tf-models-nightly 2.20.0.dev20251115__py2.py3-none-any.whl → 2.20.0.dev20260109__py2.py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- official/vision/data/fake_feature_generator.py +3 -3
- official/vision/evaluation/coco_utils.py +1 -1
- {tf_models_nightly-2.20.0.dev20251115.dist-info → tf_models_nightly-2.20.0.dev20260109.dist-info}/METADATA +1 -1
- {tf_models_nightly-2.20.0.dev20251115.dist-info → tf_models_nightly-2.20.0.dev20260109.dist-info}/RECORD +8 -8
- {tf_models_nightly-2.20.0.dev20251115.dist-info → tf_models_nightly-2.20.0.dev20260109.dist-info}/AUTHORS +0 -0
- {tf_models_nightly-2.20.0.dev20251115.dist-info → tf_models_nightly-2.20.0.dev20260109.dist-info}/LICENSE +0 -0
- {tf_models_nightly-2.20.0.dev20251115.dist-info → tf_models_nightly-2.20.0.dev20260109.dist-info}/WHEEL +0 -0
- {tf_models_nightly-2.20.0.dev20251115.dist-info → tf_models_nightly-2.20.0.dev20260109.dist-info}/top_level.txt +0 -0
|
@@ -28,7 +28,8 @@ def generate_image_np(height: int,
|
|
|
28
28
|
"""Returns a fake numpy image matrix array."""
|
|
29
29
|
return np.reshape(
|
|
30
30
|
np.mod(np.arange(height * width * num_channels), 255).astype(np.uint8),
|
|
31
|
-
|
|
31
|
+
(height, width, num_channels),
|
|
32
|
+
)
|
|
32
33
|
|
|
33
34
|
|
|
34
35
|
def generate_normalized_boxes_np(num_boxes: int) -> np.ndarray:
|
|
@@ -82,8 +83,7 @@ def generate_instance_masks_np(height: int,
|
|
|
82
83
|
box_heights = boxes_np[:, 3].astype(int) - ymins
|
|
83
84
|
|
|
84
85
|
for i, (x, y, w, h) in enumerate(zip(xmins, ymins, box_widths, box_heights)):
|
|
85
|
-
instance_masks_np[i, y:y + h, x:x + w, :] = np.reshape(
|
|
86
|
-
np.mod(np.arange(h * w), 2).astype(np.uint8), newshape=(h, w, 1))
|
|
86
|
+
instance_masks_np[i, y:y + h, x:x + w, :] = np.reshape(np.mod(np.arange(h * w), 2).astype(np.uint8), (h, w, 1))
|
|
87
87
|
return instance_masks_np
|
|
88
88
|
|
|
89
89
|
|
|
@@ -241,7 +241,7 @@ def convert_groundtruths_to_coco_dataset(groundtruths, label_map=None):
|
|
|
241
241
|
'num_groundtruths is larger than max_num_instances, %d v.s. %d',
|
|
242
242
|
num_instances, max_num_instances)
|
|
243
243
|
num_instances = max_num_instances
|
|
244
|
-
for k in range(int(num_instances)):
|
|
244
|
+
for k in range(int(np.squeeze(num_instances))):
|
|
245
245
|
ann = {}
|
|
246
246
|
ann['image_id'] = int(groundtruths['source_id'][i][j])
|
|
247
247
|
if 'is_crowds' in groundtruths:
|
|
@@ -1013,7 +1013,7 @@ official/vision/configs/video_classification.py,sha256=GIdceuHsXTI3KdAbh4tPnctEk
|
|
|
1013
1013
|
official/vision/configs/video_classification_test.py,sha256=pLbpLcN4HqKtFXVuAbR1iSVWWZ3V_cImNSzQb6E86Zw,1879
|
|
1014
1014
|
official/vision/data/__init__.py,sha256=atDqjsx74qLrX5FY_wyWi2TL8i8ZELZRsTU9c-sx51I,609
|
|
1015
1015
|
official/vision/data/create_coco_tf_record.py,sha256=pb3d4yAR7xy3nbR93MFadDKlUBgJKvtwmMyyNa4y1Bs,22742
|
|
1016
|
-
official/vision/data/fake_feature_generator.py,sha256=
|
|
1016
|
+
official/vision/data/fake_feature_generator.py,sha256=9VvarI-2wYIS5YPR5qN-V4FGgWHzT_25T0CA8-Dw5Xs,5086
|
|
1017
1017
|
official/vision/data/image_utils.py,sha256=3aSu4vYGYYHwyVwqaR_9TGH3crJVxTjC6VXuT5S8AtA,3503
|
|
1018
1018
|
official/vision/data/image_utils_test.py,sha256=Fp_QksSDMgwH8QiXWvcE_XYDsWYdQpha1wOz1DBzl1s,4071
|
|
1019
1019
|
official/vision/data/process_coco_few_shot_json_files.py,sha256=H3hbzbSS4nPXem5zE1rObesW73jJ_pVBDr0CMgtvubg,6061
|
|
@@ -1047,7 +1047,7 @@ official/vision/dataloaders/video_input.py,sha256=yp-3VSuHLbshwOKZWTSWHOP9NoKitA
|
|
|
1047
1047
|
official/vision/dataloaders/video_input_test.py,sha256=ZQWkjK5tpzqU3S_pN3GECfPBJ8pIm_IV-WEQkqtifr4,7532
|
|
1048
1048
|
official/vision/evaluation/__init__.py,sha256=atDqjsx74qLrX5FY_wyWi2TL8i8ZELZRsTU9c-sx51I,609
|
|
1049
1049
|
official/vision/evaluation/coco_evaluator.py,sha256=23wnGNUZB4Tb01Y6fyjxcfgu7MpUsgaEjrMMTbrMMRc,15582
|
|
1050
|
-
official/vision/evaluation/coco_utils.py,sha256=
|
|
1050
|
+
official/vision/evaluation/coco_utils.py,sha256=uCbRRe78-ZNKNss2V3WejHTfOO3dj2zzrcYWzZzgmns,17872
|
|
1051
1051
|
official/vision/evaluation/coco_utils_test.py,sha256=B_8jj1YkgipPOr3BzNrwXjXgVOt-_k6kesCFB5kkxDA,3199
|
|
1052
1052
|
official/vision/evaluation/instance_metrics.py,sha256=m61_ApFqCwOGsbGtXa0NGMxlLYyx_cqcUQDPOPRpdWM,29114
|
|
1053
1053
|
official/vision/evaluation/instance_metrics_test.py,sha256=J9Jf4_Oc2ULJF9pwD3ikO1Wiebq4GB4dbWSr3Lxm16I,10823
|
|
@@ -1248,9 +1248,9 @@ tensorflow_models/tensorflow_models_test.py,sha256=yiAneltAW3NHSj3fUSvHNBjfq0MGZ
|
|
|
1248
1248
|
tensorflow_models/nlp/__init__.py,sha256=8uQd4wI6Zc4IJMPjtQifMeWVbPFkTxqYh66wfivCOL4,807
|
|
1249
1249
|
tensorflow_models/uplift/__init__.py,sha256=NzaweFf4ZmhRb2l_fuV6bP-2N8oSO3xu6xJqVb1UmpY,999
|
|
1250
1250
|
tensorflow_models/vision/__init__.py,sha256=ks420Ooqzi0hU7HnQpM5rylLaE-YcJdJkBx_umVaXlE,833
|
|
1251
|
-
tf_models_nightly-2.20.0.
|
|
1252
|
-
tf_models_nightly-2.20.0.
|
|
1253
|
-
tf_models_nightly-2.20.0.
|
|
1254
|
-
tf_models_nightly-2.20.0.
|
|
1255
|
-
tf_models_nightly-2.20.0.
|
|
1256
|
-
tf_models_nightly-2.20.0.
|
|
1251
|
+
tf_models_nightly-2.20.0.dev20260109.dist-info/AUTHORS,sha256=1dG3fXVu9jlo7bul8xuix5F5vOnczMk7_yWn4y70uw0,337
|
|
1252
|
+
tf_models_nightly-2.20.0.dev20260109.dist-info/LICENSE,sha256=WxeBS_DejPZQabxtfMOM_xn8qoZNJDQjrT7z2wG1I4U,11512
|
|
1253
|
+
tf_models_nightly-2.20.0.dev20260109.dist-info/METADATA,sha256=kySce29gd90FHA2kt9WkRiZsB76xRkwQ30wvkbm43BM,1432
|
|
1254
|
+
tf_models_nightly-2.20.0.dev20260109.dist-info/WHEEL,sha256=kGT74LWyRUZrL4VgLh6_g12IeVl_9u9ZVhadrgXZUEY,110
|
|
1255
|
+
tf_models_nightly-2.20.0.dev20260109.dist-info/top_level.txt,sha256=gum2FfO5R4cvjl2-QtP-S1aNmsvIZaFFT6VFzU0f4-g,33
|
|
1256
|
+
tf_models_nightly-2.20.0.dev20260109.dist-info/RECORD,,
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|