tf-models-nightly 2.20.0.dev20250624__py2.py3-none-any.whl → 2.20.0.dev20250626__py2.py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -377,3 +377,19 @@ def coco_yolov7x() -> cfg.ExperimentConfig:
377
377
  config.task.model.backbone.yolov7.model_id = 'yolov7x'
378
378
  config.task.model.decoder.yolov7.model_id = 'yolov7x'
379
379
  return config
380
+
381
+
382
+ @exp_factory.register_config_factory('coco_yolov7_nano')
383
+ def coco_yolov7_nano() -> cfg.ExperimentConfig:
384
+ config = coco_yolov7()
385
+ config.task.model.backbone.yolov7.model_id = 'yolov7-nano'
386
+ config.task.model.decoder.yolov7.model_id = 'yolov7-nano'
387
+ return config
388
+
389
+
390
+ @exp_factory.register_config_factory('coco_yolov7_pico')
391
+ def coco_yolov7_pico() -> cfg.ExperimentConfig:
392
+ config = coco_yolov7()
393
+ config.task.model.backbone.yolov7.model_id = 'yolov7-pico'
394
+ config.task.model.decoder.yolov7.model_id = 'yolov7-pico'
395
+ return config
@@ -68,6 +68,72 @@ _BLOCK_SPEC_SCHEMAS = {
68
68
  ]
69
69
  }
70
70
 
71
+ # Define YOLOv7-pico variant.
72
+ _YoloV7Pico = [
73
+ ['convbn', -1, 3, 2, 8, False], # 0-P1/2
74
+
75
+ ['convbn', -1, 3, 2, 16, False], # 1-P2/4
76
+
77
+ ['convbn', -1, 1, 1, 8, False],
78
+ ['convbn', -2, 1, 1, 8, False],
79
+ ['convbn', -1, 3, 1, 8, False],
80
+ ['concat', [-1, -2, -3, -4], -1, False],
81
+ ['convbn', -1, 1, 1, 16, False], # 7
82
+
83
+ ['maxpool2d', -1, 2, 2, 'same', False], # 8-P3/8
84
+ ['convbn', -1, 1, 1, 16, False],
85
+ ['convbn', -2, 1, 1, 16, False],
86
+ ['convbn', -1, 3, 1, 16, False],
87
+ ['concat', [-1, -2, -3, -4], -1, False],
88
+ ['convbn', -1, 1, 1, 32, True], # 14
89
+
90
+ ['maxpool2d', -1, 2, 2, 'same', False], # 15-P4/16
91
+ ['convbn', -1, 1, 1, 32, False],
92
+ ['convbn', -2, 1, 1, 32, False],
93
+ ['convbn', -1, 3, 1, 32, False],
94
+ ['concat', [-1, -2, -3, -4], -1, False],
95
+ ['convbn', -1, 1, 1, 64, True], # 21
96
+ ]
97
+
98
+ # Define YOLOv7-nano variant.
99
+
100
+ _YoloV7Nano = [
101
+ ['convbn', -1, 3, 2, 8, False], # 0-P1/2
102
+
103
+ ['convbn', -1, 3, 2, 16, False], # 1-P2/4
104
+
105
+ ['convbn', -1, 1, 1, 8, False],
106
+ ['convbn', -2, 1, 1, 8, False],
107
+ ['convbn', -1, 3, 1, 8, False],
108
+ ['convbn', -1, 3, 1, 8, False],
109
+ ['concat', [-1, -2, -3, -4], -1, False],
110
+ ['convbn', -1, 1, 1, 16, False], # 7
111
+
112
+ ['maxpool2d', -1, 2, 2, 'same', False], # 8-P3/8
113
+ ['convbn', -1, 1, 1, 16, False],
114
+ ['convbn', -2, 1, 1, 16, False],
115
+ ['convbn', -1, 3, 1, 16, False],
116
+ ['convbn', -1, 3, 1, 16, False],
117
+ ['concat', [-1, -2, -3, -4], -1, False],
118
+ ['convbn', -1, 1, 1, 32, True], # 14
119
+
120
+ ['maxpool2d', -1, 2, 2, 'same', False], # 15-P4/16
121
+ ['convbn', -1, 1, 1, 32, False],
122
+ ['convbn', -2, 1, 1, 32, False],
123
+ ['convbn', -1, 3, 1, 32, False],
124
+ ['convbn', -1, 3, 1, 32, False],
125
+ ['concat', [-1, -2, -3, -4], -1, False],
126
+ ['convbn', -1, 1, 1, 64, True], # 21
127
+
128
+ ['maxpool2d', -1, 2, 2, 'same', False], # 22-P5/32
129
+ ['convbn', -1, 1, 1, 64, False],
130
+ ['convbn', -2, 1, 1, 64, False],
131
+ ['convbn', -1, 3, 1, 64, False],
132
+ ['convbn', -1, 3, 1, 64, False],
133
+ ['concat', [-1, -2, -3, -4], -1, False],
134
+ ['convbn', -1, 1, 1, 128, True], # 28
135
+ ]
136
+
71
137
  # Define YOLOv7-tiny variant.
72
138
  _YoloV7Tiny = [
73
139
  ['convbn', -1, 3, 2, 32, False], # 0-P1/2
@@ -241,6 +307,8 @@ _YoloV7X = [
241
307
 
242
308
  # Aggregates all variants for YOLOv7 backbones.
243
309
  BACKBONES = {
310
+ 'yolov7-nano': _YoloV7Nano,
311
+ 'yolov7-pico': _YoloV7Pico,
244
312
  'yolov7-tiny': _YoloV7Tiny,
245
313
  'yolov7': _YoloV7,
246
314
  'yolov7x': _YoloV7X,
@@ -91,6 +91,93 @@ _BLOCK_SPEC_SCHEMAS = {
91
91
  ],
92
92
  }
93
93
 
94
+ # Define specs for YOLOv7-pico variant. It is recommended to use together with
95
+ # YOLOv7-pico backbone.
96
+ _YoloV7Pico = [
97
+ ['convbn', '4', 1, 1, 16, False],
98
+ ['convbn', -1, 1, 1, 16, False],
99
+
100
+ ['convbn', -1, 1, 1, 8, False],
101
+ ['upsample2d', -1, 2, 'nearest', False],
102
+ ['convbn', '3', 1, 1, 8, False],
103
+ ['concat', [-1, -2], -1, False],
104
+ ['convbn', -1, 1, 1, 8, False],
105
+ ['convbn', -1, 1, 1, 8, False],
106
+
107
+ ['convbn', -1, 3, 2, 16, False],
108
+ ['concat', [-1, 1], -1, False],
109
+ ['convbn', -1, 1, 1, 16, False],
110
+
111
+ ['convbn', -1, 3, 2, 32, False],
112
+ ['convbn', -1, 1, 1, 32, False],
113
+
114
+ ['convbn', 7, 1, 1, 8, True],
115
+ ['convbn', 10, 1, 1, 16, True],
116
+ ['convbn', 12, 1, 1, 32, True],
117
+ ]
118
+
119
+ # Define specs for YOLOv7-nano variant. It is recommended to use together with
120
+ # YOLOv7-nano backbone.
121
+ _YoloV7Nano = [
122
+ ['convbn', -1, 1, 1, 64, False],
123
+ ['convbn', -2, 1, 1, 64, False],
124
+ ['maxpool2d', -1, 5, 1, 'same', False],
125
+ ['maxpool2d', -2, 9, 1, 'same', False],
126
+ ['maxpool2d', -3, 13, 1, 'same', False],
127
+ ['concat', [-1, -2, -3, -4], -1, False],
128
+ ['convbn', -1, 1, 1, 64, False],
129
+ ['concat', [-1, -7], -1, False],
130
+ ['convbn', -1, 1, 1, 64, False], # 8
131
+
132
+ ['convbn', -1, 1, 1, 32, False],
133
+ ['upsample2d', -1, 2, 'nearest', False],
134
+ ['convbn', '4', 1, 1, 32, False], # route from backbone P4
135
+ ['concat', [-1, -2], -1, False],
136
+
137
+ ['convbn', -1, 1, 1, 16, False],
138
+ ['convbn', -2, 1, 1, 16, False],
139
+ ['convbn', -1, 3, 1, 16, False],
140
+ ['convbn', -1, 3, 1, 16, False],
141
+ ['concat', [-1, -2, -3, -4], -1, False],
142
+ ['convbn', -1, 1, 1, 32, False], # 18
143
+
144
+ ['convbn', -1, 1, 1, 16, False],
145
+ ['upsample2d', -1, 2, 'nearest', False],
146
+ ['convbn', '3', 1, 1, 16, False], # route from backbone P3
147
+ ['concat', [-1, -2], -1, False],
148
+
149
+ ['convbn', -1, 1, 1, 8, False],
150
+ ['convbn', -2, 1, 1, 8, False],
151
+ ['convbn', -1, 3, 1, 8, False],
152
+ ['convbn', -1, 3, 1, 8, False],
153
+ ['concat', [-1, -2, -3, -4], -1, False],
154
+ ['convbn', -1, 1, 1, 16, False], # 28
155
+
156
+ ['convbn', -1, 3, 2, 32, False],
157
+ ['concat', [-1, 18], -1, False],
158
+
159
+ ['convbn', -1, 1, 1, 16, False],
160
+ ['convbn', -2, 1, 1, 16, False],
161
+ ['convbn', -1, 3, 1, 16, False],
162
+ ['convbn', -1, 3, 1, 16, False],
163
+ ['concat', [-1, -2, -3, -4], -1, False],
164
+ ['convbn', -1, 1, 1, 32, False], # 36
165
+
166
+ ['convbn', -1, 3, 2, 64, False],
167
+ ['concat', [-1, 8], -1, False],
168
+
169
+ ['convbn', -1, 1, 1, 32, False],
170
+ ['convbn', -2, 1, 1, 32, False],
171
+ ['convbn', -1, 3, 1, 32, False],
172
+ ['convbn', -1, 3, 1, 32, False],
173
+ ['concat', [-1, -2, -3, -4], -1, False],
174
+ ['convbn', -1, 1, 1, 64, False], # 44
175
+
176
+ ['convbn', 28, 1, 1, 32, True],
177
+ ['convbn', 36, 1, 1, 64, True],
178
+ ['convbn', 44, 1, 1, 128, True],
179
+ ]
180
+
94
181
  # Define specs for YOLOv7-tiny variant. It is recommended to use together with
95
182
  # YOLOv7-tiny backbone.
96
183
  _YoloV7Tiny = [
@@ -298,6 +385,8 @@ _YoloV7X = [
298
385
 
299
386
  # Aggregates all variants for YOLOv7 decoders.
300
387
  DECODERS = {
388
+ 'yolov7-nano': _YoloV7Nano,
389
+ 'yolov7-pico': _YoloV7Pico,
301
390
  'yolov7-tiny': _YoloV7Tiny,
302
391
  'yolov7': _YoloV7,
303
392
  'yolov7x': _YoloV7X,
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: tf-models-nightly
3
- Version: 2.20.0.dev20250624
3
+ Version: 2.20.0.dev20250626
4
4
  Summary: TensorFlow Official Models
5
5
  Home-page: https://github.com/tensorflow/models
6
6
  Author: Google Inc.
@@ -813,7 +813,7 @@ official/projects/yolo/configs/backbones.py,sha256=8iT5qawDtnqLpNTkxdhaz8sFcp7vX
813
813
  official/projects/yolo/configs/darknet_classification.py,sha256=JtccSE4MUa_HXxoPPwRanV-f_lrjgVr-CAb6zKehp4M,3609
814
814
  official/projects/yolo/configs/decoders.py,sha256=Vmkn-v7lbUyknjkJay5S3EXghbFAsRA6Vqvfw-Gbqn8,1855
815
815
  official/projects/yolo/configs/yolo.py,sha256=ULQTHSPSGaF92-g5JDBEtVAYhKLa1ElP_4sz7pl6whE,18648
816
- official/projects/yolo/configs/yolov7.py,sha256=I4KRT9U2igwJf23wYgXlG1Cb8Ut0-8pZAziIlG0c-po,12932
816
+ official/projects/yolo/configs/yolov7.py,sha256=UJpPCIJJ-r-Q54jlmR-X7irS098AsP7EANGeAW0odl0,13470
817
817
  official/projects/yolo/dataloaders/__init__.py,sha256=B2gx9bXY6cUP-iHHLHPxBfWCMN12JT9hrZxAyTBLkB4,610
818
818
  official/projects/yolo/dataloaders/classification_input.py,sha256=gWLUTmtlf0IdZ7NCGo7GM7Hv0rU6lD-EOnaXp-DecVY,3800
819
819
  official/projects/yolo/dataloaders/tf_example_decoder.py,sha256=Iprn1-jdpJf-XkhLuLSDeXiiV05QHq_zS6T7NrdGU34,4820
@@ -831,12 +831,12 @@ official/projects/yolo/modeling/yolov7_model.py,sha256=sDQ1bJP8Qjx2AbZ7rv53PqtwO
831
831
  official/projects/yolo/modeling/backbones/__init__.py,sha256=atDqjsx74qLrX5FY_wyWi2TL8i8ZELZRsTU9c-sx51I,609
832
832
  official/projects/yolo/modeling/backbones/darknet.py,sha256=Q009AIy1d1YoF3jQvtmXqhCAS0hrrb1ZNO2KRGTjMvg,22025
833
833
  official/projects/yolo/modeling/backbones/darknet_test.py,sha256=XOSBnzA-fyPkottgmRFHZSG-Z8P7TWC82aHWPyLNwyw,4768
834
- official/projects/yolo/modeling/backbones/yolov7.py,sha256=3wHcN4LcFlWF6Vzm84akcAK3RV9DhtMTv5lbDzZo0sQ,12885
834
+ official/projects/yolo/modeling/backbones/yolov7.py,sha256=VauYThPI8pVM9xh93C9hUnPymeiRSEsjgqoU0OJaXcM,15047
835
835
  official/projects/yolo/modeling/backbones/yolov7_test.py,sha256=a2WMLfZIc4PLXJtcNfM8zuzIu9t4JtTuit6Vs1JEb60,3059
836
836
  official/projects/yolo/modeling/decoders/__init__.py,sha256=atDqjsx74qLrX5FY_wyWi2TL8i8ZELZRsTU9c-sx51I,609
837
837
  official/projects/yolo/modeling/decoders/yolo_decoder.py,sha256=LyEVLQZg7_lNG6Iv5zTh2CKvn8VFJQEfBaZwGsPzTJs,23645
838
838
  official/projects/yolo/modeling/decoders/yolo_decoder_test.py,sha256=aLkdOKQzU215AOgB_pmEpWh7HYzLzkey83viZjyXg34,4795
839
- official/projects/yolo/modeling/decoders/yolov7.py,sha256=SxUvztGbRQO2ZopQIFFH0gUqXym3QdZ3vt5gtnJjMss,15644
839
+ official/projects/yolo/modeling/decoders/yolov7.py,sha256=lBfULlLWfn2ZhCkQ8nMh-KcmUS2lLLhnP30tN_FJfug,18487
840
840
  official/projects/yolo/modeling/decoders/yolov7_test.py,sha256=K8_jiynB7MY6HEpvWwLHvtDMzI8GpSrVr0zq7y7tQFA,3570
841
841
  official/projects/yolo/modeling/heads/__init__.py,sha256=atDqjsx74qLrX5FY_wyWi2TL8i8ZELZRsTU9c-sx51I,609
842
842
  official/projects/yolo/modeling/heads/yolo_head.py,sha256=k5zweyxWrfXnkGkVjzO5D6DwpsKH_BR67dpFiYbWCXM,5244
@@ -1248,9 +1248,9 @@ tensorflow_models/tensorflow_models_test.py,sha256=yiAneltAW3NHSj3fUSvHNBjfq0MGZ
1248
1248
  tensorflow_models/nlp/__init__.py,sha256=8uQd4wI6Zc4IJMPjtQifMeWVbPFkTxqYh66wfivCOL4,807
1249
1249
  tensorflow_models/uplift/__init__.py,sha256=NzaweFf4ZmhRb2l_fuV6bP-2N8oSO3xu6xJqVb1UmpY,999
1250
1250
  tensorflow_models/vision/__init__.py,sha256=ks420Ooqzi0hU7HnQpM5rylLaE-YcJdJkBx_umVaXlE,833
1251
- tf_models_nightly-2.20.0.dev20250624.dist-info/AUTHORS,sha256=1dG3fXVu9jlo7bul8xuix5F5vOnczMk7_yWn4y70uw0,337
1252
- tf_models_nightly-2.20.0.dev20250624.dist-info/LICENSE,sha256=WxeBS_DejPZQabxtfMOM_xn8qoZNJDQjrT7z2wG1I4U,11512
1253
- tf_models_nightly-2.20.0.dev20250624.dist-info/METADATA,sha256=OQbBd24b-w5rboJDoqqvOaY9QhvlId1OWzVn7GzWaM0,1432
1254
- tf_models_nightly-2.20.0.dev20250624.dist-info/WHEEL,sha256=kGT74LWyRUZrL4VgLh6_g12IeVl_9u9ZVhadrgXZUEY,110
1255
- tf_models_nightly-2.20.0.dev20250624.dist-info/top_level.txt,sha256=gum2FfO5R4cvjl2-QtP-S1aNmsvIZaFFT6VFzU0f4-g,33
1256
- tf_models_nightly-2.20.0.dev20250624.dist-info/RECORD,,
1251
+ tf_models_nightly-2.20.0.dev20250626.dist-info/AUTHORS,sha256=1dG3fXVu9jlo7bul8xuix5F5vOnczMk7_yWn4y70uw0,337
1252
+ tf_models_nightly-2.20.0.dev20250626.dist-info/LICENSE,sha256=WxeBS_DejPZQabxtfMOM_xn8qoZNJDQjrT7z2wG1I4U,11512
1253
+ tf_models_nightly-2.20.0.dev20250626.dist-info/METADATA,sha256=nLPWgNEb-ei5V9go6JF5YGSbKEahNp9EOlgl5Wq_7TQ,1432
1254
+ tf_models_nightly-2.20.0.dev20250626.dist-info/WHEEL,sha256=kGT74LWyRUZrL4VgLh6_g12IeVl_9u9ZVhadrgXZUEY,110
1255
+ tf_models_nightly-2.20.0.dev20250626.dist-info/top_level.txt,sha256=gum2FfO5R4cvjl2-QtP-S1aNmsvIZaFFT6VFzU0f4-g,33
1256
+ tf_models_nightly-2.20.0.dev20250626.dist-info/RECORD,,