tf-models-nightly 2.19.0.dev20250107__py2.py3-none-any.whl → 2.19.0.dev20250109__py2.py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of tf-models-nightly might be problematic. Click here for more details.

Files changed (33) hide show
  1. official/projects/detr/__init__.py +14 -0
  2. official/projects/detr/configs/__init__.py +14 -0
  3. official/projects/detr/configs/detr.py +277 -0
  4. official/projects/detr/configs/detr_test.py +51 -0
  5. official/projects/detr/dataloaders/__init__.py +14 -0
  6. official/projects/detr/dataloaders/coco.py +157 -0
  7. official/projects/detr/dataloaders/coco_test.py +111 -0
  8. official/projects/detr/dataloaders/detr_input.py +175 -0
  9. official/projects/detr/experiments/__init__.py +14 -0
  10. official/projects/detr/modeling/__init__.py +14 -0
  11. official/projects/detr/modeling/detr.py +345 -0
  12. official/projects/detr/modeling/detr_test.py +70 -0
  13. official/projects/detr/modeling/transformer.py +849 -0
  14. official/projects/detr/modeling/transformer_test.py +263 -0
  15. official/projects/detr/ops/__init__.py +14 -0
  16. official/projects/detr/ops/matchers.py +489 -0
  17. official/projects/detr/ops/matchers_test.py +95 -0
  18. official/projects/detr/optimization.py +151 -0
  19. official/projects/detr/serving/__init__.py +14 -0
  20. official/projects/detr/serving/export_module.py +103 -0
  21. official/projects/detr/serving/export_module_test.py +98 -0
  22. official/projects/detr/serving/export_saved_model.py +109 -0
  23. official/projects/detr/tasks/__init__.py +14 -0
  24. official/projects/detr/tasks/detection.py +421 -0
  25. official/projects/detr/tasks/detection_test.py +203 -0
  26. official/projects/detr/train.py +70 -0
  27. official/vision/ops/augment.py +1 -13
  28. {tf_models_nightly-2.19.0.dev20250107.dist-info → tf_models_nightly-2.19.0.dev20250109.dist-info}/METADATA +1 -1
  29. {tf_models_nightly-2.19.0.dev20250107.dist-info → tf_models_nightly-2.19.0.dev20250109.dist-info}/RECORD +33 -7
  30. {tf_models_nightly-2.19.0.dev20250107.dist-info → tf_models_nightly-2.19.0.dev20250109.dist-info}/AUTHORS +0 -0
  31. {tf_models_nightly-2.19.0.dev20250107.dist-info → tf_models_nightly-2.19.0.dev20250109.dist-info}/LICENSE +0 -0
  32. {tf_models_nightly-2.19.0.dev20250107.dist-info → tf_models_nightly-2.19.0.dev20250109.dist-info}/WHEEL +0 -0
  33. {tf_models_nightly-2.19.0.dev20250107.dist-info → tf_models_nightly-2.19.0.dev20250109.dist-info}/top_level.txt +0 -0
@@ -0,0 +1,263 @@
1
+ # Copyright 2024 The TensorFlow Authors. All Rights Reserved.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+
15
+ """Tests for transformer."""
16
+
17
+ import tensorflow as tf, tf_keras
18
+
19
+ from official.projects.detr.modeling import transformer
20
+
21
+
22
+ class TransformerTest(tf.test.TestCase):
23
+
24
+ def test_transformer_encoder_block(self):
25
+ batch_size = 2
26
+ sequence_length = 100
27
+ feature_size = 256
28
+ num_attention_heads = 2
29
+ inner_dim = 256
30
+ inner_activation = 'relu'
31
+ model = transformer.TransformerEncoderBlock(num_attention_heads, inner_dim,
32
+ inner_activation)
33
+ input_tensor = tf.ones((batch_size, sequence_length, feature_size))
34
+ attention_mask = tf.ones((batch_size, sequence_length, sequence_length),
35
+ dtype=tf.int64)
36
+ pos_embed = tf.ones((batch_size, sequence_length, feature_size))
37
+
38
+ out = model([input_tensor, attention_mask, pos_embed])
39
+ self.assertAllEqual(
40
+ tf.shape(out), (batch_size, sequence_length, feature_size))
41
+
42
+ def test_transformer_encoder_block_get_config(self):
43
+ num_attention_heads = 2
44
+ inner_dim = 256
45
+ inner_activation = 'relu'
46
+ model = transformer.TransformerEncoderBlock(num_attention_heads, inner_dim,
47
+ inner_activation)
48
+ config = model.get_config()
49
+ expected_config = {
50
+ 'name': 'transformer_encoder_block',
51
+ 'trainable': True,
52
+ 'dtype': 'float32',
53
+ 'num_attention_heads': 2,
54
+ 'inner_dim': 256,
55
+ 'inner_activation': 'relu',
56
+ 'output_dropout': 0.0,
57
+ 'attention_dropout': 0.0,
58
+ 'output_range': None,
59
+ 'kernel_initializer': {
60
+ 'class_name': 'GlorotUniform',
61
+ 'config': {
62
+ 'seed': None}
63
+ },
64
+ 'bias_initializer': {
65
+ 'class_name': 'Zeros',
66
+ 'config': {}
67
+ },
68
+ 'kernel_regularizer': None,
69
+ 'bias_regularizer': None,
70
+ 'activity_regularizer': None,
71
+ 'kernel_constraint': None,
72
+ 'bias_constraint': None,
73
+ 'use_bias': True,
74
+ 'norm_first': False,
75
+ 'norm_epsilon': 1e-12,
76
+ 'inner_dropout': 0.0,
77
+ 'attention_initializer': {
78
+ 'class_name': 'GlorotUniform',
79
+ 'config': {'seed': None}
80
+ },
81
+ 'attention_axes': None}
82
+ self.assertAllEqual(expected_config, config)
83
+
84
+ def test_transformer_encoder(self):
85
+ batch_size = 2
86
+ sequence_length = 100
87
+ feature_size = 256
88
+ num_layers = 2
89
+ num_attention_heads = 2
90
+ intermediate_size = 256
91
+ model = transformer.TransformerEncoder(
92
+ num_layers=num_layers,
93
+ num_attention_heads=num_attention_heads,
94
+ intermediate_size=intermediate_size)
95
+ input_tensor = tf.ones((batch_size, sequence_length, feature_size))
96
+ attention_mask = tf.ones((batch_size, sequence_length, sequence_length),
97
+ dtype=tf.int64)
98
+ pos_embed = tf.ones((batch_size, sequence_length, feature_size))
99
+ out = model(input_tensor, attention_mask, pos_embed)
100
+ self.assertAllEqual(
101
+ tf.shape(out), (batch_size, sequence_length, feature_size))
102
+
103
+ def test_transformer_encoder_get_config(self):
104
+ num_layers = 2
105
+ num_attention_heads = 2
106
+ intermediate_size = 256
107
+ model = transformer.TransformerEncoder(
108
+ num_layers=num_layers,
109
+ num_attention_heads=num_attention_heads,
110
+ intermediate_size=intermediate_size)
111
+ config = model.get_config()
112
+ expected_config = {
113
+ 'name': 'transformer_encoder',
114
+ 'trainable': True,
115
+ 'dtype': 'float32',
116
+ 'num_layers': 2,
117
+ 'num_attention_heads': 2,
118
+ 'intermediate_size': 256,
119
+ 'activation': 'relu',
120
+ 'dropout_rate': 0.0,
121
+ 'attention_dropout_rate': 0.0,
122
+ 'use_bias': False,
123
+ 'norm_first': True,
124
+ 'norm_epsilon': 1e-06,
125
+ 'intermediate_dropout': 0.0
126
+ }
127
+ self.assertAllEqual(expected_config, config)
128
+
129
+ def test_transformer_decoder_block(self):
130
+ batch_size = 2
131
+ sequence_length = 100
132
+ memory_length = 200
133
+ feature_size = 256
134
+ num_attention_heads = 2
135
+ intermediate_size = 256
136
+ intermediate_activation = 'relu'
137
+ model = transformer.TransformerDecoderBlock(num_attention_heads,
138
+ intermediate_size,
139
+ intermediate_activation)
140
+ input_tensor = tf.ones((batch_size, sequence_length, feature_size))
141
+ memory = tf.ones((batch_size, memory_length, feature_size))
142
+ attention_mask = tf.ones((batch_size, sequence_length, memory_length),
143
+ dtype=tf.int64)
144
+ self_attention_mask = tf.ones(
145
+ (batch_size, sequence_length, sequence_length), dtype=tf.int64)
146
+ input_pos_embed = tf.ones((batch_size, sequence_length, feature_size))
147
+ memory_pos_embed = tf.ones((batch_size, memory_length, feature_size))
148
+
149
+ out, _ = model([
150
+ input_tensor, memory, attention_mask, self_attention_mask,
151
+ input_pos_embed, memory_pos_embed
152
+ ])
153
+ self.assertAllEqual(
154
+ tf.shape(out), (batch_size, sequence_length, feature_size))
155
+
156
+ def test_transformer_decoder_block_get_config(self):
157
+ num_attention_heads = 2
158
+ intermediate_size = 256
159
+ intermediate_activation = 'relu'
160
+ model = transformer.TransformerDecoderBlock(num_attention_heads,
161
+ intermediate_size,
162
+ intermediate_activation)
163
+ config = model.get_config()
164
+ expected_config = {
165
+ 'name': 'transformer_decoder_block',
166
+ 'trainable': True,
167
+ 'dtype': 'float32',
168
+ 'num_attention_heads': 2,
169
+ 'intermediate_size': 256,
170
+ 'intermediate_activation': 'relu',
171
+ 'dropout_rate': 0.0,
172
+ 'attention_dropout_rate': 0.0,
173
+ 'kernel_initializer': {
174
+ 'class_name': 'GlorotUniform',
175
+ 'config': {
176
+ 'seed': None
177
+ }
178
+ },
179
+ 'bias_initializer': {
180
+ 'class_name': 'Zeros',
181
+ 'config': {}
182
+ },
183
+ 'kernel_regularizer': None,
184
+ 'bias_regularizer': None,
185
+ 'activity_regularizer': None,
186
+ 'kernel_constraint': None,
187
+ 'bias_constraint': None,
188
+ 'use_bias': True,
189
+ 'norm_first': False,
190
+ 'norm_epsilon': 1e-12,
191
+ 'intermediate_dropout': 0.0,
192
+ 'attention_initializer': {
193
+ 'class_name': 'GlorotUniform',
194
+ 'config': {
195
+ 'seed': None
196
+ }
197
+ }
198
+ }
199
+ self.assertAllEqual(expected_config, config)
200
+
201
+ def test_transformer_decoder(self):
202
+ batch_size = 2
203
+ sequence_length = 100
204
+ memory_length = 200
205
+ feature_size = 256
206
+ num_layers = 2
207
+ num_attention_heads = 2
208
+ intermediate_size = 256
209
+ model = transformer.TransformerDecoder(
210
+ num_layers=num_layers,
211
+ num_attention_heads=num_attention_heads,
212
+ intermediate_size=intermediate_size)
213
+ input_tensor = tf.ones((batch_size, sequence_length, feature_size))
214
+ memory = tf.ones((batch_size, memory_length, feature_size))
215
+ attention_mask = tf.ones((batch_size, sequence_length, memory_length),
216
+ dtype=tf.int64)
217
+ self_attention_mask = tf.ones(
218
+ (batch_size, sequence_length, sequence_length), dtype=tf.int64)
219
+ input_pos_embed = tf.ones((batch_size, sequence_length, feature_size))
220
+ memory_pos_embed = tf.ones((batch_size, memory_length, feature_size))
221
+
222
+ outs = model(
223
+ input_tensor,
224
+ memory,
225
+ self_attention_mask,
226
+ attention_mask,
227
+ return_all_decoder_outputs=True,
228
+ input_pos_embed=input_pos_embed,
229
+ memory_pos_embed=memory_pos_embed)
230
+ self.assertLen(outs, 2) # intermeidate decoded outputs.
231
+ for out in outs:
232
+ self.assertAllEqual(
233
+ tf.shape(out), (batch_size, sequence_length, feature_size))
234
+
235
+ def test_transformer_decoder_get_config(self):
236
+ num_layers = 2
237
+ num_attention_heads = 2
238
+ intermediate_size = 256
239
+ model = transformer.TransformerDecoder(
240
+ num_layers=num_layers,
241
+ num_attention_heads=num_attention_heads,
242
+ intermediate_size=intermediate_size)
243
+ config = model.get_config()
244
+ expected_config = {
245
+ 'name': 'transformer_decoder',
246
+ 'trainable': True,
247
+ 'dtype': 'float32',
248
+ 'num_layers': 2,
249
+ 'num_attention_heads': 2,
250
+ 'intermediate_size': 256,
251
+ 'activation': 'relu',
252
+ 'dropout_rate': 0.0,
253
+ 'attention_dropout_rate': 0.0,
254
+ 'use_bias': False,
255
+ 'norm_first': True,
256
+ 'norm_epsilon': 1e-06,
257
+ 'intermediate_dropout': 0.0
258
+ }
259
+ self.assertAllEqual(expected_config, config)
260
+
261
+
262
+ if __name__ == '__main__':
263
+ tf.test.main()
@@ -0,0 +1,14 @@
1
+ # Copyright 2024 The TensorFlow Authors. All Rights Reserved.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+