tf-nightly-cpu 2.20.0.dev20250220__cp311-cp311-win_amd64.whl → 2.20.0.dev20250222__cp311-cp311-win_amd64.whl

Sign up to get free protection for your applications and to get access to all the features.
Files changed (130) hide show
  1. tensorflow/_api/v2/compat/v1/summary/__init__.py +2 -2
  2. tensorflow/_api/v2/compat/v1/tpu/experimental/embedding/__init__.py +2 -2
  3. tensorflow/_api/v2/compat/v2/summary/__init__.py +10 -10
  4. tensorflow/_api/v2/compat/v2/summary/experimental/__init__.py +4 -4
  5. tensorflow/_api/v2/compat/v2/tpu/experimental/embedding/__init__.py +2 -2
  6. tensorflow/_api/v2/summary/__init__.py +10 -10
  7. tensorflow/_api/v2/summary/experimental/__init__.py +4 -4
  8. tensorflow/_api/v2/tpu/experimental/embedding/__init__.py +2 -2
  9. tensorflow/compiler/mlir/stablehlo/stablehlo_extension.pyd +0 -0
  10. tensorflow/compiler/tf2tensorrt/_pywrap_py_utils.pyd +0 -0
  11. tensorflow/compiler/tf2xla/ops/_xla_ops.so +0 -0
  12. tensorflow/include/external/llvm-project/mlir/include/mlir/Analysis/DataFlow/IntegerRangeAnalysis.h +12 -0
  13. tensorflow/include/external/llvm-project/mlir/include/mlir/Dialect/Math/IR/MathOps.h.inc +4 -0
  14. tensorflow/include/external/shardy/shardy/dialect/sdy/transforms/propagation/aggressive_factor_propagation.h +9 -0
  15. tensorflow/include/external/stablehlo/_virtual_includes/stablehlo_pass_utils/stablehlo/transforms/PassUtils.h +7 -0
  16. tensorflow/include/external/stablehlo/_virtual_includes/stablehlo_passes/stablehlo/transforms/PassUtils.h +7 -0
  17. tensorflow/include/external/stablehlo/_virtual_includes/version/stablehlo/dialect/Version.h +1 -1
  18. tensorflow/include/external/stablehlo/stablehlo/dialect/Version.h +1 -1
  19. tensorflow/include/external/stablehlo/stablehlo/transforms/PassUtils.h +7 -0
  20. tensorflow/include/tensorflow/compiler/xla/backends/cpu/codegen/kernel_api_ir_builder.h +3 -2
  21. tensorflow/include/tensorflow/compiler/xla/backends/cpu/runtime/convolution_thunk_internal.h +8 -10
  22. tensorflow/include/tensorflow/compiler/xla/backends/cpu/runtime/kernel_thunk.h +9 -3
  23. tensorflow/include/tensorflow/compiler/xla/backends/cpu/runtime/work_queue.h +81 -19
  24. tensorflow/include/tensorflow/compiler/xla/codegen/kernel_spec.h +24 -7
  25. tensorflow/include/tensorflow/compiler/xla/hlo/ir/hlo_casting_utils.h +0 -44
  26. tensorflow/include/tensorflow/compiler/xla/hlo/ir/hlo_instruction.h +12 -0
  27. tensorflow/include/tensorflow/compiler/xla/mlir_hlo/_virtual_includes/stablehlo_extension_pass_inc_gen/stablehlo_ext/transforms/passes.h.inc +149 -4
  28. tensorflow/include/tensorflow/compiler/xla/mlir_hlo/stablehlo_ext/transforms/passes.h.inc +149 -4
  29. tensorflow/include/tensorflow/compiler/xla/pjrt/distributed/client.h +5 -0
  30. tensorflow/include/tensorflow/compiler/xla/pjrt/gpu/se_gpu_pjrt_client.h +1 -92
  31. tensorflow/include/tensorflow/compiler/xla/pjrt/gpu/se_gpu_topology_description.h +126 -0
  32. tensorflow/include/tensorflow/compiler/xla/pjrt/pjrt_stream_executor_client.h +1 -49
  33. tensorflow/include/tensorflow/compiler/xla/pjrt/pjrt_stream_executor_device_description.h +75 -0
  34. tensorflow/include/tensorflow/compiler/xla/pjrt/plugin/xla_cpu/cpu_execute_options.h +57 -0
  35. tensorflow/include/tensorflow/compiler/xla/pjrt/plugin/xla_cpu/cpu_topology.h +4 -0
  36. tensorflow/include/tensorflow/compiler/xla/service/constant_value.h +1 -0
  37. tensorflow/include/tensorflow/compiler/xla/service/hlo_module_util.h +52 -1
  38. tensorflow/include/tensorflow/compiler/xla/service/hlo_proto_util.h +0 -12
  39. tensorflow/include/tensorflow/compiler/xla/tsl/concurrency/async_value.h +50 -21
  40. tensorflow/include/tensorflow/compiler/xla/tsl/framework/convolution/eigen_spatial_convolutions-inl.h +5 -5
  41. tensorflow/include/tensorflow/core/kernels/data/experimental/random_access_ops.h +0 -2
  42. tensorflow/include/tensorflow/core/kernels/eigen_attention.h +4 -4
  43. tensorflow/include/tensorflow/core/kernels/eigen_backward_cuboid_convolutions.h +6 -6
  44. tensorflow/include/tensorflow/core/kernels/eigen_backward_spatial_convolutions.h +10 -8
  45. tensorflow/include/tensorflow/core/kernels/eigen_cuboid_convolution.h +6 -6
  46. tensorflow/include/tensorflow/core/kernels/eigen_pooling.h +12 -12
  47. tensorflow/include/tensorflow/core/public/release_version.h +39 -0
  48. tensorflow/include/tensorflow/core/public/version.h +112 -127
  49. tensorflow/include/tensorflow/python/eager/pywrap_tfe.h +1 -1
  50. tensorflow/include/xla/backends/cpu/codegen/kernel_api_ir_builder.h +3 -2
  51. tensorflow/include/xla/backends/cpu/runtime/convolution_thunk_internal.h +8 -10
  52. tensorflow/include/xla/backends/cpu/runtime/kernel_thunk.h +9 -3
  53. tensorflow/include/xla/backends/cpu/runtime/work_queue.h +81 -19
  54. tensorflow/include/xla/codegen/kernel_spec.h +24 -7
  55. tensorflow/include/xla/hlo/ir/hlo_casting_utils.h +0 -44
  56. tensorflow/include/xla/hlo/ir/hlo_instruction.h +12 -0
  57. tensorflow/include/xla/mlir_hlo/_virtual_includes/stablehlo_extension_pass_inc_gen/stablehlo_ext/transforms/passes.h.inc +149 -4
  58. tensorflow/include/xla/mlir_hlo/stablehlo_ext/transforms/passes.h.inc +149 -4
  59. tensorflow/include/xla/pjrt/distributed/client.h +5 -0
  60. tensorflow/include/xla/pjrt/gpu/se_gpu_pjrt_client.h +1 -92
  61. tensorflow/include/xla/pjrt/gpu/se_gpu_topology_description.h +126 -0
  62. tensorflow/include/xla/pjrt/pjrt_stream_executor_client.h +1 -49
  63. tensorflow/include/xla/pjrt/pjrt_stream_executor_device_description.h +75 -0
  64. tensorflow/include/xla/pjrt/plugin/xla_cpu/cpu_execute_options.h +57 -0
  65. tensorflow/include/xla/pjrt/plugin/xla_cpu/cpu_topology.h +4 -0
  66. tensorflow/include/xla/service/constant_value.h +1 -0
  67. tensorflow/include/xla/service/hlo_module_util.h +52 -1
  68. tensorflow/include/xla/service/hlo_proto_util.h +0 -12
  69. tensorflow/include/xla/tsl/concurrency/async_value.h +50 -21
  70. tensorflow/include/xla/tsl/framework/convolution/eigen_spatial_convolutions-inl.h +5 -5
  71. tensorflow/lite/experimental/microfrontend/python/ops/_audio_microfrontend_op.so +0 -0
  72. tensorflow/lite/python/analyzer_wrapper/_pywrap_analyzer_wrapper.pyd +0 -0
  73. tensorflow/lite/python/interpreter_wrapper/_pywrap_tensorflow_interpreter_wrapper.pyd +0 -0
  74. tensorflow/lite/python/optimize/_pywrap_tensorflow_lite_calibration_wrapper.pyd +0 -0
  75. tensorflow/python/_pywrap_dtensor_device.pyd +0 -0
  76. tensorflow/python/_pywrap_mlir.pyd +0 -0
  77. tensorflow/python/_pywrap_parallel_device.pyd +0 -0
  78. tensorflow/python/_pywrap_quantize_training.pyd +0 -0
  79. tensorflow/python/_pywrap_tensorflow_internal.pyd +0 -0
  80. tensorflow/python/_pywrap_tfcompile.pyd +0 -0
  81. tensorflow/python/_pywrap_tfe.pyd +0 -0
  82. tensorflow/python/client/_pywrap_debug_events_writer.pyd +0 -0
  83. tensorflow/python/client/_pywrap_device_lib.pyd +0 -0
  84. tensorflow/python/client/_pywrap_events_writer.pyd +0 -0
  85. tensorflow/python/client/_pywrap_tf_session.pyd +0 -0
  86. tensorflow/python/compat/compat.py +1 -1
  87. tensorflow/python/data/experimental/service/_pywrap_server_lib.pyd +0 -0
  88. tensorflow/python/data/experimental/service/_pywrap_utils_exp.pyd +0 -0
  89. tensorflow/python/eager/imperative_grad.py +5 -5
  90. tensorflow/python/eager/polymorphic_function/atomic_function.py +1 -1
  91. tensorflow/python/eager/polymorphic_function/compiler_ir.py +1 -1
  92. tensorflow/python/eager/polymorphic_function/polymorphic_function.py +45 -41
  93. tensorflow/python/eager/tape.py +2 -2
  94. tensorflow/python/framework/_dtypes.pyd +0 -0
  95. tensorflow/python/framework/_op_def_library_pybind.pyd +0 -0
  96. tensorflow/python/framework/_op_def_registry.pyd +0 -0
  97. tensorflow/python/framework/_proto_comparators.pyd +0 -0
  98. tensorflow/python/framework/_pywrap_python_op_gen.pyd +0 -0
  99. tensorflow/python/framework/_test_metrics_util.pyd +0 -0
  100. tensorflow/python/grappler/_pywrap_tf_cluster.pyd +0 -0
  101. tensorflow/python/grappler/_pywrap_tf_item.pyd +0 -0
  102. tensorflow/python/grappler/_pywrap_tf_optimizer.pyd +0 -0
  103. tensorflow/python/lib/core/_pywrap_py_func.pyd +0 -0
  104. tensorflow/python/lib/io/_pywrap_file_io.pyd +0 -0
  105. tensorflow/python/lib/io/_pywrap_record_io.pyd +0 -0
  106. tensorflow/python/ops/summary_ops_v2.py +5 -1
  107. tensorflow/python/platform/_pywrap_tf2.pyd +0 -0
  108. tensorflow/python/profiler/internal/_pywrap_profiler.pyd +0 -0
  109. tensorflow/python/profiler/internal/_pywrap_profiler_plugin.pyd +0 -0
  110. tensorflow/python/saved_model/pywrap_saved_model.pyd +0 -0
  111. tensorflow/python/tpu/_pywrap_sparse_core_layout.pyd +0 -0
  112. tensorflow/python/tpu/_pywrap_tpu_embedding.pyd +0 -0
  113. tensorflow/python/tpu/tpu_embedding_v3.py +14 -7
  114. tensorflow/python/tpu/tpu_embedding_v3_checkpoint_adapter.py +10 -1
  115. tensorflow/python/util/_pywrap_checkpoint_reader.pyd +0 -0
  116. tensorflow/python/util/_pywrap_kernel_registry.pyd +0 -0
  117. tensorflow/python/util/_pywrap_stat_summarizer.pyd +0 -0
  118. tensorflow/python/util/_pywrap_tfprof.pyd +0 -0
  119. tensorflow/python/util/_pywrap_transform_graph.pyd +0 -0
  120. tensorflow/python/util/_pywrap_utils.pyd +0 -0
  121. tensorflow/python/util/_tf_stack.pyd +0 -0
  122. tensorflow/tools/pip_package/setup.py +2 -2
  123. tensorflow/xla_aot_runtime_src/xla/tsl/concurrency/async_value.cc +26 -51
  124. {tf_nightly_cpu-2.20.0.dev20250220.dist-info → tf_nightly_cpu-2.20.0.dev20250222.dist-info}/METADATA +1 -1
  125. {tf_nightly_cpu-2.20.0.dev20250220.dist-info → tf_nightly_cpu-2.20.0.dev20250222.dist-info}/RECORD +128 -123
  126. tensorflow/include/tensorflow/compiler/xla/backends/cpu/runtime/concurrency.h +0 -77
  127. tensorflow/include/xla/backends/cpu/runtime/concurrency.h +0 -77
  128. {tf_nightly_cpu-2.20.0.dev20250220.dist-info → tf_nightly_cpu-2.20.0.dev20250222.dist-info}/WHEEL +0 -0
  129. {tf_nightly_cpu-2.20.0.dev20250220.dist-info → tf_nightly_cpu-2.20.0.dev20250222.dist-info}/entry_points.txt +0 -0
  130. {tf_nightly_cpu-2.20.0.dev20250220.dist-info → tf_nightly_cpu-2.20.0.dev20250222.dist-info}/top_level.txt +0 -0
@@ -100,11 +100,12 @@ SpatialConvolutionBackwardInput(
100
100
  const DenseIndex row_in_stride = 1, const DenseIndex col_in_stride = 1) {
101
101
  typedef typename internal::traits<OutputBackward>::Index TensorIndex;
102
102
  typedef typename internal::traits<OutputBackward>::Scalar OutScalar;
103
- TensorRef<Tensor<typename internal::traits<Kernel>::Scalar,
104
- internal::traits<Kernel>::NumDimensions,
105
- internal::traits<Kernel>::Layout, TensorIndex>>
103
+ TensorRef<const Tensor<typename internal::traits<Kernel>::Scalar,
104
+ internal::traits<Kernel>::NumDimensions,
105
+ internal::traits<Kernel>::Layout, TensorIndex>>
106
106
  kern(kernel);
107
- TensorRef<Tensor<OutScalar, internal::traits<OutputBackward>::NumDimensions,
107
+ TensorRef<
108
+ const Tensor<OutScalar, internal::traits<OutputBackward>::NumDimensions,
108
109
  internal::traits<OutputBackward>::Layout, TensorIndex>>
109
110
  out(output_backward);
110
111
 
@@ -385,11 +386,12 @@ SpatialConvolutionBackwardKernel(
385
386
  const DenseIndex row_in_stride = 1, const DenseIndex col_in_stride = 1) {
386
387
  typedef typename internal::traits<Input>::Index TensorIndex;
387
388
  typedef typename internal::traits<OutputBackward>::Scalar OutScalar;
388
- TensorRef<Tensor<typename internal::traits<Input>::Scalar,
389
- internal::traits<Input>::NumDimensions,
390
- internal::traits<Input>::Layout, TensorIndex>>
389
+ TensorRef<const Tensor<typename internal::traits<Input>::Scalar,
390
+ internal::traits<Input>::NumDimensions,
391
+ internal::traits<Input>::Layout, TensorIndex>>
391
392
  in(input);
392
- TensorRef<Tensor<OutScalar, internal::traits<OutputBackward>::NumDimensions,
393
+ TensorRef<
394
+ const Tensor<OutScalar, internal::traits<OutputBackward>::NumDimensions,
393
395
  internal::traits<OutputBackward>::Layout, TensorIndex>>
394
396
  out(output_backward);
395
397
 
@@ -1843,13 +1843,13 @@ CuboidConvolution(const Input& input, const Kernel& kernel,
1843
1843
  const Index strideCols = 1,
1844
1844
  const PaddingType padding_type = PADDING_SAME) {
1845
1845
  typedef typename internal::traits<Input>::Index TensorIndex;
1846
- TensorRef<Tensor<typename internal::traits<Input>::Scalar,
1847
- internal::traits<Input>::NumDimensions,
1848
- internal::traits<Input>::Layout, TensorIndex> >
1846
+ TensorRef<const Tensor<typename internal::traits<Input>::Scalar,
1847
+ internal::traits<Input>::NumDimensions,
1848
+ internal::traits<Input>::Layout, TensorIndex> >
1849
1849
  in(input);
1850
- TensorRef<Tensor<typename internal::traits<Kernel>::Scalar,
1851
- internal::traits<Kernel>::NumDimensions,
1852
- internal::traits<Kernel>::Layout, TensorIndex> >
1850
+ TensorRef<const Tensor<typename internal::traits<Kernel>::Scalar,
1851
+ internal::traits<Kernel>::NumDimensions,
1852
+ internal::traits<Kernel>::Layout, TensorIndex> >
1853
1853
  kern(kernel);
1854
1854
 
1855
1855
  EIGEN_STATIC_ASSERT(
@@ -55,9 +55,9 @@ SpatialMaxPooling(const Input& input, DenseIndex patchRows,
55
55
  YOU_MADE_A_PROGRAMMING_MISTAKE);
56
56
 
57
57
  typedef typename internal::traits<Input>::Index TensorIndex;
58
- TensorRef<Tensor<typename internal::traits<Input>::Scalar,
59
- internal::traits<Input>::NumDimensions,
60
- internal::traits<Input>::Layout, TensorIndex> >
58
+ TensorRef<const Tensor<typename internal::traits<Input>::Scalar,
59
+ internal::traits<Input>::NumDimensions,
60
+ internal::traits<Input>::Layout, TensorIndex>>
61
61
  in(input);
62
62
 
63
63
  const DenseIndex patchRowsEff =
@@ -148,9 +148,9 @@ CuboidMaxPooling(const Input& input, DenseIndex patchPlanes,
148
148
  static const bool isColMajor = (internal::traits<Input>::Layout == ColMajor);
149
149
 
150
150
  typedef typename internal::traits<Input>::Index TensorIndex;
151
- TensorRef<Tensor<typename internal::traits<Input>::Scalar,
152
- internal::traits<Input>::NumDimensions,
153
- internal::traits<Input>::Layout, TensorIndex> >
151
+ TensorRef<const Tensor<typename internal::traits<Input>::Scalar,
152
+ internal::traits<Input>::NumDimensions,
153
+ internal::traits<Input>::Layout, TensorIndex>>
154
154
  in(input);
155
155
 
156
156
  static const int idxPlanes = isColMajor ? 1 : 3;
@@ -383,9 +383,9 @@ SpatialAvgPooling(const Input& input, DenseIndex patchRows,
383
383
  YOU_MADE_A_PROGRAMMING_MISTAKE);
384
384
 
385
385
  typedef typename internal::traits<Input>::Index TensorIndex;
386
- TensorRef<Tensor<typename internal::traits<Input>::Scalar,
387
- internal::traits<Input>::NumDimensions,
388
- internal::traits<Input>::Layout, TensorIndex> >
386
+ TensorRef<const Tensor<typename internal::traits<Input>::Scalar,
387
+ internal::traits<Input>::NumDimensions,
388
+ internal::traits<Input>::Layout, TensorIndex>>
389
389
  in(input);
390
390
 
391
391
  const DenseIndex patchRowsEff =
@@ -475,9 +475,9 @@ CuboidAvgPooling(const Input& input, DenseIndex patchPlanes,
475
475
  static const bool isColMajor = (internal::traits<Input>::Layout == ColMajor);
476
476
 
477
477
  typedef typename internal::traits<Input>::Index TensorIndex;
478
- TensorRef<Tensor<typename internal::traits<Input>::Scalar,
479
- internal::traits<Input>::NumDimensions,
480
- internal::traits<Input>::Layout, TensorIndex> >
478
+ TensorRef<const Tensor<typename internal::traits<Input>::Scalar,
479
+ internal::traits<Input>::NumDimensions,
480
+ internal::traits<Input>::Layout, TensorIndex>>
481
481
  in(input);
482
482
 
483
483
  static const int idxPlanes = isColMajor ? 1 : 3;
@@ -0,0 +1,39 @@
1
+ /* Copyright 2015 The TensorFlow Authors. All Rights Reserved.
2
+
3
+ Licensed under the Apache License, Version 2.0 (the "License");
4
+ you may not use this file except in compliance with the License.
5
+ You may obtain a copy of the License at
6
+
7
+ http://www.apache.org/licenses/LICENSE-2.0
8
+
9
+ Unless required by applicable law or agreed to in writing, software
10
+ distributed under the License is distributed on an "AS IS" BASIS,
11
+ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ See the License for the specific language governing permissions and
13
+ limitations under the License.
14
+ ==============================================================================*/
15
+
16
+ #ifndef TENSORFLOW_CORE_PUBLIC_RELEASE_VERSION_H_
17
+ #define TENSORFLOW_CORE_PUBLIC_RELEASE_VERSION_H_
18
+
19
+ // TensorFlow uses semantic versioning, see http://semver.org/.
20
+
21
+ // Also update tensorflow/tensorflow.bzl and
22
+ // tensorflow/tools/pip_package/setup.py
23
+ #define TF_MAJOR_VERSION 2
24
+ #define TF_MINOR_VERSION 20
25
+ #define TF_PATCH_VERSION 0
26
+
27
+ // TF_VERSION_SUFFIX is non-empty for pre-releases (e.g. "-alpha", "-alpha.1",
28
+ // "-beta", "-rc", "-rc.1")
29
+ #define TF_VERSION_SUFFIX "-dev20250222"
30
+
31
+ #define _TF_STR_HELPER(x) #x
32
+ #define _TF_STR(x) _TF_STR_HELPER(x)
33
+
34
+ // e.g. "0.5.0" or "0.6.0-alpha".
35
+ #define TF_VERSION_STRING \
36
+ (_TF_STR(TF_MAJOR_VERSION) "." _TF_STR(TF_MINOR_VERSION) "." _TF_STR( \
37
+ TF_PATCH_VERSION) TF_VERSION_SUFFIX)
38
+
39
+ #endif // TENSORFLOW_CORE_PUBLIC_RELEASE_VERSION_H_
@@ -1,127 +1,112 @@
1
- /* Copyright 2015 The TensorFlow Authors. All Rights Reserved.
2
-
3
- Licensed under the Apache License, Version 2.0 (the "License");
4
- you may not use this file except in compliance with the License.
5
- You may obtain a copy of the License at
6
-
7
- http://www.apache.org/licenses/LICENSE-2.0
8
-
9
- Unless required by applicable law or agreed to in writing, software
10
- distributed under the License is distributed on an "AS IS" BASIS,
11
- WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
- See the License for the specific language governing permissions and
13
- limitations under the License.
14
- ==============================================================================*/
15
-
16
- #ifndef TENSORFLOW_CORE_PUBLIC_VERSION_H_
17
- #define TENSORFLOW_CORE_PUBLIC_VERSION_H_
18
-
19
- // TensorFlow uses semantic versioning, see http://semver.org/.
20
-
21
- // Also update tensorflow/tensorflow.bzl and
22
- // tensorflow/tools/pip_package/setup.py
23
- #define TF_MAJOR_VERSION 2
24
- #define TF_MINOR_VERSION 20
25
- #define TF_PATCH_VERSION 0
26
-
27
- // TF_VERSION_SUFFIX is non-empty for pre-releases (e.g. "-alpha", "-alpha.1",
28
- // "-beta", "-rc", "-rc.1")
29
- #define TF_VERSION_SUFFIX "-dev20250220"
30
-
31
- #define TF_STR_HELPER(x) #x
32
- #define TF_STR(x) TF_STR_HELPER(x)
33
-
34
- // e.g. "0.5.0" or "0.6.0-alpha".
35
- #define TF_VERSION_STRING \
36
- (TF_STR(TF_MAJOR_VERSION) "." TF_STR(TF_MINOR_VERSION) "." TF_STR( \
37
- TF_PATCH_VERSION) TF_VERSION_SUFFIX)
38
-
39
- // GraphDef compatibility versions (the versions field in graph.proto).
40
- //
41
- // Each graph has producer and min_consumer versions, and each
42
- // consumer has its own version and a min_producer. In addition, graphs can
43
- // mark specific consumer versions as bad (to prevent bugs from executing).
44
- // A consumer will execute a graph if the consumer's version is at least the
45
- // graph's min_consumer, the graph's producer version is at least the consumer's
46
- // min_producer, and the consumer version isn't specifically disallowed by the
47
- // graph.
48
- //
49
- // By default, newly created graphs have producer version TF_GRAPH_DEF_VERSION
50
- // min_consumer TF_GRAPH_DEF_MIN_CONSUMER, and no other bad consumer versions.
51
- //
52
- // Version history:
53
- //
54
- // 0. Graphs created before GraphDef versioning
55
- // 1. First real version (2dec2015)
56
- // 2. adjust_contrast only takes float, doesn't perform clamping (11dec2015)
57
- // 3. Remove TileGrad, since it was equivalent to reduce_sum (30dec2015)
58
- // 4. When support for this version is removed, we can safely make AttrValue
59
- // parsing more strict with respect to empty list values (see
60
- // 111635679, 7jan2016).
61
- // 5. Graphs are wholly-validated during Session::Create() (7jan2016).
62
- // 6. TensorFlow is scalar strict within Google (27jan2016).
63
- // 7. Remove TopK in favor of TopKV2 (5feb2016).
64
- // 8. Replace RandomCrop from C++ with pure Python (5feb2016).
65
- // 9. Deprecate batch_norm_with_global_normalization (16feb2016).
66
- // 10. Deprecate conv3d_backprop_{filter,input} (10jun2016).
67
- // 11. Deprecate {batch}_self_adjoint_eig (3aug2016).
68
- // 12. Graph consumers understand the node_def field of FunctionDef (22aug2016).
69
- // 13. Deprecate multiple batch linear algebra ops (9sep2016).
70
- // 14. Deprecate batch_matrix_* ops. (10sep2016).
71
- // 15. Deprecate batch_fft_* ops. (14sep2016).
72
- // 16. Deprecate tensor_array (v1) ops in favor of v2 (10nov2016).
73
- // 17. Deprecate inv (11nov2016).
74
- // 17. Expose reverse_v2 (10nov2016)
75
- // 18. Add VariableV2 (30nov2016)
76
- // 19. Deprecated ops created by models moved out of core SkipGram, NegTrain.
77
- // (08dec2016)
78
- // 20. Catch all version 1.0 changes to Python API generation. SplitV is now
79
- // used for tf.split, ReverseV2 is now used by tf.reverse, ConcatV2 is
80
- // now used by tf.concat. Graphs use flooring
81
- // division and mod semantics. TensorArrayV3. (12dec2016)
82
- // Also considered the version for when it is required for reduction
83
- // ops' indices to be scalar or vector, and not higher rank.
84
- // Some earlier graph def versions allowed this.
85
- // 21. Dropped FunctionDef.Node support, switched to node_def introduced
86
- // in version 12. (11jan2017)
87
- // 22. Placeholder now can specify and enforce scalar and partial
88
- // shapes, particularly when restoring a graph from GraphDef
89
- // produced at version 22 or later. (04/10/2016)
90
- // 23. Remove NonMaxSuppression in favor of NonMaxSuppressionV2.
91
- // 24. Deprecate lookup ops (v1) ops in favor of v2 (30may2017)
92
- // 25. Deprecate stack (v1) ops in favor of v2 (2017/6/15).
93
- // 25. Deprecate RandomPoisson (v1) ops in favor of v2 (2017/10/25).
94
- // 26. Add a bool 'stripped_default_attrs' to MetaInfoDef indicating
95
- // whether default-valued attrs have been stripped from the nodes in the
96
- // GraphDef. (7dec2017)
97
- // 27. Deprecate TensorArray ops v2 in favor of v3 and deprecated io_ops
98
- // deprecated in favor of V2 ops. (2018/01/23)
99
- // 28. Deprecate MatrixExponential op in favor of Python implementation.
100
- // (2018/08/21).
101
- // (2019/02/15). Added `control_ret` field to FunctionDef proto, and
102
- // `control_output` field to OpDef proto.
103
- // 29. Deprecate StatefulStandardNormal op in favor of StatefulStandardNormalV2.
104
- // (2019/03/25).
105
- // (2019/04/17). Added `arg_attr` field to FunctionDefProto.
106
- // 30. (2019/05/09) First date based GraphDef version. GraphDef
107
- // versions advance by 1 each day after this point.
108
-
109
- #define TF_GRAPH_DEF_VERSION_MIN_PRODUCER 0
110
- #define TF_GRAPH_DEF_VERSION_MIN_CONSUMER 0
111
- #define TF_GRAPH_DEF_VERSION 2143 // Updated: 2025/2/19
112
-
113
- // Checkpoint compatibility versions (the versions field in SavedSliceMeta).
114
- //
115
- // The checkpoint versions have the same semantics as GraphDef versions, but the
116
- // numbering scheme is separate. We have no plans to ever deprecate checkpoint
117
- // versions, but it's good to have this in place in case we ever need to.
118
- //
119
- // Version history:
120
- //
121
- // 0. Checkpoints saved before checkpoint versioning.
122
- // 1. First real version (10feb2015).
123
- #define TF_CHECKPOINT_VERSION_MIN_PRODUCER 0
124
- #define TF_CHECKPOINT_VERSION_MIN_CONSUMER 0
125
- #define TF_CHECKPOINT_VERSION 1
126
-
127
- #endif // TENSORFLOW_CORE_PUBLIC_VERSION_H_
1
+ /* Copyright 2015 The TensorFlow Authors. All Rights Reserved.
2
+
3
+ Licensed under the Apache License, Version 2.0 (the "License");
4
+ you may not use this file except in compliance with the License.
5
+ You may obtain a copy of the License at
6
+
7
+ http://www.apache.org/licenses/LICENSE-2.0
8
+
9
+ Unless required by applicable law or agreed to in writing, software
10
+ distributed under the License is distributed on an "AS IS" BASIS,
11
+ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ See the License for the specific language governing permissions and
13
+ limitations under the License.
14
+ ==============================================================================*/
15
+
16
+ #ifndef TENSORFLOW_CORE_PUBLIC_VERSION_H_
17
+ #define TENSORFLOW_CORE_PUBLIC_VERSION_H_
18
+
19
+ // TensorFlow uses semantic versioning, see http://semver.org/.
20
+
21
+ #define TF_STR_HELPER(x) #x
22
+ #define TF_STR(x) TF_STR_HELPER(x)
23
+
24
+ // GraphDef compatibility versions (the versions field in graph.proto).
25
+ //
26
+ // Each graph has producer and min_consumer versions, and each
27
+ // consumer has its own version and a min_producer. In addition, graphs can
28
+ // mark specific consumer versions as bad (to prevent bugs from executing).
29
+ // A consumer will execute a graph if the consumer's version is at least the
30
+ // graph's min_consumer, the graph's producer version is at least the consumer's
31
+ // min_producer, and the consumer version isn't specifically disallowed by the
32
+ // graph.
33
+ //
34
+ // By default, newly created graphs have producer version TF_GRAPH_DEF_VERSION
35
+ // min_consumer TF_GRAPH_DEF_MIN_CONSUMER, and no other bad consumer versions.
36
+ //
37
+ // Version history:
38
+ //
39
+ // 0. Graphs created before GraphDef versioning
40
+ // 1. First real version (2dec2015)
41
+ // 2. adjust_contrast only takes float, doesn't perform clamping (11dec2015)
42
+ // 3. Remove TileGrad, since it was equivalent to reduce_sum (30dec2015)
43
+ // 4. When support for this version is removed, we can safely make AttrValue
44
+ // parsing more strict with respect to empty list values (see
45
+ // 111635679, 7jan2016).
46
+ // 5. Graphs are wholly-validated during Session::Create() (7jan2016).
47
+ // 6. TensorFlow is scalar strict within Google (27jan2016).
48
+ // 7. Remove TopK in favor of TopKV2 (5feb2016).
49
+ // 8. Replace RandomCrop from C++ with pure Python (5feb2016).
50
+ // 9. Deprecate batch_norm_with_global_normalization (16feb2016).
51
+ // 10. Deprecate conv3d_backprop_{filter,input} (10jun2016).
52
+ // 11. Deprecate {batch}_self_adjoint_eig (3aug2016).
53
+ // 12. Graph consumers understand the node_def field of FunctionDef (22aug2016).
54
+ // 13. Deprecate multiple batch linear algebra ops (9sep2016).
55
+ // 14. Deprecate batch_matrix_* ops. (10sep2016).
56
+ // 15. Deprecate batch_fft_* ops. (14sep2016).
57
+ // 16. Deprecate tensor_array (v1) ops in favor of v2 (10nov2016).
58
+ // 17. Deprecate inv (11nov2016).
59
+ // 17. Expose reverse_v2 (10nov2016)
60
+ // 18. Add VariableV2 (30nov2016)
61
+ // 19. Deprecated ops created by models moved out of core SkipGram, NegTrain.
62
+ // (08dec2016)
63
+ // 20. Catch all version 1.0 changes to Python API generation. SplitV is now
64
+ // used for tf.split, ReverseV2 is now used by tf.reverse, ConcatV2 is
65
+ // now used by tf.concat. Graphs use flooring
66
+ // division and mod semantics. TensorArrayV3. (12dec2016)
67
+ // Also considered the version for when it is required for reduction
68
+ // ops' indices to be scalar or vector, and not higher rank.
69
+ // Some earlier graph def versions allowed this.
70
+ // 21. Dropped FunctionDef.Node support, switched to node_def introduced
71
+ // in version 12. (11jan2017)
72
+ // 22. Placeholder now can specify and enforce scalar and partial
73
+ // shapes, particularly when restoring a graph from GraphDef
74
+ // produced at version 22 or later. (04/10/2016)
75
+ // 23. Remove NonMaxSuppression in favor of NonMaxSuppressionV2.
76
+ // 24. Deprecate lookup ops (v1) ops in favor of v2 (30may2017)
77
+ // 25. Deprecate stack (v1) ops in favor of v2 (2017/6/15).
78
+ // 25. Deprecate RandomPoisson (v1) ops in favor of v2 (2017/10/25).
79
+ // 26. Add a bool 'stripped_default_attrs' to MetaInfoDef indicating
80
+ // whether default-valued attrs have been stripped from the nodes in the
81
+ // GraphDef. (7dec2017)
82
+ // 27. Deprecate TensorArray ops v2 in favor of v3 and deprecated io_ops
83
+ // deprecated in favor of V2 ops. (2018/01/23)
84
+ // 28. Deprecate MatrixExponential op in favor of Python implementation.
85
+ // (2018/08/21).
86
+ // (2019/02/15). Added `control_ret` field to FunctionDef proto, and
87
+ // `control_output` field to OpDef proto.
88
+ // 29. Deprecate StatefulStandardNormal op in favor of StatefulStandardNormalV2.
89
+ // (2019/03/25).
90
+ // (2019/04/17). Added `arg_attr` field to FunctionDefProto.
91
+ // 30. (2019/05/09) First date based GraphDef version. GraphDef
92
+ // versions advance by 1 each day after this point.
93
+
94
+ #define TF_GRAPH_DEF_VERSION_MIN_PRODUCER 0
95
+ #define TF_GRAPH_DEF_VERSION_MIN_CONSUMER 0
96
+ #define TF_GRAPH_DEF_VERSION 2145 // Updated: 2025/2/21
97
+
98
+ // Checkpoint compatibility versions (the versions field in SavedSliceMeta).
99
+ //
100
+ // The checkpoint versions have the same semantics as GraphDef versions, but the
101
+ // numbering scheme is separate. We have no plans to ever deprecate checkpoint
102
+ // versions, but it's good to have this in place in case we ever need to.
103
+ //
104
+ // Version history:
105
+ //
106
+ // 0. Checkpoints saved before checkpoint versioning.
107
+ // 1. First real version (10feb2015).
108
+ #define TF_CHECKPOINT_VERSION_MIN_PRODUCER 0
109
+ #define TF_CHECKPOINT_VERSION_MIN_CONSUMER 0
110
+ #define TF_CHECKPOINT_VERSION 1
111
+
112
+ #endif // TENSORFLOW_CORE_PUBLIC_VERSION_H_
@@ -443,7 +443,7 @@ EagerContextThreadLocalData* GetEagerContextThreadLocalData(
443
443
  // wish to destroy thread-local state associated with a single py_eager_context
444
444
  // for multiple threads, then you must call this method from each thread.
445
445
  //
446
- // Thread-local state assocaited with eager contexts is also automatically
446
+ // Thread-local state associated with eager contexts is also automatically
447
447
  // cleaned up when the thread is destroyed.
448
448
  //
449
449
  // This function assumes that the Python GIL is held (and does not perform its
@@ -89,9 +89,10 @@ class KernelApiIrBuilder {
89
89
  // read-only if it is not aliased with any result.
90
90
  absl::flat_hash_set<int64_t> invariant_arguments;
91
91
 
92
- // the set of buffer uses for this kernel, can be empty if buffer
92
+ // The set of buffers used by this kernel, can be empty if buffer assignment
93
93
  // was not provided.
94
- absl::InlinedVector<BufferUse, 8> buffer_uses;
94
+ absl::InlinedVector<BufferAllocation::Slice, 8> argument_buffers;
95
+ absl::InlinedVector<BufferAllocation::Slice, 8> result_buffers;
95
96
  };
96
97
 
97
98
  KernelApiIrBuilder(llvm::LLVMContext& context, Options options);
@@ -22,7 +22,7 @@ limitations under the License.
22
22
  #include <memory>
23
23
  #include <utility>
24
24
 
25
- #include "xla/backends/cpu/runtime/concurrency.h"
25
+ #include "xla/backends/cpu/runtime/work_queue.h"
26
26
  #include "xla/tsl/concurrency/async_value_ref.h"
27
27
  #include "xla/tsl/concurrency/chain.h"
28
28
  #include "xla/tsl/framework/convolution/eigen_spatial_convolutions.h" // IWYU pragma: keep
@@ -30,7 +30,6 @@ limitations under the License.
30
30
 
31
31
  #define EIGEN_USE_THREADS
32
32
  #include "Eigen/Core"
33
- #include "Eigen/ThreadPool"
34
33
  #include "unsupported/Eigen/CXX11/Tensor"
35
34
 
36
35
  namespace xla::cpu::internal {
@@ -384,8 +383,9 @@ void EigenGenericConv2D(
384
383
  auto num_tasks = Eigen::numext::div_ceil(feature_group_count, task_size);
385
384
 
386
385
  if (use_thunk_runtime) {
387
- ScheduleAll(
388
- &device, num_tasks, [=, &device](Eigen::Index task_index) mutable {
386
+ Worker::Parallelize(
387
+ &device, /*num_workers=*/num_tasks, num_tasks,
388
+ [=, &device](Eigen::Index task_index) mutable {
389
389
  Eigen::Index start = task_index * task_size;
390
390
  Eigen::Index end = std::min(start + task_size, feature_group_count);
391
391
  for (Eigen::Index i = start; i < end; ++i) {
@@ -395,18 +395,16 @@ void EigenGenericConv2D(
395
395
  }
396
396
  });
397
397
  } else {
398
- Eigen::Barrier barrier(num_tasks);
399
- ScheduleAll(
400
- &device, num_tasks, [=, &device, &barrier](Eigen::Index task_index) {
398
+ tsl::BlockUntilReady(Worker::Parallelize(
399
+ &device, /*num_workers=*/num_tasks, num_tasks,
400
+ [=, &device](Eigen::Index task_index) {
401
401
  Eigen::Index start = task_index * task_size;
402
402
  Eigen::Index end = std::min(start + task_size, feature_group_count);
403
403
  for (Eigen::Index i = start; i < end; ++i) {
404
404
  auto [output, convolved] = convolve_group(i);
405
405
  output.device(device) = convolved;
406
406
  }
407
- barrier.Notify();
408
- });
409
- barrier.Wait();
407
+ }));
410
408
  }
411
409
 
412
410
  } else {
@@ -63,6 +63,8 @@ class KernelThunkBase : public Thunk {
63
63
  const = 0;
64
64
 
65
65
  virtual absl::Span<const BufferAllocation::Slice> results_buffers() const = 0;
66
+
67
+ virtual const absl::flat_hash_set<int64_t>& invariant_arguments() const = 0;
66
68
  };
67
69
 
68
70
  namespace internal {
@@ -95,6 +97,10 @@ class KernelThunk : public KernelThunkBase {
95
97
  return absl::MakeSpan(results_buffers_);
96
98
  }
97
99
 
100
+ const absl::flat_hash_set<int64_t>& invariant_arguments() const final {
101
+ return invariant_arguments_;
102
+ }
103
+
98
104
  protected:
99
105
  tsl::AsyncValueRef<ExecuteEvent> ExecuteInternal(const ExecuteParams& params);
100
106
 
@@ -129,7 +135,7 @@ class KernelThunk : public KernelThunkBase {
129
135
  KernelThunk(Info info,
130
136
  absl::Span<const BufferAllocation::Slice> arguments_buffers,
131
137
  absl::Span<const BufferAllocation::Slice> results_buffers,
132
- std::optional<absl::flat_hash_set<int64_t>> invariant_arguments,
138
+ absl::flat_hash_set<int64_t> invariant_arguments,
133
139
  std::string kernel_name, se::ThreadDim thread_dim,
134
140
  std::optional<uint64_t> min_alignment);
135
141
 
@@ -139,7 +145,7 @@ class KernelThunk : public KernelThunkBase {
139
145
  ResultsBuffers results_buffers_;
140
146
 
141
147
  // A set of invariant arguments (their indices).
142
- std::optional<absl::flat_hash_set<int64_t>> invariant_arguments_;
148
+ absl::flat_hash_set<int64_t> invariant_arguments_;
143
149
 
144
150
  size_t num_kernel_args_;
145
151
 
@@ -189,7 +195,7 @@ class KernelThunk final : public internal::KernelThunk<> {
189
195
  absl::Span<const BufferAllocation::Slice> arguments_buffers,
190
196
  absl::Span<const BufferAllocation::Slice> results_buffers,
191
197
  std::string kernel_name, se::ThreadDim thread_dim,
192
- std::optional<absl::flat_hash_set<int64_t>> invariant_arguments,
198
+ absl::flat_hash_set<int64_t> invariant_arguments,
193
199
  std::optional<uint64_t> min_alignment = std::nullopt);
194
200
 
195
201
  static absl::StatusOr<std::unique_ptr<Thunk>> Create(