tf-models-nightly 2.20.0.dev20251115__py2.py3-none-any.whl → 2.20.0.dev20260109__py2.py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -28,7 +28,8 @@ def generate_image_np(height: int,
28
28
  """Returns a fake numpy image matrix array."""
29
29
  return np.reshape(
30
30
  np.mod(np.arange(height * width * num_channels), 255).astype(np.uint8),
31
- newshape=(height, width, num_channels))
31
+ (height, width, num_channels),
32
+ )
32
33
 
33
34
 
34
35
  def generate_normalized_boxes_np(num_boxes: int) -> np.ndarray:
@@ -82,8 +83,7 @@ def generate_instance_masks_np(height: int,
82
83
  box_heights = boxes_np[:, 3].astype(int) - ymins
83
84
 
84
85
  for i, (x, y, w, h) in enumerate(zip(xmins, ymins, box_widths, box_heights)):
85
- instance_masks_np[i, y:y + h, x:x + w, :] = np.reshape(
86
- np.mod(np.arange(h * w), 2).astype(np.uint8), newshape=(h, w, 1))
86
+ instance_masks_np[i, y:y + h, x:x + w, :] = np.reshape(np.mod(np.arange(h * w), 2).astype(np.uint8), (h, w, 1))
87
87
  return instance_masks_np
88
88
 
89
89
 
@@ -241,7 +241,7 @@ def convert_groundtruths_to_coco_dataset(groundtruths, label_map=None):
241
241
  'num_groundtruths is larger than max_num_instances, %d v.s. %d',
242
242
  num_instances, max_num_instances)
243
243
  num_instances = max_num_instances
244
- for k in range(int(num_instances)):
244
+ for k in range(int(np.squeeze(num_instances))):
245
245
  ann = {}
246
246
  ann['image_id'] = int(groundtruths['source_id'][i][j])
247
247
  if 'is_crowds' in groundtruths:
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: tf-models-nightly
3
- Version: 2.20.0.dev20251115
3
+ Version: 2.20.0.dev20260109
4
4
  Summary: TensorFlow Official Models
5
5
  Home-page: https://github.com/tensorflow/models
6
6
  Author: Google Inc.
@@ -1013,7 +1013,7 @@ official/vision/configs/video_classification.py,sha256=GIdceuHsXTI3KdAbh4tPnctEk
1013
1013
  official/vision/configs/video_classification_test.py,sha256=pLbpLcN4HqKtFXVuAbR1iSVWWZ3V_cImNSzQb6E86Zw,1879
1014
1014
  official/vision/data/__init__.py,sha256=atDqjsx74qLrX5FY_wyWi2TL8i8ZELZRsTU9c-sx51I,609
1015
1015
  official/vision/data/create_coco_tf_record.py,sha256=pb3d4yAR7xy3nbR93MFadDKlUBgJKvtwmMyyNa4y1Bs,22742
1016
- official/vision/data/fake_feature_generator.py,sha256=4vPWaEqpW8ws8AfluWLhuORSx23j6rKDQvuBw1YChWc,5109
1016
+ official/vision/data/fake_feature_generator.py,sha256=9VvarI-2wYIS5YPR5qN-V4FGgWHzT_25T0CA8-Dw5Xs,5086
1017
1017
  official/vision/data/image_utils.py,sha256=3aSu4vYGYYHwyVwqaR_9TGH3crJVxTjC6VXuT5S8AtA,3503
1018
1018
  official/vision/data/image_utils_test.py,sha256=Fp_QksSDMgwH8QiXWvcE_XYDsWYdQpha1wOz1DBzl1s,4071
1019
1019
  official/vision/data/process_coco_few_shot_json_files.py,sha256=H3hbzbSS4nPXem5zE1rObesW73jJ_pVBDr0CMgtvubg,6061
@@ -1047,7 +1047,7 @@ official/vision/dataloaders/video_input.py,sha256=yp-3VSuHLbshwOKZWTSWHOP9NoKitA
1047
1047
  official/vision/dataloaders/video_input_test.py,sha256=ZQWkjK5tpzqU3S_pN3GECfPBJ8pIm_IV-WEQkqtifr4,7532
1048
1048
  official/vision/evaluation/__init__.py,sha256=atDqjsx74qLrX5FY_wyWi2TL8i8ZELZRsTU9c-sx51I,609
1049
1049
  official/vision/evaluation/coco_evaluator.py,sha256=23wnGNUZB4Tb01Y6fyjxcfgu7MpUsgaEjrMMTbrMMRc,15582
1050
- official/vision/evaluation/coco_utils.py,sha256=mN8Dz_WBIgvrGBhb5PJte0qTW09mXjL-PwIuE4F_nwU,17860
1050
+ official/vision/evaluation/coco_utils.py,sha256=uCbRRe78-ZNKNss2V3WejHTfOO3dj2zzrcYWzZzgmns,17872
1051
1051
  official/vision/evaluation/coco_utils_test.py,sha256=B_8jj1YkgipPOr3BzNrwXjXgVOt-_k6kesCFB5kkxDA,3199
1052
1052
  official/vision/evaluation/instance_metrics.py,sha256=m61_ApFqCwOGsbGtXa0NGMxlLYyx_cqcUQDPOPRpdWM,29114
1053
1053
  official/vision/evaluation/instance_metrics_test.py,sha256=J9Jf4_Oc2ULJF9pwD3ikO1Wiebq4GB4dbWSr3Lxm16I,10823
@@ -1248,9 +1248,9 @@ tensorflow_models/tensorflow_models_test.py,sha256=yiAneltAW3NHSj3fUSvHNBjfq0MGZ
1248
1248
  tensorflow_models/nlp/__init__.py,sha256=8uQd4wI6Zc4IJMPjtQifMeWVbPFkTxqYh66wfivCOL4,807
1249
1249
  tensorflow_models/uplift/__init__.py,sha256=NzaweFf4ZmhRb2l_fuV6bP-2N8oSO3xu6xJqVb1UmpY,999
1250
1250
  tensorflow_models/vision/__init__.py,sha256=ks420Ooqzi0hU7HnQpM5rylLaE-YcJdJkBx_umVaXlE,833
1251
- tf_models_nightly-2.20.0.dev20251115.dist-info/AUTHORS,sha256=1dG3fXVu9jlo7bul8xuix5F5vOnczMk7_yWn4y70uw0,337
1252
- tf_models_nightly-2.20.0.dev20251115.dist-info/LICENSE,sha256=WxeBS_DejPZQabxtfMOM_xn8qoZNJDQjrT7z2wG1I4U,11512
1253
- tf_models_nightly-2.20.0.dev20251115.dist-info/METADATA,sha256=rTMmXBZgHPaClZSHnwTsEju3i1Bw4JG4s-hiq5_VNgA,1432
1254
- tf_models_nightly-2.20.0.dev20251115.dist-info/WHEEL,sha256=kGT74LWyRUZrL4VgLh6_g12IeVl_9u9ZVhadrgXZUEY,110
1255
- tf_models_nightly-2.20.0.dev20251115.dist-info/top_level.txt,sha256=gum2FfO5R4cvjl2-QtP-S1aNmsvIZaFFT6VFzU0f4-g,33
1256
- tf_models_nightly-2.20.0.dev20251115.dist-info/RECORD,,
1251
+ tf_models_nightly-2.20.0.dev20260109.dist-info/AUTHORS,sha256=1dG3fXVu9jlo7bul8xuix5F5vOnczMk7_yWn4y70uw0,337
1252
+ tf_models_nightly-2.20.0.dev20260109.dist-info/LICENSE,sha256=WxeBS_DejPZQabxtfMOM_xn8qoZNJDQjrT7z2wG1I4U,11512
1253
+ tf_models_nightly-2.20.0.dev20260109.dist-info/METADATA,sha256=kySce29gd90FHA2kt9WkRiZsB76xRkwQ30wvkbm43BM,1432
1254
+ tf_models_nightly-2.20.0.dev20260109.dist-info/WHEEL,sha256=kGT74LWyRUZrL4VgLh6_g12IeVl_9u9ZVhadrgXZUEY,110
1255
+ tf_models_nightly-2.20.0.dev20260109.dist-info/top_level.txt,sha256=gum2FfO5R4cvjl2-QtP-S1aNmsvIZaFFT6VFzU0f4-g,33
1256
+ tf_models_nightly-2.20.0.dev20260109.dist-info/RECORD,,