tf-nightly-cpu 2.20.0.dev20250220__cp310-cp310-win_amd64.whl → 2.20.0.dev20250222__cp310-cp310-win_amd64.whl

Sign up to get free protection for your applications and to get access to all the features.
Files changed (128) hide show
  1. tensorflow/_api/v2/compat/v1/summary/__init__.py +2 -2
  2. tensorflow/_api/v2/compat/v1/tpu/experimental/embedding/__init__.py +2 -2
  3. tensorflow/_api/v2/compat/v2/summary/__init__.py +10 -10
  4. tensorflow/_api/v2/compat/v2/summary/experimental/__init__.py +4 -4
  5. tensorflow/_api/v2/compat/v2/tpu/experimental/embedding/__init__.py +2 -2
  6. tensorflow/_api/v2/summary/__init__.py +10 -10
  7. tensorflow/_api/v2/summary/experimental/__init__.py +4 -4
  8. tensorflow/_api/v2/tpu/experimental/embedding/__init__.py +2 -2
  9. tensorflow/compiler/mlir/stablehlo/stablehlo_extension.pyd +0 -0
  10. tensorflow/compiler/tf2tensorrt/_pywrap_py_utils.pyd +0 -0
  11. tensorflow/compiler/tf2xla/ops/_xla_ops.so +0 -0
  12. tensorflow/include/external/llvm-project/mlir/include/mlir/Analysis/DataFlow/IntegerRangeAnalysis.h +12 -0
  13. tensorflow/include/external/llvm-project/mlir/include/mlir/Dialect/Math/IR/MathOps.h.inc +4 -0
  14. tensorflow/include/external/shardy/shardy/dialect/sdy/transforms/propagation/aggressive_factor_propagation.h +9 -0
  15. tensorflow/include/external/stablehlo/_virtual_includes/stablehlo_pass_utils/stablehlo/transforms/PassUtils.h +7 -0
  16. tensorflow/include/external/stablehlo/_virtual_includes/stablehlo_passes/stablehlo/transforms/PassUtils.h +7 -0
  17. tensorflow/include/external/stablehlo/_virtual_includes/version/stablehlo/dialect/Version.h +1 -1
  18. tensorflow/include/external/stablehlo/stablehlo/dialect/Version.h +1 -1
  19. tensorflow/include/external/stablehlo/stablehlo/transforms/PassUtils.h +7 -0
  20. tensorflow/include/tensorflow/compiler/xla/backends/cpu/codegen/kernel_api_ir_builder.h +3 -2
  21. tensorflow/include/tensorflow/compiler/xla/backends/cpu/runtime/convolution_thunk_internal.h +8 -10
  22. tensorflow/include/tensorflow/compiler/xla/backends/cpu/runtime/kernel_thunk.h +9 -3
  23. tensorflow/include/tensorflow/compiler/xla/backends/cpu/runtime/work_queue.h +81 -19
  24. tensorflow/include/tensorflow/compiler/xla/codegen/kernel_spec.h +24 -7
  25. tensorflow/include/tensorflow/compiler/xla/hlo/ir/hlo_casting_utils.h +0 -44
  26. tensorflow/include/tensorflow/compiler/xla/hlo/ir/hlo_instruction.h +12 -0
  27. tensorflow/include/tensorflow/compiler/xla/mlir_hlo/_virtual_includes/stablehlo_extension_pass_inc_gen/stablehlo_ext/transforms/passes.h.inc +149 -4
  28. tensorflow/include/tensorflow/compiler/xla/mlir_hlo/stablehlo_ext/transforms/passes.h.inc +149 -4
  29. tensorflow/include/tensorflow/compiler/xla/pjrt/distributed/client.h +5 -0
  30. tensorflow/include/tensorflow/compiler/xla/pjrt/gpu/se_gpu_pjrt_client.h +1 -92
  31. tensorflow/include/tensorflow/compiler/xla/pjrt/gpu/se_gpu_topology_description.h +126 -0
  32. tensorflow/include/tensorflow/compiler/xla/pjrt/pjrt_stream_executor_client.h +1 -49
  33. tensorflow/include/tensorflow/compiler/xla/pjrt/pjrt_stream_executor_device_description.h +75 -0
  34. tensorflow/include/tensorflow/compiler/xla/pjrt/plugin/xla_cpu/cpu_execute_options.h +57 -0
  35. tensorflow/include/tensorflow/compiler/xla/pjrt/plugin/xla_cpu/cpu_topology.h +4 -0
  36. tensorflow/include/tensorflow/compiler/xla/service/constant_value.h +1 -0
  37. tensorflow/include/tensorflow/compiler/xla/service/hlo_module_util.h +52 -1
  38. tensorflow/include/tensorflow/compiler/xla/service/hlo_proto_util.h +0 -12
  39. tensorflow/include/tensorflow/compiler/xla/tsl/concurrency/async_value.h +50 -21
  40. tensorflow/include/tensorflow/compiler/xla/tsl/framework/convolution/eigen_spatial_convolutions-inl.h +5 -5
  41. tensorflow/include/tensorflow/core/kernels/data/experimental/random_access_ops.h +0 -2
  42. tensorflow/include/tensorflow/core/kernels/eigen_attention.h +4 -4
  43. tensorflow/include/tensorflow/core/kernels/eigen_backward_cuboid_convolutions.h +6 -6
  44. tensorflow/include/tensorflow/core/kernels/eigen_backward_spatial_convolutions.h +10 -8
  45. tensorflow/include/tensorflow/core/kernels/eigen_cuboid_convolution.h +6 -6
  46. tensorflow/include/tensorflow/core/kernels/eigen_pooling.h +12 -12
  47. tensorflow/include/tensorflow/core/public/release_version.h +39 -0
  48. tensorflow/include/tensorflow/core/public/version.h +112 -127
  49. tensorflow/include/tensorflow/python/eager/pywrap_tfe.h +1 -1
  50. tensorflow/include/xla/backends/cpu/codegen/kernel_api_ir_builder.h +3 -2
  51. tensorflow/include/xla/backends/cpu/runtime/convolution_thunk_internal.h +8 -10
  52. tensorflow/include/xla/backends/cpu/runtime/kernel_thunk.h +9 -3
  53. tensorflow/include/xla/backends/cpu/runtime/work_queue.h +81 -19
  54. tensorflow/include/xla/codegen/kernel_spec.h +24 -7
  55. tensorflow/include/xla/hlo/ir/hlo_casting_utils.h +0 -44
  56. tensorflow/include/xla/hlo/ir/hlo_instruction.h +12 -0
  57. tensorflow/include/xla/mlir_hlo/_virtual_includes/stablehlo_extension_pass_inc_gen/stablehlo_ext/transforms/passes.h.inc +149 -4
  58. tensorflow/include/xla/mlir_hlo/stablehlo_ext/transforms/passes.h.inc +149 -4
  59. tensorflow/include/xla/pjrt/distributed/client.h +5 -0
  60. tensorflow/include/xla/pjrt/gpu/se_gpu_pjrt_client.h +1 -92
  61. tensorflow/include/xla/pjrt/gpu/se_gpu_topology_description.h +126 -0
  62. tensorflow/include/xla/pjrt/pjrt_stream_executor_client.h +1 -49
  63. tensorflow/include/xla/pjrt/pjrt_stream_executor_device_description.h +75 -0
  64. tensorflow/include/xla/pjrt/plugin/xla_cpu/cpu_execute_options.h +57 -0
  65. tensorflow/include/xla/pjrt/plugin/xla_cpu/cpu_topology.h +4 -0
  66. tensorflow/include/xla/service/constant_value.h +1 -0
  67. tensorflow/include/xla/service/hlo_module_util.h +52 -1
  68. tensorflow/include/xla/service/hlo_proto_util.h +0 -12
  69. tensorflow/include/xla/tsl/concurrency/async_value.h +50 -21
  70. tensorflow/include/xla/tsl/framework/convolution/eigen_spatial_convolutions-inl.h +5 -5
  71. tensorflow/lite/experimental/microfrontend/python/ops/_audio_microfrontend_op.so +0 -0
  72. tensorflow/lite/python/analyzer_wrapper/_pywrap_analyzer_wrapper.pyd +0 -0
  73. tensorflow/lite/python/interpreter_wrapper/_pywrap_tensorflow_interpreter_wrapper.pyd +0 -0
  74. tensorflow/lite/python/optimize/_pywrap_tensorflow_lite_calibration_wrapper.pyd +0 -0
  75. tensorflow/python/_pywrap_dtensor_device.pyd +0 -0
  76. tensorflow/python/_pywrap_mlir.pyd +0 -0
  77. tensorflow/python/_pywrap_parallel_device.pyd +0 -0
  78. tensorflow/python/_pywrap_quantize_training.pyd +0 -0
  79. tensorflow/python/_pywrap_tensorflow_internal.pyd +0 -0
  80. tensorflow/python/_pywrap_tfcompile.pyd +0 -0
  81. tensorflow/python/_pywrap_tfe.pyd +0 -0
  82. tensorflow/python/client/_pywrap_debug_events_writer.pyd +0 -0
  83. tensorflow/python/client/_pywrap_device_lib.pyd +0 -0
  84. tensorflow/python/client/_pywrap_events_writer.pyd +0 -0
  85. tensorflow/python/client/_pywrap_tf_session.pyd +0 -0
  86. tensorflow/python/compat/compat.py +1 -1
  87. tensorflow/python/data/experimental/service/_pywrap_server_lib.pyd +0 -0
  88. tensorflow/python/eager/imperative_grad.py +5 -5
  89. tensorflow/python/eager/polymorphic_function/atomic_function.py +1 -1
  90. tensorflow/python/eager/polymorphic_function/compiler_ir.py +1 -1
  91. tensorflow/python/eager/polymorphic_function/polymorphic_function.py +45 -41
  92. tensorflow/python/eager/tape.py +2 -2
  93. tensorflow/python/framework/_dtypes.pyd +0 -0
  94. tensorflow/python/framework/_op_def_library_pybind.pyd +0 -0
  95. tensorflow/python/framework/_op_def_registry.pyd +0 -0
  96. tensorflow/python/framework/_proto_comparators.pyd +0 -0
  97. tensorflow/python/framework/_pywrap_python_op_gen.pyd +0 -0
  98. tensorflow/python/framework/_test_metrics_util.pyd +0 -0
  99. tensorflow/python/grappler/_pywrap_tf_cluster.pyd +0 -0
  100. tensorflow/python/grappler/_pywrap_tf_item.pyd +0 -0
  101. tensorflow/python/grappler/_pywrap_tf_optimizer.pyd +0 -0
  102. tensorflow/python/lib/core/_pywrap_py_func.pyd +0 -0
  103. tensorflow/python/lib/io/_pywrap_file_io.pyd +0 -0
  104. tensorflow/python/lib/io/_pywrap_record_io.pyd +0 -0
  105. tensorflow/python/ops/summary_ops_v2.py +5 -1
  106. tensorflow/python/profiler/internal/_pywrap_profiler.pyd +0 -0
  107. tensorflow/python/profiler/internal/_pywrap_profiler_plugin.pyd +0 -0
  108. tensorflow/python/saved_model/pywrap_saved_model.pyd +0 -0
  109. tensorflow/python/tpu/_pywrap_sparse_core_layout.pyd +0 -0
  110. tensorflow/python/tpu/_pywrap_tpu_embedding.pyd +0 -0
  111. tensorflow/python/tpu/tpu_embedding_v3.py +14 -7
  112. tensorflow/python/tpu/tpu_embedding_v3_checkpoint_adapter.py +10 -1
  113. tensorflow/python/util/_pywrap_checkpoint_reader.pyd +0 -0
  114. tensorflow/python/util/_pywrap_kernel_registry.pyd +0 -0
  115. tensorflow/python/util/_pywrap_stat_summarizer.pyd +0 -0
  116. tensorflow/python/util/_pywrap_tfprof.pyd +0 -0
  117. tensorflow/python/util/_pywrap_transform_graph.pyd +0 -0
  118. tensorflow/python/util/_pywrap_utils.pyd +0 -0
  119. tensorflow/python/util/_tf_stack.pyd +0 -0
  120. tensorflow/tools/pip_package/setup.py +2 -2
  121. tensorflow/xla_aot_runtime_src/xla/tsl/concurrency/async_value.cc +26 -51
  122. {tf_nightly_cpu-2.20.0.dev20250220.dist-info → tf_nightly_cpu-2.20.0.dev20250222.dist-info}/METADATA +1 -1
  123. {tf_nightly_cpu-2.20.0.dev20250220.dist-info → tf_nightly_cpu-2.20.0.dev20250222.dist-info}/RECORD +126 -121
  124. tensorflow/include/tensorflow/compiler/xla/backends/cpu/runtime/concurrency.h +0 -77
  125. tensorflow/include/xla/backends/cpu/runtime/concurrency.h +0 -77
  126. {tf_nightly_cpu-2.20.0.dev20250220.dist-info → tf_nightly_cpu-2.20.0.dev20250222.dist-info}/WHEEL +0 -0
  127. {tf_nightly_cpu-2.20.0.dev20250220.dist-info → tf_nightly_cpu-2.20.0.dev20250222.dist-info}/entry_points.txt +0 -0
  128. {tf_nightly_cpu-2.20.0.dev20250220.dist-info → tf_nightly_cpu-2.20.0.dev20250222.dist-info}/top_level.txt +0 -0
@@ -29,7 +29,6 @@ limitations under the License.
29
29
  #include "absl/base/attributes.h"
30
30
  #include "absl/base/optimization.h"
31
31
  #include "absl/container/fixed_array.h"
32
- #include "absl/log/check.h"
33
32
  #include "absl/status/status.h"
34
33
  #include "xla/tsl/concurrency/async_value_ref.h"
35
34
  #include "xla/tsl/concurrency/chain.h"
@@ -44,15 +43,6 @@ namespace xla::cpu {
44
43
  // A work queue that partitions `num_tasks` tasks into `num_partitions`
45
44
  // partitions processed by parallel workers.
46
45
  class WorkQueue {
47
- // Align all atomic counters to a cache line boundary to avoid false
48
- // sharing between multiple worker threads.
49
- static constexpr size_t kAtomicAlignment =
50
- #if defined(__cpp_lib_hardware_interference_size)
51
- std::hardware_destructive_interference_size;
52
- #else
53
- 64;
54
- #endif
55
-
56
46
  public:
57
47
  WorkQueue(size_t num_tasks, size_t num_partitions);
58
48
 
@@ -60,13 +50,23 @@ class WorkQueue {
60
50
  // if the partition is complete.
61
51
  std::optional<size_t> Pop(size_t partition_index);
62
52
 
63
- size_t num_partitions() const { return partitions_.size(); }
53
+ // Return the partition [begin, end) task range.
54
+ std::pair<size_t, size_t> partition_range(size_t partition_index) const;
64
55
 
65
- bool empty() const { return empty_.load(std::memory_order_relaxed); }
56
+ size_t num_partitions() const { return partitions_.size(); }
66
57
 
67
58
  private:
68
59
  friend class Worker;
69
60
 
61
+ // Align all atomic counters to a cache line boundary to avoid false
62
+ // sharing between multiple worker threads.
63
+ static constexpr size_t kAtomicAlignment =
64
+ #if defined(__cpp_lib_hardware_interference_size)
65
+ std::hardware_destructive_interference_size;
66
+ #else
67
+ 64;
68
+ #endif
69
+
70
70
  struct Partition {
71
71
  void Initialize(size_t begin, size_t end);
72
72
 
@@ -76,8 +76,21 @@ class WorkQueue {
76
76
  size_t end;
77
77
  };
78
78
 
79
+ // An empty work queue flag to stop worker threads from looping through all
80
+ // partitions looking for work.
81
+ bool IsEmpty() const { return empty_.load(std::memory_order_relaxed); }
82
+ void SetEmpty() { empty_.store(true, std::memory_order_relaxed); }
83
+
84
+ // Notify that one of the workers switched to the work stealing mode.
85
+ void NotifyWorkStealingWorker();
86
+
87
+ // Decrements the number of work stealing workers by at most `max_workers` and
88
+ // returns the number of decremented work stealing workers.
89
+ size_t DecrementWorkStealingWorkers(size_t max_workers);
90
+
79
91
  absl::FixedArray<Partition, 32> partitions_;
80
92
  alignas(kAtomicAlignment) std::atomic<bool> empty_;
93
+ alignas(kAtomicAlignment) std::atomic<size_t> num_work_stealing_workers_;
81
94
  };
82
95
 
83
96
  // Worker processes tasks from the work queue starting from the assigned
@@ -130,10 +143,14 @@ inline void WorkQueue::Partition::Initialize(size_t begin, size_t end) {
130
143
  }
131
144
 
132
145
  inline WorkQueue::WorkQueue(size_t num_tasks, size_t num_partitions)
133
- : partitions_(num_partitions), empty_(num_tasks == 0) {
134
- size_t partition_size = tsl::MathUtil::CeilOfRatio(num_tasks, num_partitions);
135
- for (size_t i = 0, begin = 0, end = partition_size; i < num_partitions;
136
- ++i, begin = end, end = std::min(num_tasks, end + partition_size)) {
146
+ : partitions_(num_partitions),
147
+ empty_(num_tasks == 0),
148
+ num_work_stealing_workers_(0) {
149
+ size_t partition_size =
150
+ tsl::MathUtil::FloorOfRatio(num_tasks, num_partitions);
151
+ size_t rem_tasks = num_tasks % num_partitions;
152
+ for (size_t i = 0, begin = 0, end = 0; i < num_partitions; ++i, begin = end) {
153
+ end = begin + partition_size + ((i < rem_tasks) ? 1 : 0);
137
154
  partitions_[i].Initialize(begin, end);
138
155
  }
139
156
  }
@@ -154,6 +171,29 @@ inline std::optional<size_t> WorkQueue::Pop(size_t partition_index) {
154
171
  : std::make_optional(index);
155
172
  }
156
173
 
174
+ inline std::pair<size_t, size_t> WorkQueue::partition_range(
175
+ size_t partition_index) const {
176
+ DCHECK(partition_index < partitions_.size()) << "Invalid partition index";
177
+ return {partitions_[partition_index].begin, partitions_[partition_index].end};
178
+ }
179
+
180
+ inline void WorkQueue::NotifyWorkStealingWorker() {
181
+ num_work_stealing_workers_.fetch_add(1, std::memory_order_relaxed);
182
+ }
183
+
184
+ inline size_t WorkQueue::DecrementWorkStealingWorkers(size_t max_workers) {
185
+ size_t n = num_work_stealing_workers_.load(std::memory_order_relaxed);
186
+
187
+ size_t decrement = std::min(n, max_workers);
188
+ while (decrement && !num_work_stealing_workers_.compare_exchange_weak(
189
+ n, n - decrement, std::memory_order_relaxed,
190
+ std::memory_order_relaxed)) {
191
+ decrement = std::min(n, max_workers);
192
+ }
193
+
194
+ return decrement;
195
+ }
196
+
157
197
  inline Worker::Worker(size_t worker_index, WorkQueue* queue)
158
198
  : worker_index_(worker_index),
159
199
  partition_index_(worker_index),
@@ -163,7 +203,13 @@ inline std::optional<size_t> Worker::Pop() {
163
203
  std::optional<size_t> task = queue_->Pop(partition_index_);
164
204
  if (ABSL_PREDICT_TRUE(task)) return task;
165
205
 
166
- while (!task.has_value() && !queue_->empty()) {
206
+ // If we didn't find a task in the initially assigned partition, notify the
207
+ // work queue that we are switching to work stealing mode.
208
+ if (ABSL_PREDICT_FALSE(partition_index_ == worker_index_)) {
209
+ queue_->NotifyWorkStealingWorker();
210
+ }
211
+
212
+ while (!task.has_value() && !queue_->IsEmpty()) {
167
213
  // Wrap around to the first partition.
168
214
  if (ABSL_PREDICT_FALSE(++partition_index_ >= queue_->num_partitions())) {
169
215
  partition_index_ = 0;
@@ -171,7 +217,7 @@ inline std::optional<size_t> Worker::Pop() {
171
217
 
172
218
  // We checked all partitions and got back to the partition we started from.
173
219
  if (ABSL_PREDICT_FALSE(partition_index_ == worker_index_)) {
174
- queue_->empty_.store(true, std::memory_order_relaxed);
220
+ queue_->SetEmpty();
175
221
  break;
176
222
  }
177
223
 
@@ -205,6 +251,7 @@ Worker::ParallelizeContext<ParallelTask>::ParallelizeContext(
205
251
  parallel_task(std::forward<ParallelTask>(parallel_task)) {}
206
252
 
207
253
  template <typename ParallelTask>
254
+ // NOLINTNEXTLINE(readability-function-cognitive-complexity)
208
255
  void Worker::ParallelizeWithContext(ParallelizeContext<ParallelTask>* ctx,
209
256
  uint16_t start_index, uint16_t end_index) {
210
257
  DCHECK_LT(start_index, end_index) << "Invalid worker index range";
@@ -223,11 +270,26 @@ void Worker::ParallelizeWithContext(ParallelizeContext<ParallelTask>* ctx,
223
270
  while (end_index - start_index > 1) {
224
271
  // If work queue is empty, we don't need to keep enqueuing more workers and
225
272
  // can simply count down for the remaining workers.
226
- if (ABSL_PREDICT_FALSE(ctx->work_queue.empty())) {
273
+ if (ABSL_PREDICT_FALSE(ctx->work_queue.IsEmpty())) {
227
274
  count_down(end_index - start_index, absl::OkStatus());
228
275
  return;
229
276
  }
230
277
 
278
+ // If we have workers in the work stealing mode, we can skip enqueuing
279
+ // more tasks as existing workers will process remaining partitions. By
280
+ // doing this optimization we avoid unnecessary thread pool overheads.
281
+ size_t skip_workers =
282
+ ctx->work_queue.DecrementWorkStealingWorkers(end_index - start_index);
283
+ if (ABSL_PREDICT_FALSE(skip_workers > 0)) {
284
+ DCHECK_LE(skip_workers, end_index - start_index);
285
+ count_down(skip_workers, absl::OkStatus());
286
+
287
+ end_index -= skip_workers;
288
+ if (start_index == end_index) return;
289
+ if (end_index - start_index == 1) break;
290
+ }
291
+
292
+ DCHECK_GE(end_index - start_index, 1);
231
293
  uint16_t mid_index = (start_index + end_index) / 2;
232
294
  ctx->device->enqueueNoNotification([ctx, mid_index, end_index] {
233
295
  ParallelizeWithContext(ctx, mid_index, end_index);
@@ -17,12 +17,14 @@ limitations under the License.
17
17
  #define XLA_CODEGEN_KERNEL_SPEC_H_
18
18
 
19
19
  #include <cstddef>
20
+ #include <cstdint>
20
21
  #include <optional>
21
22
  #include <string>
22
23
 
24
+ #include "absl/container/flat_hash_set.h"
23
25
  #include "absl/container/inlined_vector.h"
24
26
  #include "absl/strings/string_view.h"
25
- #include "xla/runtime/buffer_use.h"
27
+ #include "xla/service/buffer_assignment.h"
26
28
  #include "xla/stream_executor/launch_dim.h"
27
29
 
28
30
  namespace xla {
@@ -33,15 +35,17 @@ namespace xla {
33
35
  // will load kernel PTX on device and instantiate a KernelThunk.
34
36
  class KernelSpec {
35
37
  public:
36
- using BufferUses = absl::InlinedVector<BufferUse, 8>;
38
+ using Buffers = absl::InlinedVector<BufferAllocation::Slice, 8>;
37
39
 
38
40
  KernelSpec(absl::string_view name, se::ThreadDim thread_dim,
39
- BufferUses buffer_uses,
41
+ Buffers argument_buffers, Buffers result_buffers,
42
+ absl::flat_hash_set<int64_t> invariant_arguments,
40
43
  std::optional<size_t> scratch_bytes = std::nullopt);
41
44
 
42
45
  KernelSpec(absl::string_view name, se::ClusterDim cluster_dim,
43
46
  se::BlockDim block_dim, se::ThreadDim thread_dim,
44
- BufferUses buffer_uses,
47
+ Buffers argument_buffers, Buffers result_buffers,
48
+ absl::flat_hash_set<int64_t> invariant_arguments,
45
49
  std::optional<size_t> scratch_bytes = std::nullopt);
46
50
 
47
51
  // Get the backend specific name of the kernel.
@@ -67,15 +71,28 @@ class KernelSpec {
67
71
  // managed buffer that is likely to be in L1/L2 cache).
68
72
  std::optional<size_t> scratch_bytes() const { return scratch_bytes_; }
69
73
 
70
- // Buffers (buffer allocation slices) used by the kernel.
71
- const BufferUses& buffer_uses() const { return buffer_uses_; }
74
+ // Argument buffers read by the kernel.
75
+ const Buffers& argument_buffers() const { return argument_buffers_; }
76
+ // Result buffers written to by the kernel.
77
+ const Buffers& result_buffers() const { return result_buffers_; }
78
+
79
+ // Returns a set of invariant arguments (corresponding to the indices in the
80
+ // argument buffers list).
81
+ const absl::flat_hash_set<int64_t>& invariant_arguments() const {
82
+ return invariant_arguments_;
83
+ }
72
84
 
73
85
  private:
74
86
  std::string name_;
75
87
  se::ClusterDim cluster_dim_;
76
88
  se::BlockDim block_dim_;
77
89
  se::ThreadDim thread_dim_;
78
- BufferUses buffer_uses_;
90
+
91
+ Buffers argument_buffers_;
92
+ Buffers result_buffers_;
93
+
94
+ absl::flat_hash_set<int64_t> invariant_arguments_;
95
+
79
96
  std::optional<size_t> scratch_bytes_;
80
97
  };
81
98
 
@@ -44,28 +44,6 @@ T* Cast(HloInstruction* instr) {
44
44
  return tsl::down_cast<T*>(instr);
45
45
  }
46
46
 
47
- // Downcasts a const HloInstruction pointer or returns nullptr if argument is
48
- // nullptr. Dies if TargetClass::ClassOf() does not match.
49
- template <typename T>
50
- const T* CastOrNull(const HloInstruction* i) {
51
- if (i == nullptr) {
52
- return nullptr;
53
- }
54
- CHECK(T::ClassOf(i));
55
- return tsl::down_cast<const T*>(i);
56
- }
57
-
58
- // Downcasts a const HloInstruction pointer or returns nullptr if argument is
59
- // nullptr. Dies if TargetClass::ClassOf() does not match.
60
- template <typename T>
61
- T* CastOrNull(HloInstruction* i) {
62
- if (i == nullptr) {
63
- return nullptr;
64
- }
65
- CHECK(T::ClassOf(i));
66
- return tsl::down_cast<T*>(i);
67
- }
68
-
69
47
  // Downcasts a const HloInstruction pointer or returns nullptr if
70
48
  // TargetClass::ClassOf() does not match. Dies if argument is nullptr. Similar
71
49
  // to LLVM's dyn_cast.
@@ -84,28 +62,6 @@ T* DynCast(HloInstruction* i) {
84
62
  return !T::ClassOf(i) ? nullptr : tsl::down_cast<T*>(i);
85
63
  }
86
64
 
87
- // Downcasts a const HloInstruction pointer. Return nullptr if argument is
88
- // nullptr orTargetClass::ClassOf() does not match. Similar to LLVM's
89
- // dyn_cast_or_null.
90
- template <typename T>
91
- const T* DynCastOrNull(const HloInstruction* instruction) {
92
- if (instruction == nullptr || !T::ClassOf(instruction)) {
93
- return nullptr;
94
- }
95
- return tsl::down_cast<const T*>(instruction);
96
- }
97
-
98
- // Downcasts a non-const HloInstruction pointer. Return nullptr if argument is
99
- // nullptr orTargetClass::ClassOf() does not match. Similar to LLVM's
100
- // dyn_cast_or_null.
101
- template <typename T>
102
- T* DynCastOrNull(HloInstruction* instruction) {
103
- if (instruction == nullptr || !T::ClassOf(instruction)) {
104
- return nullptr;
105
- }
106
- return tsl::down_cast<T*>(instruction);
107
- }
108
-
109
65
  } // namespace xla
110
66
 
111
67
  #endif // XLA_HLO_IR_HLO_CASTING_UTILS_H_
@@ -1914,6 +1914,18 @@ class HloInstruction {
1914
1914
  result_accuracy().mode() != ResultAccuracy::DEFAULT);
1915
1915
  }
1916
1916
 
1917
+ bool equal_result_accuracy(const HloInstruction* other) const {
1918
+ return result_accuracy().has_tolerance() ==
1919
+ other->result_accuracy().has_tolerance() &&
1920
+ result_accuracy().tolerance().atol() ==
1921
+ other->result_accuracy().tolerance().atol() &&
1922
+ result_accuracy().tolerance().rtol() ==
1923
+ other->result_accuracy().tolerance().rtol() &&
1924
+ result_accuracy().tolerance().ulps() ==
1925
+ other->result_accuracy().tolerance().ulps() &&
1926
+ result_accuracy().mode() == other->result_accuracy().mode();
1927
+ }
1928
+
1917
1929
  void add_single_statistic(Statistic statistic) {
1918
1930
  *mutable_rare()->statistics_viz.add_statistics() = std::move(statistic);
1919
1931
  }
@@ -3,6 +3,7 @@
3
3
  #ifdef GEN_PASS_DECL
4
4
  // Generate declarations for all passes.
5
5
  #define GEN_PASS_DECL_CHLORECOMPOSEOPSPASS
6
+ #define GEN_PASS_DECL_STABLEHLOADDQDQAFTERCONVPASS
6
7
  #define GEN_PASS_DECL_STABLEHLOCANONICALIZEDYNAMISMPASS
7
8
  #define GEN_PASS_DECL_STABLEHLOFLATTENENTRYFUNCTIONTUPLESPASS
8
9
  #define GEN_PASS_DECL_STABLEHLOFLATTENTUPLEPASS
@@ -87,6 +88,82 @@ std::unique_ptr<::mlir::Pass> createChloRecomposeOpsPass() {
87
88
  #undef GEN_PASS_DEF_CHLORECOMPOSEOPSPASS
88
89
  #endif // GEN_PASS_DEF_CHLORECOMPOSEOPSPASS
89
90
 
91
+ //===----------------------------------------------------------------------===//
92
+ // StablehloAddQDQAfterConvPass
93
+ //===----------------------------------------------------------------------===//
94
+ #ifdef GEN_PASS_DECL_STABLEHLOADDQDQAFTERCONVPASS
95
+ std::unique_ptr<::mlir::Pass> createStablehloAddQDQAfterConvPass();
96
+ #undef GEN_PASS_DECL_STABLEHLOADDQDQAFTERCONVPASS
97
+ #endif // GEN_PASS_DECL_STABLEHLOADDQDQAFTERCONVPASS
98
+ #ifdef GEN_PASS_DEF_STABLEHLOADDQDQAFTERCONVPASS
99
+
100
+ namespace impl {
101
+ std::unique_ptr<::mlir::Pass> createStablehloAddQDQAfterConvPass();
102
+ } // namespace impl
103
+ namespace impl {
104
+
105
+ template <typename DerivedT>
106
+ class StablehloAddQDQAfterConvPassBase : public ::mlir::OperationPass<ModuleOp> {
107
+ public:
108
+ using Base = StablehloAddQDQAfterConvPassBase;
109
+
110
+ StablehloAddQDQAfterConvPassBase() : ::mlir::OperationPass<ModuleOp>(::mlir::TypeID::get<DerivedT>()) {}
111
+ StablehloAddQDQAfterConvPassBase(const StablehloAddQDQAfterConvPassBase &other) : ::mlir::OperationPass<ModuleOp>(other) {}
112
+ StablehloAddQDQAfterConvPassBase& operator=(const StablehloAddQDQAfterConvPassBase &) = delete;
113
+ StablehloAddQDQAfterConvPassBase(StablehloAddQDQAfterConvPassBase &&) = delete;
114
+ StablehloAddQDQAfterConvPassBase& operator=(StablehloAddQDQAfterConvPassBase &&) = delete;
115
+ ~StablehloAddQDQAfterConvPassBase() = default;
116
+
117
+ /// Returns the command-line argument attached to this pass.
118
+ static constexpr ::llvm::StringLiteral getArgumentName() {
119
+ return ::llvm::StringLiteral("stablehlo-ext-add-qdq-after-conv");
120
+ }
121
+ ::llvm::StringRef getArgument() const override { return "stablehlo-ext-add-qdq-after-conv"; }
122
+
123
+ ::llvm::StringRef getDescription() const override { return "Add quant and dequant ops after convolution op."; }
124
+
125
+ /// Returns the derived pass name.
126
+ static constexpr ::llvm::StringLiteral getPassName() {
127
+ return ::llvm::StringLiteral("StablehloAddQDQAfterConvPass");
128
+ }
129
+ ::llvm::StringRef getName() const override { return "StablehloAddQDQAfterConvPass"; }
130
+
131
+ /// Support isa/dyn_cast functionality for the derived pass class.
132
+ static bool classof(const ::mlir::Pass *pass) {
133
+ return pass->getTypeID() == ::mlir::TypeID::get<DerivedT>();
134
+ }
135
+
136
+ /// A clone method to create a copy of this pass.
137
+ std::unique_ptr<::mlir::Pass> clonePass() const override {
138
+ return std::make_unique<DerivedT>(*static_cast<const DerivedT *>(this));
139
+ }
140
+
141
+ /// Return the dialect that must be loaded in the context before this pass.
142
+ void getDependentDialects(::mlir::DialectRegistry &registry) const override {
143
+ registry.insert<mlir::quant::QuantDialect>();
144
+ registry.insert<stablehlo::StablehloDialect>();
145
+ }
146
+
147
+ /// Explicitly declare the TypeID for this class. We declare an explicit private
148
+ /// instantiation because Pass classes should only be visible by the current
149
+ /// library.
150
+ MLIR_DEFINE_EXPLICIT_INTERNAL_INLINE_TYPE_ID(StablehloAddQDQAfterConvPassBase<DerivedT>)
151
+
152
+ protected:
153
+ private:
154
+
155
+ friend std::unique_ptr<::mlir::Pass> createStablehloAddQDQAfterConvPass() {
156
+ return std::make_unique<DerivedT>();
157
+ }
158
+ };
159
+ } // namespace impl
160
+
161
+ std::unique_ptr<::mlir::Pass> createStablehloAddQDQAfterConvPass() {
162
+ return impl::createStablehloAddQDQAfterConvPass();
163
+ }
164
+ #undef GEN_PASS_DEF_STABLEHLOADDQDQAFTERCONVPASS
165
+ #endif // GEN_PASS_DEF_STABLEHLOADDQDQAFTERCONVPASS
166
+
90
167
  //===----------------------------------------------------------------------===//
91
168
  // StablehloCanonicalizeDynamismPass
92
169
  //===----------------------------------------------------------------------===//
@@ -360,9 +437,9 @@ public:
360
437
 
361
438
  /// Returns the command-line argument attached to this pass.
362
439
  static constexpr ::llvm::StringLiteral getArgumentName() {
363
- return ::llvm::StringLiteral("legalize-quant-composite");
440
+ return ::llvm::StringLiteral("stablehlo-ext-legalize-quant-composite");
364
441
  }
365
- ::llvm::StringRef getArgument() const override { return "legalize-quant-composite"; }
442
+ ::llvm::StringRef getArgument() const override { return "stablehlo-ext-legalize-quant-composite"; }
366
443
 
367
444
  ::llvm::StringRef getDescription() const override { return "Lowers the quantization related composites op to native quantized ops."; }
368
445
 
@@ -576,6 +653,23 @@ inline void registerChloRecomposeOpsPassPass() {
576
653
  });
577
654
  }
578
655
 
656
+ //===----------------------------------------------------------------------===//
657
+ // StablehloAddQDQAfterConvPass Registration
658
+ //===----------------------------------------------------------------------===//
659
+
660
+ inline void registerStablehloAddQDQAfterConvPass() {
661
+ ::mlir::registerPass([]() -> std::unique_ptr<::mlir::Pass> {
662
+ return createStablehloAddQDQAfterConvPass();
663
+ });
664
+ }
665
+
666
+ // Old registration code, kept for temporary backwards compatibility.
667
+ inline void registerStablehloAddQDQAfterConvPassPass() {
668
+ ::mlir::registerPass([]() -> std::unique_ptr<::mlir::Pass> {
669
+ return createStablehloAddQDQAfterConvPass();
670
+ });
671
+ }
672
+
579
673
  //===----------------------------------------------------------------------===//
580
674
  // StablehloCanonicalizeDynamismPass Registration
581
675
  //===----------------------------------------------------------------------===//
@@ -684,6 +778,7 @@ inline void registerStablehloRefineShapesPassPass() {
684
778
 
685
779
  inline void registerPasses() {
686
780
  registerChloRecomposeOpsPass();
781
+ registerStablehloAddQDQAfterConvPass();
687
782
  registerStablehloCanonicalizeDynamismPass();
688
783
  registerStablehloFlattenEntryFunctionTuplesPass();
689
784
  registerStablehloFlattenTuplePass();
@@ -745,6 +840,56 @@ public:
745
840
  protected:
746
841
  };
747
842
 
843
+ template <typename DerivedT>
844
+ class StablehloAddQDQAfterConvPassBase : public ::mlir::OperationPass<ModuleOp> {
845
+ public:
846
+ using Base = StablehloAddQDQAfterConvPassBase;
847
+
848
+ StablehloAddQDQAfterConvPassBase() : ::mlir::OperationPass<ModuleOp>(::mlir::TypeID::get<DerivedT>()) {}
849
+ StablehloAddQDQAfterConvPassBase(const StablehloAddQDQAfterConvPassBase &other) : ::mlir::OperationPass<ModuleOp>(other) {}
850
+ StablehloAddQDQAfterConvPassBase& operator=(const StablehloAddQDQAfterConvPassBase &) = delete;
851
+ StablehloAddQDQAfterConvPassBase(StablehloAddQDQAfterConvPassBase &&) = delete;
852
+ StablehloAddQDQAfterConvPassBase& operator=(StablehloAddQDQAfterConvPassBase &&) = delete;
853
+ ~StablehloAddQDQAfterConvPassBase() = default;
854
+
855
+ /// Returns the command-line argument attached to this pass.
856
+ static constexpr ::llvm::StringLiteral getArgumentName() {
857
+ return ::llvm::StringLiteral("stablehlo-ext-add-qdq-after-conv");
858
+ }
859
+ ::llvm::StringRef getArgument() const override { return "stablehlo-ext-add-qdq-after-conv"; }
860
+
861
+ ::llvm::StringRef getDescription() const override { return "Add quant and dequant ops after convolution op."; }
862
+
863
+ /// Returns the derived pass name.
864
+ static constexpr ::llvm::StringLiteral getPassName() {
865
+ return ::llvm::StringLiteral("StablehloAddQDQAfterConvPass");
866
+ }
867
+ ::llvm::StringRef getName() const override { return "StablehloAddQDQAfterConvPass"; }
868
+
869
+ /// Support isa/dyn_cast functionality for the derived pass class.
870
+ static bool classof(const ::mlir::Pass *pass) {
871
+ return pass->getTypeID() == ::mlir::TypeID::get<DerivedT>();
872
+ }
873
+
874
+ /// A clone method to create a copy of this pass.
875
+ std::unique_ptr<::mlir::Pass> clonePass() const override {
876
+ return std::make_unique<DerivedT>(*static_cast<const DerivedT *>(this));
877
+ }
878
+
879
+ /// Register the dialects that must be loaded in the context before this pass.
880
+ void getDependentDialects(::mlir::DialectRegistry &registry) const override {
881
+ registry.insert<mlir::quant::QuantDialect>();
882
+ registry.insert<stablehlo::StablehloDialect>();
883
+ }
884
+
885
+ /// Explicitly declare the TypeID for this class. We declare an explicit private
886
+ /// instantiation because Pass classes should only be visible by the current
887
+ /// library.
888
+ MLIR_DEFINE_EXPLICIT_INTERNAL_INLINE_TYPE_ID(StablehloAddQDQAfterConvPassBase<DerivedT>)
889
+
890
+ protected:
891
+ };
892
+
748
893
  template <typename DerivedT>
749
894
  class StablehloCanonicalizeDynamismPassBase : public ::mlir::OperationPass<func::FuncOp> {
750
895
  public:
@@ -907,9 +1052,9 @@ public:
907
1052
 
908
1053
  /// Returns the command-line argument attached to this pass.
909
1054
  static constexpr ::llvm::StringLiteral getArgumentName() {
910
- return ::llvm::StringLiteral("legalize-quant-composite");
1055
+ return ::llvm::StringLiteral("stablehlo-ext-legalize-quant-composite");
911
1056
  }
912
- ::llvm::StringRef getArgument() const override { return "legalize-quant-composite"; }
1057
+ ::llvm::StringRef getArgument() const override { return "stablehlo-ext-legalize-quant-composite"; }
913
1058
 
914
1059
  ::llvm::StringRef getDescription() const override { return "Lowers the quantization related composites op to native quantized ops."; }
915
1060