@ class CaltechBirds2010(tfds.core.GeneratorBasedBuilder):
227
227
  class CaltechBirds2011(CaltechBirds2010):
228
228
  """Caltech Birds 2011 dataset."""
229
229
 
230
- VERSION = tfds.core.Version("0.1.1")
230
+ VERSION = tfds.core.Version("0.2.0")
231
231
 
232
232
  @property
233
233
  def _caltech_birds_info(self):
234
- return CaltechBirdsInfo(
234
+ return CaltechBirdsInfo2011(
235
235
  name=self.name,
236
- images_url="https://drive.google.com/uc?export=download&id=1hbzc_P1FuxMkcabkgn9ZKinBwW683j45",
237
- split_url=None,
238
- annotations_url="https://drive.google.com/uc?export=download&id=1EamOKGLoTuZdtcVYbHMWNpkn3iAVj8TP",
236
+ images_url="https://data.caltech.edu/records/65de6-vp158/files/CUB_200_2011.tgz?download=1",
237
+ segmentations_url="https://data.caltech.edu/records/w9d68-gec53/files/segmentations.tgz?download=1",
239
238
  )
240
239
 
241
240
  def _info(self):
@@ -257,15 +256,13 @@ class CaltechBirds2011(CaltechBirds2010):
257
256
  )
258
257
 
259
258
  def _split_generators(self, dl_manager):
260
- download_path = dl_manager.download(
261
- [
262
- self._caltech_birds_info.images_url,
263
- ]
264
- )
259
+ download_path = dl_manager.download([
260
+ self._caltech_birds_info.images_url,
261
+ ])
265
262
 
266
263
  extracted_path = dl_manager.download_and_extract([
267
264
  self._caltech_birds_info.images_url,
268
- self._caltech_birds_info.annotations_url,
265
+ self._caltech_birds_info.segmentations_url,
269
266
  ])
270
267
 
271
268
  image_names_path = os.path.join(
@@ -369,3 +366,18 @@ class CaltechBirdsInfo(
369
366
  split_url (str): train/test split file URL.
370
367
  annotations_url (str): annotation folder URL.
371
368
  """
369
+
370
+
371
+ class CaltechBirdsInfo2011(
372
+ collections.namedtuple(
373
+ "_CaltechBirdsInfo2011",
374
+ ["name", "images_url", "segmentations_url"],
375
+ )
376
+ ):
377
+ """Contains the information necessary to generate a Caltech Birds 2011 dataset.
378
+
379
+ Attributes:
380
+ name (str): name of dataset.
381
+ images_url (str): URL containing images
382
+ segmentations_url (str): URL containing segmentations.
383
+ """
@@ -14,14 +14,15 @@
14
14
  # limitations under the License.
15
15
 
16
16
  """Dataset class for Cars196 Dataset."""
17
+
17
18
  import os
18
19
  import urllib
19
20
 
20
21
  from tensorflow_datasets.core.utils.lazy_imports_utils import tensorflow as tf
21
22
  import tensorflow_datasets.public_api as tfds
22
23
 
23
- _URL = 'http://ai.stanford.edu/~jkrause/car196/'
24
- _EXTRA_URL = 'https://ai.stanford.edu/~jkrause/cars/car_devkit.tgz'
24
+ _URL = 'https://web.archive.org/web/20221212053154/http://ai.stanford.edu/~jkrause/car196/'
25
+ _EXTRA_URL = 'https://web.archive.org/web/20230323151230/https://ai.stanford.edu/~jkrause/cars/car_devkit.tgz'
25
26
 
26
27
  _DESCRIPTION = (
27
28
  'The Cars dataset contains 16,185 images of 196 classes of cars. The data '
@@ -246,7 +247,7 @@ _CITATION = """\
246
247
  class Cars196(tfds.core.GeneratorBasedBuilder):
247
248
  """Car Images dataset."""
248
249
 
249
- VERSION = tfds.core.Version('2.1.0')
250
+ VERSION = tfds.core.Version('2.2.0')
250
251
  SUPPORTED_VERSIONS = [
251
252
  tfds.core.Version('2.1.0'),
252
253
  ]
@@ -255,6 +256,7 @@ class Cars196(tfds.core.GeneratorBasedBuilder):
255
256
  '2.0.0': 'Initial release',
256
257
  '2.0.1': 'Website URL update',
257
258
  '2.1.0': 'Fixing bug https://github.com/tensorflow/datasets/issues/3927',
259
+ '2.2.0': 'Fix broken links',
258
260
  }
259
261
 
260
262
  def _info(self):
@@ -271,7 +273,7 @@ class Cars196(tfds.core.GeneratorBasedBuilder):
271
273
  description=(_DESCRIPTION),
272
274
  features=tfds.features.FeaturesDict(features_dict),
273
275
  supervised_keys=('image', 'label'),
274
- homepage='https://ai.stanford.edu/~jkrause/cars/car_dataset.html',
276
+ homepage='https://web.archive.org/web/20230323151220/https://ai.stanford.edu/~jkrause/cars/car_dataset.html',
275
277
  citation=_CITATION,
276
278
  )
277
279
 
@@ -1,2 +1,4 @@
1
+ https://data.caltech.edu/records/65de6-vp158/files/CUB_200_2011.tgz?download=1 1150585339 0c685df5597a8b24909f6a7c9db6d11e008733779a671760afef78feb49bf081 CUB_200_2011.tgz
2
+ https://data.caltech.edu/records/w9d68-gec53/files/segmentations.tgz?download=1 39272883 dc77f6cffea0cbe2e41d4201115c8f29a6320ecb04fffd2444f51b8066e4b84f segmentations.tgz
1
3
  https://drive.google.com/uc?export=download&id=1EamOKGLoTuZdtcVYbHMWNpkn3iAVj8TP 39272883 dc77f6cffea0cbe2e41d4201115c8f29a6320ecb04fffd2444f51b8066e4b84f segmentations.tgz
2
4
  https://drive.google.com/uc?export=download&id=1hbzc_P1FuxMkcabkgn9ZKinBwW683j45 1150585339 0c685df5597a8b24909f6a7c9db6d11e008733779a671760afef78feb49bf081 CUB_200_2011.tgz
@@ -2,3 +2,7 @@ http://ai.stanford.edu/~jkrause/car196/cars_test.tgz 977350468 bffea656d6f425cba
2
2
  http://ai.stanford.edu/~jkrause/car196/cars_test_annos_withlabels.mat 185758 790f75be8ea34eeded134cc559332baf23e30e91367e9ddca97d26ed9b895f05 cars_test_annos_withlabels.mat
3
3
  http://ai.stanford.edu/~jkrause/car196/cars_train.tgz 979269282 512b227b30e2f0a8aab9e09485786ab4479582073a144998da74d64b801fd288 cars_train.tgz
4
4
  https://ai.stanford.edu/~jkrause/cars/car_devkit.tgz 330960 b97deb463af7d58b6bfaa18b2a4de9829f0f79e8ce663dfa9261bf7810e9accd car_devkit.tgz
5
+ https://web.archive.org/web/20221212053154/http:/ai.stanford.edu/~jkrause/car196/cars_test.tgz 977350468 bffea656d6f425cba3c91c6d83336e4c5f86c6cffd8975b0f375d3a10da8e243 cars_test.tgz
6
+ https://web.archive.org/web/20221212053154/http:/ai.stanford.edu/~jkrause/car196/cars_test_annos_withlabels.mat 185758 790f75be8ea34eeded134cc559332baf23e30e91367e9ddca97d26ed9b895f05 cars_test_annos_withlabels.mat
7
+ https://web.archive.org/web/20221212053154/http:/ai.stanford.edu/~jkrause/car196/cars_train.tgz 979269282 512b227b30e2f0a8aab9e09485786ab4479582073a144998da74d64b801fd288 cars_train.tgz
8
+ https://web.archive.org/web/20230323151230/https://ai.stanford.edu/~jkrause/cars/car_devkit.tgz 330960 b97deb463af7d58b6bfaa18b2a4de9829f0f79e8ce663dfa9261bf7810e9accd car_devkit.tgz
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: tfds-nightly
3
- Version: 4.9.9.dev202506300045
3
+ Version: 4.9.9.dev202507020044
4
4
  Summary: tensorflow/datasets is a library of datasets ready to use with TensorFlow.
5
5
  Home-page: https://github.com/tensorflow/datasets
6
6
  Download-URL: https://github.com/tensorflow/datasets/tags
@@ -88,8 +88,8 @@ tensorflow_datasets/core/lazy_imports_lib.py,sha256=Q-c3qGEZJDqviEQUiro2iBpMw7KA
88
88
  tensorflow_datasets/core/lazy_imports_lib_test.py,sha256=cbdamDUJIY5YORm6coyCMIralgsL_gCUfa2Dzdj6ZPY,1695
89
89
  tensorflow_datasets/core/load.py,sha256=1FQVnKwn8OVS_IgDbs9XN7aIVxQnyfrS0pI2X9dh77M,37765
90
90
  tensorflow_datasets/core/load_test.py,sha256=EEa8GuSIrEbn0RcGrWS3hmmatKBqBA3QOQWpQ1WjVgA,6490
91
- tensorflow_datasets/core/naming.py,sha256=IYz4U9_2lLqpeyJzHZCZ0mbL6hLxnBugsB-IhKduYBU,25506
92
- tensorflow_datasets/core/naming_test.py,sha256=cC6Cf3Urhpwf1Wtgt85zar8KsFU9VrZgV0ZqPCp5PE4,29986
91
+ tensorflow_datasets/core/naming.py,sha256=B_P77QDA4lkG2FUl4PrzZR0U6qqae_fLxruGBw3ZSVc,25614
92
+ tensorflow_datasets/core/naming_test.py,sha256=SwydgLjf2Mouow1yVZlc73sb8rp4522NhkTSEmg31vo,30112
93
93
  tensorflow_datasets/core/read_only_builder.py,sha256=R0QIqckUjl74G7oBj1uCRm_g9e0omstDMTbbwC25B88,22146
94
94
  tensorflow_datasets/core/read_only_builder_test.py,sha256=Nw2KQCHBdTW7210Um2K3SzfqAOJB1v1r2yJkzdFehWA,24174
95
95
  tensorflow_datasets/core/reader.py,sha256=s65FNOUDyAhd4OgHOSvE5lr4rnlUnOILjlVcRS6Qbhw,17345
@@ -112,8 +112,8 @@ tensorflow_datasets/core/units_test.py,sha256=rGR0rsP9M0BVCqv2OA1GZRH5csq8_gPYhI
112
112
  tensorflow_datasets/core/valid_tags.txt,sha256=HLn8CV1ORQZaAhLr-U-5MsYFrYBVHDgs4bKEu2nzlVw,20100
113
113
  tensorflow_datasets/core/visibility.py,sha256=43jHRRdg2xHRpAA2mUD1Yz-vOs5EVhx3xhB2RoIJBg8,3498
114
114
  tensorflow_datasets/core/visibility_test.py,sha256=h_UwIBfLgIkMSSSPoQmT0mNUUOH8jAdebA_DdWNSxdg,1350
115
- tensorflow_datasets/core/writer.py,sha256=JyVr7Zs5IYp-kHXp8LBs03enuMgD7-T5DN6uq0LbF4s,28909
116
- tensorflow_datasets/core/writer_test.py,sha256=CLx1tE2QM0sUkFz3hpIP8tZQcTpPDY9VklzuCEa4qCE,22531
115
+ tensorflow_datasets/core/writer.py,sha256=T41xcagE1IhFqKNtoHR467SXqbOw7PrQR2nm7nXn5Yc,28877
116
+ tensorflow_datasets/core/writer_test.py,sha256=j-lvS96jFmvBF0bd0mVR4EGBbxeFW7ucxxFXtC40wTo,22702
117
117
  tensorflow_datasets/core/community/__init__.py,sha256=bAU6d62u2i14gRw3xgAzkQS8kRcuRnJWqEVn_r0RXRs,1206
118
118
  tensorflow_datasets/core/community/cache.py,sha256=-dx3iEsgktu8OR42a64CFX64HtaXMHjXAfnYlc0H5BM,2130
119
119
  tensorflow_datasets/core/community/config.py,sha256=SiIgegGmxQjoM_8HmKFLdib-loTxpQpEwXXKQbTLJI0,4451
@@ -1666,9 +1666,9 @@ tensorflow_datasets/image_classification/bigearthnet.py,sha256=4xqee6WYaYjURsB0P
1666
1666
  tensorflow_datasets/image_classification/binary_alpha_digits.py,sha256=dDlw1K_ex14tgcVqk2cI4p-T958BhBmJp0UNwL8I2-E,925
1667
1667
  tensorflow_datasets/image_classification/caltech.py,sha256=YrrxITYyd0lSZ117jROgdhuvy9yKznlPrRUixboq8Zs,884
1668
1668
  tensorflow_datasets/image_classification/caltech101_labels.txt,sha256=35kwS35Pc3QJJB7yKXy2U0dvldE20BtAbuUaWDn6R8Q,906
1669
- tensorflow_datasets/image_classification/caltech_birds.py,sha256=YLnurWiijvrEpkN8Dyx4A_aB_c2x13EoU_BfoxVLNyA,12504
1669
+ tensorflow_datasets/image_classification/caltech_birds.py,sha256=MUOyqmoz1iYbXW4KoqyTaZe0kQ9MUQ5JEYTOdlM9jlI,12861
1670
1670
  tensorflow_datasets/image_classification/caltech_birds_test.py,sha256=o8iHg_bjzjg4TaH-ArjxKFpBJROm4cXG5ZTwn8P5T1A,1407
1671
- tensorflow_datasets/image_classification/cars196.py,sha256=RD1lef5ba3oVSy1JHN-E5J1Mvr23jN9Af72AOYlXCU0,12351
1671
+ tensorflow_datasets/image_classification/cars196.py,sha256=v08PqZCDDrFerQ39TesO0g-Kxhn3Us6F68W07-MdAB0,12516
1672
1672
  tensorflow_datasets/image_classification/cars196_test.py,sha256=AoMjpfS_Ii3EOm_eyCle3E9cIRpcRudMUN4sGJ6d_Ks,1051
1673
1673
  tensorflow_datasets/image_classification/cassava.py,sha256=eDsVKepCy2oNAbQep_Vj9LtxUTRpcA6wVilbJUhoIHM,3578
1674
1674
  tensorflow_datasets/image_classification/cassava_test.py,sha256=qXQTLM_lnhD4xZqJXxspbCHTq18Tc59IKWPh4TE9I1I,964
@@ -2329,8 +2329,8 @@ tensorflow_datasets/translate/tatoeba/__init__.py,sha256=vZ4SY1wRvAdthikCdw07C_q
2329
2329
  tensorflow_datasets/translate/tatoeba/tatoeba.py,sha256=suDWj4CKVLPeDbG949G5GUH-F4g4iVH1xY0R8CEUs6k,869
2330
2330
  tensorflow_datasets/url_checksums/c4.txt,sha256=dDDWbmWFr7mwhUle1z5ZybWpgA218XjXKytjZUUIXos,19354
2331
2331
  tensorflow_datasets/url_checksums/caltech_birds2010.txt,sha256=U2UmCDpnZCaB22ZGxRjU73eC9b4_WEGO5EXlSioFCbA,486
2332
- tensorflow_datasets/url_checksums/caltech_birds2011.txt,sha256=2JZNr0JV13pySyUGkyEwhBTQV2vLUAwA7qqzK4yYmuU,347
2333
- tensorflow_datasets/url_checksums/cars196.txt,sha256=WnrQ5W0PEhJ6z_Cjj1Ju-6oVbrRy1MM83b03FTBME3E,599
2332
+ tensorflow_datasets/url_checksums/caltech_birds2011.txt,sha256=43edRPKr-ZVW9tuPXLnA637tRkFRcddAvOJOtbYdthg,691
2333
+ tensorflow_datasets/url_checksums/cars196.txt,sha256=0uxgkOOMZZZ6l-nln43S5j4bsnoPzlkB5RqlSqxoEys,1367
2334
2334
  tensorflow_datasets/url_checksums/cassava.txt,sha256=kInp15oLtZbDXVqzaRrLujvJgaXHKHzPNewrsAqfqbg,161
2335
2335
  tensorflow_datasets/url_checksums/cats_vs_dogs.txt,sha256=T7UMkE-e4wdSVMoAlNTS9tXQMG2NTH8A2Z7jrXk_GqQ,212
2336
2336
  tensorflow_datasets/url_checksums/cfq.txt,sha256=A4iRuXnw-kjHckjHE086H4h7xW8Sz8HVCNpCByJhyLE,140
@@ -2461,10 +2461,10 @@ tensorflow_datasets/vision_language/wit/wit_test.py,sha256=PXS8DMNW-MDrT2p5oy4Ic
2461
2461
  tensorflow_datasets/vision_language/wit_kaggle/__init__.py,sha256=vGwSGeM8WE4Q-l0-eEE1sBojmk6YT0l1OO60AWa4Q40,719
2462
2462
  tensorflow_datasets/vision_language/wit_kaggle/wit_kaggle.py,sha256=q-vX_FBzIwsFxL4sY9vuyQ3UQD2PLM4yhUR4U6l-qao,16903
2463
2463
  tensorflow_datasets/vision_language/wit_kaggle/wit_kaggle_test.py,sha256=ZymHT1NkmD-pUnh3BmM3_g30c5afsWYnmqDD9dVyDSA,1778
2464
- tfds_nightly-4.9.9.dev202506300045.dist-info/licenses/AUTHORS,sha256=nvBG4WwfgjuOu1oZkuQKw9kg7X6rve679ObS-YDDmXg,309
2465
- tfds_nightly-4.9.9.dev202506300045.dist-info/licenses/LICENSE,sha256=z8d0m5b2O9McPEK1xHG_dWgUBT6EfBDz6wA0F7xSPTA,11358
2466
- tfds_nightly-4.9.9.dev202506300045.dist-info/METADATA,sha256=0p5YF88QSNxBlkB458XN6bIiXEqATMOOoLM-LKCBmDQ,11963
2467
- tfds_nightly-4.9.9.dev202506300045.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
2468
- tfds_nightly-4.9.9.dev202506300045.dist-info/entry_points.txt,sha256=eHEL7nF5y1uCY2FgkuYIdE062epJXlAQTSdq89px4p4,73
2469
- tfds_nightly-4.9.9.dev202506300045.dist-info/top_level.txt,sha256=bAevmk9209s_oxVZVlN6hSDIVS423qrMQvmcWSvW4do,20
2470
- tfds_nightly-4.9.9.dev202506300045.dist-info/RECORD,,
2464
+ tfds_nightly-4.9.9.dev202507020044.dist-info/licenses/AUTHORS,sha256=nvBG4WwfgjuOu1oZkuQKw9kg7X6rve679ObS-YDDmXg,309
2465
+ tfds_nightly-4.9.9.dev202507020044.dist-info/licenses/LICENSE,sha256=z8d0m5b2O9McPEK1xHG_dWgUBT6EfBDz6wA0F7xSPTA,11358
2466
+ tfds_nightly-4.9.9.dev202507020044.dist-info/METADATA,sha256=QaHtl6yebIfZZuy3GuTK5KiF-aJqF7oH12_KWDs6P_I,11963
2467
+ tfds_nightly-4.9.9.dev202507020044.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
2468
+ tfds_nightly-4.9.9.dev202507020044.dist-info/entry_points.txt,sha256=eHEL7nF5y1uCY2FgkuYIdE062epJXlAQTSdq89px4p4,73
2469
+ tfds_nightly-4.9.9.dev202507020044.dist-info/top_level.txt,sha256=bAevmk9209s_oxVZVlN6hSDIVS423qrMQvmcWSvW4do,20
2470
+ tfds_nightly-4.9.9.dev202507020044.dist-info/RECORD,,