tf-models-nightly 2.19.0.dev20241114__py2.py3-none-any.whl → 2.19.0.dev20241115__py2.py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (62) hide show
  1. official/legacy/image_classification/resnet/resnet_ctl_imagenet_main.py +0 -1
  2. official/legacy/image_classification/resnet/tfhub_export.py +0 -1
  3. official/legacy/transformer/transformer_main.py +0 -2
  4. official/legacy/transformer/translate.py +0 -1
  5. official/nlp/modeling/networks/bert_dense_encoder_test.py +0 -1
  6. official/nlp/modeling/networks/bert_encoder_test.py +0 -1
  7. official/nlp/modeling/networks/packed_sequence_embedding_test.py +0 -2
  8. official/nlp/tasks/dual_encoder.py +0 -1
  9. official/projects/nhnet/evaluation.py +0 -2
  10. official/projects/nhnet/trainer.py +0 -2
  11. official/projects/qat/nlp/quantization/configs_test.py +0 -1
  12. official/projects/qat/nlp/quantization/schemes.py +0 -2
  13. official/projects/qat/vision/modeling/factory.py +0 -2
  14. official/projects/qat/vision/modeling/factory_test.py +0 -2
  15. official/projects/qat/vision/modeling/heads/dense_prediction_heads.py +0 -2
  16. official/projects/qat/vision/modeling/heads/dense_prediction_heads_test.py +0 -1
  17. official/projects/qat/vision/modeling/layers/nn_blocks.py +0 -2
  18. official/projects/qat/vision/modeling/layers/nn_blocks_test.py +0 -1
  19. official/projects/qat/vision/modeling/layers/nn_layers_test.py +0 -1
  20. official/projects/qat/vision/modeling/segmentation_model.py +0 -1
  21. official/projects/qat/vision/n_bit/configs_test.py +0 -2
  22. official/projects/qat/vision/n_bit/nn_blocks.py +0 -2
  23. official/projects/qat/vision/n_bit/nn_blocks_test.py +0 -1
  24. official/projects/qat/vision/n_bit/schemes.py +0 -2
  25. official/projects/qat/vision/quantization/configs_test.py +0 -2
  26. official/projects/qat/vision/quantization/schemes.py +0 -2
  27. official/projects/volumetric_models/modeling/backbones/unet_3d.py +0 -1
  28. official/projects/volumetric_models/modeling/backbones/unet_3d_test.py +0 -1
  29. official/projects/volumetric_models/modeling/decoders/factory.py +0 -2
  30. official/projects/volumetric_models/modeling/decoders/unet_3d_decoder_test.py +0 -1
  31. official/projects/volumetric_models/modeling/factory.py +0 -2
  32. official/projects/volumetric_models/modeling/nn_blocks_3d.py +0 -1
  33. official/projects/volumetric_models/modeling/nn_blocks_3d_test.py +0 -1
  34. official/recommendation/create_ncf_data.py +0 -1
  35. official/recommendation/movielens.py +0 -1
  36. official/vision/losses/maskrcnn_losses.py +0 -1
  37. official/vision/losses/retinanet_losses.py +0 -1
  38. official/vision/modeling/classification_model.py +0 -1
  39. official/vision/modeling/classification_model_test.py +0 -1
  40. official/vision/modeling/factory_3d.py +0 -1
  41. official/vision/modeling/factory_test.py +0 -1
  42. official/vision/modeling/maskrcnn_model_test.py +0 -1
  43. official/vision/modeling/retinanet_model.py +0 -1
  44. official/vision/modeling/retinanet_model_test.py +0 -1
  45. official/vision/modeling/segmentation_model.py +0 -1
  46. official/vision/modeling/video_classification_model_test.py +0 -1
  47. official/vision/ops/anchor.py +0 -2
  48. official/vision/ops/anchor_test.py +0 -1
  49. official/vision/ops/box_ops.py +0 -1
  50. official/vision/ops/mask_ops.py +0 -2
  51. official/vision/ops/mask_ops_test.py +0 -1
  52. official/vision/ops/nms.py +0 -1
  53. official/vision/ops/preprocess_ops_test.py +0 -2
  54. official/vision/ops/sampling_ops.py +0 -1
  55. official/vision/serving/export_tfhub.py +0 -1
  56. official/vision/serving/export_tfhub_lib.py +0 -2
  57. {tf_models_nightly-2.19.0.dev20241114.dist-info → tf_models_nightly-2.19.0.dev20241115.dist-info}/METADATA +1 -1
  58. {tf_models_nightly-2.19.0.dev20241114.dist-info → tf_models_nightly-2.19.0.dev20241115.dist-info}/RECORD +62 -62
  59. {tf_models_nightly-2.19.0.dev20241114.dist-info → tf_models_nightly-2.19.0.dev20241115.dist-info}/AUTHORS +0 -0
  60. {tf_models_nightly-2.19.0.dev20241114.dist-info → tf_models_nightly-2.19.0.dev20241115.dist-info}/LICENSE +0 -0
  61. {tf_models_nightly-2.19.0.dev20241114.dist-info → tf_models_nightly-2.19.0.dev20241115.dist-info}/WHEEL +0 -0
  62. {tf_models_nightly-2.19.0.dev20241114.dist-info → tf_models_nightly-2.19.0.dev20241115.dist-info}/top_level.txt +0 -0
@@ -17,7 +17,6 @@
17
17
  import math
18
18
  import os
19
19
 
20
- # Import libraries
21
20
  from absl import app
22
21
  from absl import flags
23
22
  from absl import logging
@@ -20,7 +20,6 @@ from __future__ import print_function
20
20
 
21
21
  import os
22
22
 
23
- # Import libraries
24
23
  from absl import app
25
24
  from absl import flags
26
25
 
@@ -21,8 +21,6 @@ BLEU score.
21
21
  import os
22
22
  import tempfile
23
23
 
24
- # Import libraries
25
-
26
24
  from absl import app
27
25
  from absl import flags
28
26
  from absl import logging
@@ -14,7 +14,6 @@
14
14
 
15
15
  """Translate text or files using trained transformer model."""
16
16
 
17
- # Import libraries
18
17
  from absl import logging
19
18
  import numpy as np
20
19
  import tensorflow as tf, tf_keras
@@ -14,7 +14,6 @@
14
14
 
15
15
  """Tests for transformer-based bert encoder network with dense features as inputs."""
16
16
 
17
- # Import libraries
18
17
  from absl.testing import parameterized
19
18
  import numpy as np
20
19
  import tensorflow as tf, tf_keras
@@ -14,7 +14,6 @@
14
14
 
15
15
  """Tests for transformer-based bert encoder network."""
16
16
 
17
- # Import libraries
18
17
  from absl.testing import parameterized
19
18
  import numpy as np
20
19
  import tensorflow as tf, tf_keras
@@ -14,8 +14,6 @@
14
14
 
15
15
  """Tests for official.nlp.modeling.networks.packed_sequence_embedding."""
16
16
 
17
- # Import libraries
18
-
19
17
  from absl.testing import parameterized
20
18
  import numpy as np
21
19
  import tensorflow as tf, tf_keras
@@ -14,7 +14,6 @@
14
14
 
15
15
  """Dual encoder (retrieval) task."""
16
16
  from typing import Mapping, Tuple
17
- # Import libraries
18
17
  from absl import logging
19
18
  import dataclasses
20
19
  import tensorflow as tf, tf_keras
@@ -16,8 +16,6 @@
16
16
 
17
17
  import os
18
18
 
19
- # Import libraries
20
-
21
19
  from absl import logging
22
20
  import numpy as np
23
21
  import tensorflow as tf, tf_keras
@@ -16,8 +16,6 @@
16
16
 
17
17
  import os
18
18
 
19
- # Import libraries
20
-
21
19
  from absl import app
22
20
  from absl import flags
23
21
  from absl import logging
@@ -14,7 +14,6 @@
14
14
 
15
15
  """Tests for configs.py."""
16
16
 
17
- # Import libraries
18
17
  from absl.testing import parameterized
19
18
 
20
19
  import numpy as np
@@ -13,8 +13,6 @@
13
13
  # limitations under the License.
14
14
 
15
15
  """Quantization schemes."""
16
- # Import libraries
17
-
18
16
  import numpy as np
19
17
  import tensorflow as tf, tf_keras
20
18
 
@@ -13,8 +13,6 @@
13
13
  # limitations under the License.
14
14
 
15
15
  """Factory methods to build models."""
16
- # Import libraries
17
-
18
16
  import tensorflow as tf, tf_keras
19
17
 
20
18
  import tensorflow_model_optimization as tfmot
@@ -14,8 +14,6 @@
14
14
 
15
15
  """Tests for factory.py."""
16
16
 
17
- # Import libraries
18
-
19
17
  from absl.testing import parameterized
20
18
  import tensorflow as tf, tf_keras
21
19
 
@@ -15,8 +15,6 @@
15
15
  """Contains definitions of dense prediction heads."""
16
16
  from typing import List, Mapping, Union, Optional, Any, Dict
17
17
 
18
- # Import libraries
19
-
20
18
  import numpy as np
21
19
  import tensorflow as tf, tf_keras
22
20
 
@@ -15,7 +15,6 @@
15
15
  # Lint as: python3
16
16
  """Tests for dense_prediction_heads.py."""
17
17
 
18
- # Import libraries
19
18
  from absl.testing import parameterized
20
19
  import numpy as np
21
20
  import tensorflow as tf, tf_keras
@@ -15,8 +15,6 @@
15
15
  """Contains quantized neural blocks for the QAT."""
16
16
  from typing import Any, Dict, Optional, Sequence, Tuple, Union
17
17
 
18
- # Import libraries
19
-
20
18
  from absl import logging
21
19
  import tensorflow as tf, tf_keras
22
20
 
@@ -15,7 +15,6 @@
15
15
  """Tests for nn_blocks."""
16
16
 
17
17
  from typing import Any, Iterable, Tuple
18
- # Import libraries
19
18
  from absl.testing import parameterized
20
19
  import tensorflow as tf, tf_keras
21
20
 
@@ -14,7 +14,6 @@
14
14
 
15
15
  """Tests for nn_layers."""
16
16
 
17
- # Import libraries
18
17
  from absl.testing import parameterized
19
18
  import tensorflow as tf, tf_keras
20
19
 
@@ -15,7 +15,6 @@
15
15
  """Build segmentation models."""
16
16
  from typing import Any, Mapping, Union
17
17
 
18
- # Import libraries
19
18
  import tensorflow as tf, tf_keras
20
19
 
21
20
  layers = tf_keras.layers
@@ -14,8 +14,6 @@
14
14
 
15
15
  """Tests for configs.py."""
16
16
 
17
- # Import libraries
18
-
19
17
  import numpy as np
20
18
  import tensorflow as tf, tf_keras
21
19
 
@@ -15,8 +15,6 @@
15
15
  """Contains quantized neural blocks for the QAT."""
16
16
  from typing import Any, Dict, Optional, Sequence, Union
17
17
 
18
- # Import libraries
19
-
20
18
  from absl import logging
21
19
  import tensorflow as tf, tf_keras
22
20
 
@@ -15,7 +15,6 @@
15
15
  """Tests for nn_blocks."""
16
16
 
17
17
  from typing import Any, Iterable, Tuple
18
- # Import libraries
19
18
  from absl.testing import parameterized
20
19
  import tensorflow as tf, tf_keras
21
20
 
@@ -15,8 +15,6 @@
15
15
  """Quantization schemes."""
16
16
  from typing import Type
17
17
 
18
- # Import libraries
19
-
20
18
  import tensorflow as tf, tf_keras
21
19
 
22
20
  import tensorflow_model_optimization as tfmot
@@ -14,8 +14,6 @@
14
14
 
15
15
  """Tests for configs.py."""
16
16
 
17
- # Import libraries
18
-
19
17
  import numpy as np
20
18
  import tensorflow as tf, tf_keras
21
19
 
@@ -13,8 +13,6 @@
13
13
  # limitations under the License.
14
14
 
15
15
  """Quantization schemes."""
16
- # Import libraries
17
-
18
16
  import tensorflow_model_optimization as tfmot
19
17
  from official.projects.qat.vision.quantization import layer_transforms
20
18
 
@@ -21,7 +21,6 @@ Annotation. arXiv:1606.06650.
21
21
 
22
22
  from typing import Any, Mapping, Sequence
23
23
 
24
- # Import libraries
25
24
  import tensorflow as tf, tf_keras
26
25
  from official.modeling import hyperparams
27
26
  from official.projects.volumetric_models.modeling import nn_blocks_3d
@@ -14,7 +14,6 @@
14
14
 
15
15
  """Tests for 3D UNet backbone."""
16
16
 
17
- # Import libraries
18
17
  from absl.testing import parameterized
19
18
  import tensorflow as tf, tf_keras
20
19
 
@@ -41,8 +41,6 @@ in place that uses it.
41
41
  """
42
42
  from typing import Union, Mapping, Optional
43
43
 
44
- # Import libraries
45
-
46
44
  import tensorflow as tf, tf_keras
47
45
 
48
46
  from official.core import registry
@@ -14,7 +14,6 @@
14
14
 
15
15
  """Tests for 3D UNet decoder."""
16
16
 
17
- # Import libraries
18
17
  from absl.testing import parameterized
19
18
  import tensorflow as tf, tf_keras
20
19
 
@@ -14,8 +14,6 @@
14
14
 
15
15
  """Factory methods to build models."""
16
16
  from typing import Sequence, Union
17
- # Import libraries
18
-
19
17
  import tensorflow as tf, tf_keras
20
18
 
21
19
  from official.modeling import hyperparams
@@ -16,7 +16,6 @@
16
16
 
17
17
  from typing import Sequence, Union
18
18
 
19
- # Import libraries
20
19
  import tensorflow as tf, tf_keras
21
20
 
22
21
  from official.modeling import tf_utils
@@ -14,7 +14,6 @@
14
14
 
15
15
  """Tests for 3D volumeric convoluion blocks."""
16
16
 
17
- # Import libraries
18
17
  from absl.testing import parameterized
19
18
  import tensorflow as tf, tf_keras
20
19
 
@@ -17,7 +17,6 @@
17
17
  import json
18
18
 
19
19
  # pylint: disable=g-bad-import-order
20
- # Import libraries
21
20
  from absl import app
22
21
  from absl import flags
23
22
  import tensorflow as tf, tf_keras
@@ -27,7 +27,6 @@ import tempfile
27
27
  import zipfile
28
28
 
29
29
  # pylint: disable=g-bad-import-order
30
- # Import libraries
31
30
  import numpy as np
32
31
  import pandas as pd
33
32
  import six
@@ -14,7 +14,6 @@
14
14
 
15
15
  """Losses for maskrcnn model."""
16
16
 
17
- # Import libraries
18
17
  import tensorflow as tf, tf_keras
19
18
 
20
19
 
@@ -14,7 +14,6 @@
14
14
 
15
15
  """Losses used for detection models."""
16
16
 
17
- # Import libraries
18
17
  import tensorflow as tf, tf_keras
19
18
 
20
19
 
@@ -15,7 +15,6 @@
15
15
  """Build classification models."""
16
16
 
17
17
  from typing import Any, Mapping, Optional
18
- # Import libraries
19
18
  import tensorflow as tf, tf_keras
20
19
 
21
20
  layers = tf_keras.layers
@@ -14,7 +14,6 @@
14
14
 
15
15
  """Tests for classification network."""
16
16
 
17
- # Import libraries
18
17
  from absl.testing import parameterized
19
18
  import numpy as np
20
19
  import tensorflow as tf, tf_keras
@@ -14,7 +14,6 @@
14
14
 
15
15
  """Factory methods to build models."""
16
16
 
17
- # Import libraries
18
17
  import tensorflow as tf, tf_keras
19
18
 
20
19
  from official.core import registry
@@ -15,7 +15,6 @@
15
15
  """Tests for factory.py."""
16
16
  import collections
17
17
 
18
- # Import libraries
19
18
  from absl.testing import parameterized
20
19
  import tensorflow as tf, tf_keras
21
20
 
@@ -15,7 +15,6 @@
15
15
  """Tests for maskrcnn_model.py."""
16
16
 
17
17
  import os
18
- # Import libraries
19
18
  from absl.testing import parameterized
20
19
  import numpy as np
21
20
  import tensorflow as tf, tf_keras
@@ -16,7 +16,6 @@
16
16
  import collections
17
17
  from typing import Any, Mapping, List, Optional, Union, Sequence
18
18
 
19
- # Import libraries
20
19
  import tensorflow as tf, tf_keras
21
20
 
22
21
  from official.vision.ops import anchor
@@ -14,7 +14,6 @@
14
14
 
15
15
  """Tests for RetinaNet models."""
16
16
 
17
- # Import libraries
18
17
  from absl.testing import parameterized
19
18
  import numpy as np
20
19
  import tensorflow as tf, tf_keras
@@ -15,7 +15,6 @@
15
15
  """Build segmentation models."""
16
16
  from typing import Any, Mapping, Union, Optional, Dict
17
17
 
18
- # Import libraries
19
18
  import tensorflow as tf, tf_keras
20
19
 
21
20
  layers = tf_keras.layers
@@ -14,7 +14,6 @@
14
14
 
15
15
  """Tests for video classification network."""
16
16
 
17
- # Import libraries
18
17
  from absl.testing import parameterized
19
18
  import numpy as np
20
19
  import tensorflow as tf, tf_keras
@@ -18,8 +18,6 @@ import collections
18
18
  import math
19
19
  from typing import Dict, Optional, Tuple
20
20
 
21
- # Import libraries
22
-
23
21
  import tensorflow as tf, tf_keras
24
22
 
25
23
  from official.vision.ops import box_matcher
@@ -14,7 +14,6 @@
14
14
 
15
15
  """Tests for anchor.py."""
16
16
 
17
- # Import libraries
18
17
  from absl.testing import parameterized
19
18
  import numpy as np
20
19
  import tensorflow as tf, tf_keras
@@ -14,7 +14,6 @@
14
14
 
15
15
  """Box related ops."""
16
16
 
17
- # Import libraries
18
17
  import numpy as np
19
18
  import tensorflow as tf, tf_keras
20
19
 
@@ -17,8 +17,6 @@
17
17
  import math
18
18
  from typing import List, Tuple
19
19
 
20
- # Import libraries
21
-
22
20
  import cv2
23
21
  import numpy as np
24
22
  import tensorflow as tf, tf_keras
@@ -14,7 +14,6 @@
14
14
 
15
15
  """Tests for mask_ops.py."""
16
16
 
17
- # Import libraries
18
17
  import numpy as np
19
18
  import tensorflow as tf, tf_keras
20
19
  from official.vision.ops import mask_ops
@@ -14,7 +14,6 @@
14
14
 
15
15
  """Tensorflow implementation of non max suppression."""
16
16
 
17
- # Import libraries
18
17
  import tensorflow as tf, tf_keras
19
18
 
20
19
  from official.vision.ops import box_ops
@@ -16,8 +16,6 @@
16
16
 
17
17
  import io
18
18
 
19
- # Import libraries
20
-
21
19
  from absl.testing import parameterized
22
20
  import numpy as np
23
21
  from PIL import Image
@@ -31,7 +31,6 @@ when number of examples set to True in indicator is less than batch_size.
31
31
  This is originally implemented in TensorFlow Object Detection API.
32
32
  """
33
33
 
34
- # Import libraries
35
34
  import tensorflow as tf, tf_keras
36
35
 
37
36
 
@@ -14,7 +14,6 @@
14
14
 
15
15
  """A script to export the image classification as a TF-Hub SavedModel."""
16
16
 
17
- # Import libraries
18
17
  from absl import app
19
18
  from absl import flags
20
19
 
@@ -15,8 +15,6 @@
15
15
  """A script to export a TF-Hub SavedModel."""
16
16
  from typing import List, Optional
17
17
 
18
- # Import libraries
19
-
20
18
  import tensorflow as tf, tf_keras
21
19
 
22
20
  from official.core import config_definitions as cfg
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: tf-models-nightly
3
- Version: 2.19.0.dev20241114
3
+ Version: 2.19.0.dev20241115
4
4
  Summary: TensorFlow Official Models
5
5
  Home-page: https://github.com/tensorflow/models
6
6
  Author: Google Inc.
@@ -138,10 +138,10 @@ official/legacy/image_classification/resnet/__init__.py,sha256=7oiypy0N82PDw9aSd
138
138
  official/legacy/image_classification/resnet/common.py,sha256=US4H_uUtDMHsChBNf4E7H2itJLc4D7LY8cgkXTr7LnQ,16304
139
139
  official/legacy/image_classification/resnet/imagenet_preprocessing.py,sha256=YQCliladGAzo4V3eY2meQF64L9T_7PWeHtXECDuP7eI,21178
140
140
  official/legacy/image_classification/resnet/resnet_config.py,sha256=IGLz1vhnki3Pp-tTFklp8rdHZOIlsGn1hS_WtD0e_1M,2368
141
- official/legacy/image_classification/resnet/resnet_ctl_imagenet_main.py,sha256=-Y3NSA5aPwt9NIa71oK4-dDEysbbAnJmFAX0P8Szunc,6926
141
+ official/legacy/image_classification/resnet/resnet_ctl_imagenet_main.py,sha256=y9ljUwTJTyAUd0D2bHbJNh0Mhe5JueTqa6ANf9maeXY,6907
142
142
  official/legacy/image_classification/resnet/resnet_model.py,sha256=PChXr6aqZm1wj7WcKtAcS94ep-rdOnPxzdsMgD-IeX4,10955
143
143
  official/legacy/image_classification/resnet/resnet_runnable.py,sha256=rpHexkAeb8glL1jq313P6NlyhYxjUSk0VhyuUeyfaGU,8134
144
- official/legacy/image_classification/resnet/tfhub_export.py,sha256=y54gdNDGWL2uY-raMAvbqyUXjdwwNMFv6_3NZtE5Rpw,2199
144
+ official/legacy/image_classification/resnet/tfhub_export.py,sha256=Be43YiTui8tYvGv66PEJa8UeDTPEqy2j9dgkUrKsSms,2180
145
145
  official/legacy/image_classification/vgg/__init__.py,sha256=Yqe5TjLrAR68lQ5G781dwlbbT6mELRByDipCtr4jQY4,610
146
146
  official/legacy/image_classification/vgg/vgg_config.py,sha256=NhJWivl877-ByEK_gpTVGnfwVR_W7fdKmP2HvH1f-00,2115
147
147
  official/legacy/image_classification/vgg/vgg_model.py,sha256=0qzj7DYGvl-7VFZnMjEwEKkqod68Ca_6UZNVPsfi5JM,7617
@@ -163,10 +163,10 @@ official/legacy/transformer/optimizer.py,sha256=VbM_Dnblv4hmtaFugBh1cFK2_mnihxoW
163
163
  official/legacy/transformer/transformer.py,sha256=6ZCu61XxU1LRdMah1NKvEA-pF23gNr3n3d3rBybtv-Q,21761
164
164
  official/legacy/transformer/transformer_forward_test.py,sha256=pnvQ8g9k5FCQeKB523rtAxKfB4VbDtyeBrhy6xvfaeY,6070
165
165
  official/legacy/transformer/transformer_layers_test.py,sha256=0aCeywTKqSOTrZtkVBvy3FJhL4pwppeM4er1w01MAeI,3576
166
- official/legacy/transformer/transformer_main.py,sha256=rn2E4MiwNL6uGwcl5Njnw-3h86HOq8sQfBp3gXITSRw,18110
166
+ official/legacy/transformer/transformer_main.py,sha256=s5KmSW0sIo-Slcu2jWKfnIil6OsXFzmHs2ljlrsWy2c,18090
167
167
  official/legacy/transformer/transformer_main_test.py,sha256=aZnbdbJCsDazU4tUhAs_xpuXZe0ZrZJgCxQy0ez92SY,6641
168
168
  official/legacy/transformer/transformer_test.py,sha256=2eD65briKm6pcEpveYcFuNh3wSWt3bcYETClbarewqc,3638
169
- official/legacy/transformer/translate.py,sha256=OO5B5qlSMu2hGMd2KYn1DyUaPDC4tuQm-2vA-xric8o,6961
169
+ official/legacy/transformer/translate.py,sha256=lAByP5lKO_JGdhBetF3ibSsDMGHSOXRdwWUf5GHNn1Q,6942
170
170
  official/legacy/transformer/utils/__init__.py,sha256=7oiypy0N82PDw9aSdcJBLVoGTd_oRSUOdvuJhMv4leQ,609
171
171
  official/legacy/transformer/utils/metrics.py,sha256=SwCpQ4-QSTgTNiCZ73HKTtlS78cBvoJPEh2lJbPtF2M,16706
172
172
  official/legacy/transformer/utils/tokenizer.py,sha256=RW-5qzQvYeTmilEaJMCGdnLmKfUQ-q2DvkdPZG0Hwo4,24527
@@ -396,9 +396,9 @@ official/nlp/modeling/models/xlnet_test.py,sha256=Is5rF915K1uT_xripbYqSaAx6N_OXC
396
396
  official/nlp/modeling/networks/__init__.py,sha256=Knq-qlY_3Z3e0QH7ROrh6hQdF3OTCcg6GfFKtKzw7Wk,1839
397
397
  official/nlp/modeling/networks/albert_encoder.py,sha256=DtJGpQIDmE9P0tEXGmQePWOXmDOWc2hRaYhRhZDbGos,8887
398
398
  official/nlp/modeling/networks/albert_encoder_test.py,sha256=Mr8At-kMKyME2oZV16Ul6ngqSSChJkQo6CG3CNKGvdI,7117
399
- official/nlp/modeling/networks/bert_dense_encoder_test.py,sha256=VmJtMkoFTW15g_cxNU8ApaBZHwhJvwop-BMOSY601F4,14239
399
+ official/nlp/modeling/networks/bert_dense_encoder_test.py,sha256=2pu0bj2YchS0jFTxKmoFbXu7Y981oswl2yqgk9XgfSM,14220
400
400
  official/nlp/modeling/networks/bert_encoder.py,sha256=IepIw6UvX-lPVBKAO72jMm8huCt4EG2uvBnmdA12uUo,26288
401
- official/nlp/modeling/networks/bert_encoder_test.py,sha256=V7bBGlR8_g0s0jQsr-BHGpYzigJMEFeiOn_Kzrb4Rfw,29165
401
+ official/nlp/modeling/networks/bert_encoder_test.py,sha256=86pyTY0tYPZr-dxLm42rvDQNbqhpI0CWo8queXsp-PQ,29146
402
402
  official/nlp/modeling/networks/classification.py,sha256=2leztCqCeEW3dlyvHoHAclJtTndW-kJM7Yx14Z3RRxs,4232
403
403
  official/nlp/modeling/networks/classification_test.py,sha256=SwFq_poQX1iv2GHtX_Q_Nu15DmrPbHnTLdRftjhnSew,7071
404
404
  official/nlp/modeling/networks/encoder_scaffold.py,sha256=XBG_4qzdhU8haFrnjW-4G9eKRbKivy3WTtxuNFtCr2w,17153
@@ -410,7 +410,7 @@ official/nlp/modeling/networks/funnel_transformer_test.py,sha256=XEVGmOa-sy7CTe4
410
410
  official/nlp/modeling/networks/mobile_bert_encoder.py,sha256=fYrFEP55IwQOIVl2WK7sFd5yyJaWmh81A5WWprBHLxk,8712
411
411
  official/nlp/modeling/networks/mobile_bert_encoder_test.py,sha256=u9WqDiIuKlQuA2cEUg_InpgaXXQASGHGhxoCseyHOZI,7115
412
412
  official/nlp/modeling/networks/packed_sequence_embedding.py,sha256=Hu1hcTtfBA96dboCNcAPwe2D7x0QYWHxY4BpO5nUDUw,12810
413
- official/nlp/modeling/networks/packed_sequence_embedding_test.py,sha256=atjMoYpt78Uz16NXdp7l7IrJQtgcfxvkzcKDvhl5bac,5076
413
+ official/nlp/modeling/networks/packed_sequence_embedding_test.py,sha256=HNkazvWIsC9kVXUtFubITkDt_OFKji1Dt1eVijc3V3c,5056
414
414
  official/nlp/modeling/networks/span_labeling.py,sha256=onu8Hk5Uxq1xQCqVxamUUEZ2JCrw05tnccuGlfNjhbU,13205
415
415
  official/nlp/modeling/networks/span_labeling_test.py,sha256=ZTdyuWadZUeBoGzW4o5YnVfQ1B4pMMHCAC1sXWS3Kiw,11984
416
416
  official/nlp/modeling/networks/sparse_mixer.py,sha256=a8ioOjk6EWYZheN0M9y5HpU-RpvFZN9VVSLj9Ritx6g,17460
@@ -432,7 +432,7 @@ official/nlp/serving/export_savedmodel_util.py,sha256=epHRzJbytJUNlE7TfokL9NAU7t
432
432
  official/nlp/serving/serving_modules.py,sha256=niSTFDUEJQQil1b4xI1qFb0lVjc3Pm5SKJCaeSeb7C4,18899
433
433
  official/nlp/serving/serving_modules_test.py,sha256=wR7jHnNQS88uRjS6ha7BTXYS4uMXCYbGs4SZryzI3AI,15078
434
434
  official/nlp/tasks/__init__.py,sha256=DZBkiMV7Mp5ayKlzz6-fbQfPFHBaButgChhJDUO6ALY,1178
435
- official/nlp/tasks/dual_encoder.py,sha256=XHJlM5vTntzwKDjzsf9SrjZX9PH078W1mIthQIgIS_U,7787
435
+ official/nlp/tasks/dual_encoder.py,sha256=CZL8WBLwtIUWTGx1EHCaGtIKMTJnh0Ju6vJQkgRtHgA,7768
436
436
  official/nlp/tasks/dual_encoder_test.py,sha256=GfMrujsZYmcCRj6WqHa_F-9HeOhpjkUHxXMfbQG7J5s,4571
437
437
  official/nlp/tasks/electra_task.py,sha256=ow5Y8TjcDwIjlYiGlgiFYKtg4MvlGydWoVtOsH7g_dk,9860
438
438
  official/nlp/tasks/electra_task_test.py,sha256=0dQ1jChgUUFvEibjD1BUF9S7vmMbGZIQjASpG2XLj58,2292
@@ -592,14 +592,14 @@ official/projects/nhnet/configs.py,sha256=F5lJNdpd8KZE4PjupSVXffmBlOTTakk_ODKC3e
592
592
  official/projects/nhnet/configs_test.py,sha256=odEu4G3Pq4bq5BMz_of3-R6ORwWR16z8RhgI73gRFCU,3126
593
593
  official/projects/nhnet/decoder.py,sha256=mnkqpx-LxgzO9y4vr2kMKr676ACOzrWrz5Z3fn8sQZ8,15322
594
594
  official/projects/nhnet/decoder_test.py,sha256=5_6TKU2YVsBU0Yf4SxDEXl9aFcVXziXEAR3E3KWEN30,6034
595
- official/projects/nhnet/evaluation.py,sha256=6stlNqvd5Wr-jVpJWsiP-U3uhAJNDwlKgKdXU3NBKTI,6101
595
+ official/projects/nhnet/evaluation.py,sha256=Y2sl-tbrXUcGx54WE71PI_BUzVTpWzj-TW1ZNkFZUdE,6081
596
596
  official/projects/nhnet/input_pipeline.py,sha256=PFhapUebsqOVT8x-h7RdD7GnbiH7qRUnfbAdshvQsHY,9063
597
597
  official/projects/nhnet/models.py,sha256=OMonxvCdOKZXKf95HHCNOOyFDmuAmMzHYh6BbdH_IfY,23139
598
598
  official/projects/nhnet/models_test.py,sha256=TIro1tnhi4tRP4dobhNEV50JDdGKUuUsu5zOMeOrdf8,11796
599
599
  official/projects/nhnet/optimizer.py,sha256=QYhBhu7RBdYAI-1QRyQjdKcUDqnSCLnrGgVMq4s4T9w,2819
600
600
  official/projects/nhnet/raw_data_process.py,sha256=0Yb1y7RCLpWZAO7w5tm7MCwoIQTGQ9F-hdEo87zgcdM,3735
601
601
  official/projects/nhnet/raw_data_processor.py,sha256=0pgDA_OKPxmgZuDyVDfdTMDtV6Dfeu1Oo_vmmUgNX3k,9253
602
- official/projects/nhnet/trainer.py,sha256=Z9vcTwM1YSfTop51qRvhithkNIhnJEvSOf2wZc_dbA4,8830
602
+ official/projects/nhnet/trainer.py,sha256=jkGkMb2pWHLHfwjenIcccVeinQNMP5osgh3-cYp0OsY,8810
603
603
  official/projects/nhnet/trainer_test.py,sha256=ug1nU6VhtLydcsjceWL-w2pdKrn6bhELLPspOmC--cw,3299
604
604
  official/projects/nhnet/utils.py,sha256=9pULza5Cjh31lAtZiRmKlwvzsUkkYWUL4OecYygXMxw,3304
605
605
  official/projects/panoptic/__init__.py,sha256=7oiypy0N82PDw9aSdcJBLVoGTd_oRSUOdvuJhMv4leQ,609
@@ -629,9 +629,9 @@ official/projects/qat/nlp/modeling/networks/__init__.py,sha256=7oiypy0N82PDw9aSd
629
629
  official/projects/qat/nlp/modeling/networks/span_labeling.py,sha256=G5M6bgBEthRj6G9qhT2eRrm__jVZ3DJ6NM7OZlKVAQE,4632
630
630
  official/projects/qat/nlp/quantization/__init__.py,sha256=7oiypy0N82PDw9aSdcJBLVoGTd_oRSUOdvuJhMv4leQ,609
631
631
  official/projects/qat/nlp/quantization/configs.py,sha256=hTEpKAPmSH04-a0poU_rHB8U_7sjXbjcRyiHva47wyI,14187
632
- official/projects/qat/nlp/quantization/configs_test.py,sha256=fWT2ICKGpQBVORIZalsNejZEEvTlWHpf7IwZwhtdhMM,9381
632
+ official/projects/qat/nlp/quantization/configs_test.py,sha256=loAzKF-_O3XfEpbeOvPZjAYNcgVL9ZslwJ7Qw5LeReg,9362
633
633
  official/projects/qat/nlp/quantization/helper.py,sha256=NznI6GWCFvc-vxx0L3DOtIViOTWRjBtIrlTIbT5RmU8,1835
634
- official/projects/qat/nlp/quantization/schemes.py,sha256=zStNAGsAWsHr9wKKbpcXf1xnYlgtoW8jWiyvrYkpe4s,8475
634
+ official/projects/qat/nlp/quantization/schemes.py,sha256=NLd3N4tQj_ymFj-G_IOyebGaWUFyh_udAkOM1EVYZvI,8455
635
635
  official/projects/qat/nlp/quantization/wrappers.py,sha256=btbuSQY8wRCHJC4kB7BUemrPbYImG1UHX3FBol6XTTc,1820
636
636
  official/projects/qat/nlp/tasks/__init__.py,sha256=7oiypy0N82PDw9aSdcJBLVoGTd_oRSUOdvuJhMv4leQ,609
637
637
  official/projects/qat/nlp/tasks/question_answering.py,sha256=GvsuGD4b6rHtBMx7FVYCwXpDW5t2M8tcaLfXIlz-Dis,3597
@@ -648,31 +648,31 @@ official/projects/qat/vision/configs/retinanet_test.py,sha256=D8zoO3pEs38bsmzWBw
648
648
  official/projects/qat/vision/configs/semantic_segmentation.py,sha256=YbbhULSzKaV-d9Nf-ASQbq0hztcT4cddQpAjT9PN4aE,2280
649
649
  official/projects/qat/vision/configs/semantic_segmentation_test.py,sha256=FeitPnHGENtfX_6WfO5Ak7C6VT1bPqtodtMaNuOqKVA,2031
650
650
  official/projects/qat/vision/modeling/__init__.py,sha256=TP0l_DQigubnbzCmmy09vW0-YdJs_bUrx1kmsVaVidg,757
651
- official/projects/qat/vision/modeling/factory.py,sha256=M5tsN9aKL_mM4F6pRRDT3xAb9o9gu6NGbIcepOwCniw,11135
652
- official/projects/qat/vision/modeling/factory_test.py,sha256=ysBk5RDu-ZBUOnBJ12r5K5ze-V17ZVrNN6h-_uscCio,10155
653
- official/projects/qat/vision/modeling/segmentation_model.py,sha256=SW80u-HarvnG-I18lfSPFtldtCgeiQH4thSOLUDAA98,3087
651
+ official/projects/qat/vision/modeling/factory.py,sha256=iZld1nNI16h3UBaNzjPF7yQNXUnjh7r7dqhaPcPlzmI,11115
652
+ official/projects/qat/vision/modeling/factory_test.py,sha256=vf5MkXZ0Rvfz9fc78nKpXjyXyp4IFQuq2s065B1kZow,10135
653
+ official/projects/qat/vision/modeling/segmentation_model.py,sha256=Yof9MZap7ANTs1qLU8va2kuHwUPAHokS_2hoEOdCIhs,3068
654
654
  official/projects/qat/vision/modeling/heads/__init__.py,sha256=7JQmDV0CEiffKPyDQpgE1nzrliNjyPKYQt8FvZkrIV4,743
655
- official/projects/qat/vision/modeling/heads/dense_prediction_heads.py,sha256=1Yoj7hGZGzmOuYBMsJNL6GJqfK0UKwjZCLS0sdGDDTo,15789
656
- official/projects/qat/vision/modeling/heads/dense_prediction_heads_test.py,sha256=gIABreOCfQdvqmDkMivXtA6NXKBawTA7fDNuEoByo9k,3990
655
+ official/projects/qat/vision/modeling/heads/dense_prediction_heads.py,sha256=UWJPVx42kGs8gEycR6mT6SI6MzyD8e-gTjowRRqSvS0,15769
656
+ official/projects/qat/vision/modeling/heads/dense_prediction_heads_test.py,sha256=btXhWebgKdqadvScIrp9oqFsMEG_JkkQ0EVN9V-jwlk,3971
657
657
  official/projects/qat/vision/modeling/layers/__init__.py,sha256=5YAo8dqiKA9wpQZ2YLrsnMLgxqnsk1mZQiLAB54gRe8,991
658
- official/projects/qat/vision/modeling/layers/nn_blocks.py,sha256=OuEoiY7FpPs0n4-vcjFmZc1150v9bWhCvIfTe76dfhI,43544
659
- official/projects/qat/vision/modeling/layers/nn_blocks_test.py,sha256=s1ahQzinGXLTr6tNdeyShPym1YqRJiVixPf4YNgEtKU,8583
658
+ official/projects/qat/vision/modeling/layers/nn_blocks.py,sha256=E5uZxRetWYE6uZe7RRaN7q1Nu9Azf2YUNAbIyGMtc8I,43524
659
+ official/projects/qat/vision/modeling/layers/nn_blocks_test.py,sha256=_f0eSZpidOOqq8TEZCci6RxFUXNCprNj2EitE4E7oaE,8564
660
660
  official/projects/qat/vision/modeling/layers/nn_layers.py,sha256=dIKgSec5_1L7ZF2bjmQ0Wy93yRZ8xObE_vaRJHLzLpY,38737
661
- official/projects/qat/vision/modeling/layers/nn_layers_test.py,sha256=rThfp2YynxqDMZM1DpvmV2YFFBZhfN-lf1ix400qrCg,4548
661
+ official/projects/qat/vision/modeling/layers/nn_layers_test.py,sha256=X8lPI_MKnERRdF70LQf8yibhBB77k47WOds2452AZ1o,4529
662
662
  official/projects/qat/vision/n_bit/__init__.py,sha256=hb80wQHCYNd0Oh_YrtIokmnToWv2jh0iry3GaMVNfLs,1018
663
663
  official/projects/qat/vision/n_bit/configs.py,sha256=KNnwmDOLEv2d4-G3OvR_rkmRK4OK_qwwJ0Leknd9MlI,13661
664
- official/projects/qat/vision/n_bit/configs_test.py,sha256=Uy747aUcUwvB7eXx8bWzBjfRUKN1-RS4S8dXhIxUUa4,7772
665
- official/projects/qat/vision/n_bit/nn_blocks.py,sha256=Hro4cvcp2oXizE_iRHbHOgSx_tAXfjOSVASikyhjaEQ,32597
666
- official/projects/qat/vision/n_bit/nn_blocks_test.py,sha256=yGnthX9GxS4_Sr1hBDxqXE007XS5yTLykCp5BIkzT0I,3663
664
+ official/projects/qat/vision/n_bit/configs_test.py,sha256=EwmLyZ2Q0EhTV6QpjsS4dNR4-KA5C1viTMWDHa2KJKk,7752
665
+ official/projects/qat/vision/n_bit/nn_blocks.py,sha256=V6lHC9bOEcuwqcjE30o0Em6UQ0c23oZHMZQ9hFVW6oc,32577
666
+ official/projects/qat/vision/n_bit/nn_blocks_test.py,sha256=A-uYv-PfikjhQ0f30WnVkpXn0yxo73c1bGVkjVhl2vA,3644
667
667
  official/projects/qat/vision/n_bit/nn_layers.py,sha256=DEOP063K9hojqhhyXZIXkn0at0Twx9FijfyRjajrTEA,8369
668
- official/projects/qat/vision/n_bit/schemes.py,sha256=NaDdbD7M0Uq6gBqmGgQI_spIV723W8JGWwZZgHd93qQ,9743
668
+ official/projects/qat/vision/n_bit/schemes.py,sha256=YTK77ZbN3xOaWFtC0z52iqf0eyO0ALFSGV3QvpBM-k0,9723
669
669
  official/projects/qat/vision/quantization/__init__.py,sha256=vG515wum8wAqwl9ykDHwIPIJEwvKPpdO1eznDYtPDOY,643
670
670
  official/projects/qat/vision/quantization/configs.py,sha256=NsSeMLRdmdaqm91skXD2iCH2xAoYiZ7uzThmrA6Ss0w,11694
671
- official/projects/qat/vision/quantization/configs_test.py,sha256=gg_f2ct9oJkQYW3weMHyVtpaOxDXR5QYhFQPfYAiZ-Y,6807
671
+ official/projects/qat/vision/quantization/configs_test.py,sha256=rYZNvznfSknQQLNmOe59aoajAyWXrVUGsWeldLzc_ok,6787
672
672
  official/projects/qat/vision/quantization/helper.py,sha256=T6ipmUTNB4ImskLpGs76ELQcn1WKGIvRpdAI3Zkrskc,9799
673
673
  official/projects/qat/vision/quantization/helper_test.py,sha256=4zD4g_4VDy7Y5p6kwrZJb1xsuhlYd_102y7zIfUWnzE,1938
674
674
  official/projects/qat/vision/quantization/layer_transforms.py,sha256=NoQRdYdXZpiOSMGmoS6-KevLoAFfMBWFZqcNZD6RtyA,5445
675
- official/projects/qat/vision/quantization/schemes.py,sha256=RRYmMKzjFpNjkw1T3G6div3EtZ0Ekd_j7LtZ3ta3tfk,3089
675
+ official/projects/qat/vision/quantization/schemes.py,sha256=m6fpWJEu16SFbPM69dfCt3OQVBFFNila59nGw4QTEwM,3069
676
676
  official/projects/qat/vision/serving/__init__.py,sha256=7oiypy0N82PDw9aSdcJBLVoGTd_oRSUOdvuJhMv4leQ,609
677
677
  official/projects/qat/vision/serving/export_module.py,sha256=h-nZoVuQ3wRYza7Lw4oIsGh883LsZphnNtZAMrIJImY,2405
678
678
  official/projects/qat/vision/serving/export_saved_model.py,sha256=6Ng7VKhKYcd3ENwUWBug_QD4GZO37_0jvFOOIn6BO4c,5358
@@ -751,19 +751,19 @@ official/projects/volumetric_models/losses/__init__.py,sha256=7oiypy0N82PDw9aSdc
751
751
  official/projects/volumetric_models/losses/segmentation_losses.py,sha256=iKN-lEjHkBdD4kusKAus5bkeKSJDXctGOwbJwFI9cZE,5078
752
752
  official/projects/volumetric_models/losses/segmentation_losses_test.py,sha256=b35v0RTfM4GosFQTeqfcqmIz2htt1g7HL4YvHj8g48Q,2108
753
753
  official/projects/volumetric_models/modeling/__init__.py,sha256=7oiypy0N82PDw9aSdcJBLVoGTd_oRSUOdvuJhMv4leQ,609
754
- official/projects/volumetric_models/modeling/factory.py,sha256=P-6hphyajOsvO3lgbNUJri3KMT1nmD93HR1R1lzTN5M,2630
754
+ official/projects/volumetric_models/modeling/factory.py,sha256=ovycqUSKvS1DrblmUDK9I0MfGsmmQpRCieln2YOICX8,2610
755
755
  official/projects/volumetric_models/modeling/factory_test.py,sha256=Yrjix0d5zsgjnVBjqVKOXmmwmI6q4WQpH8oA5V2WUfY,2004
756
- official/projects/volumetric_models/modeling/nn_blocks_3d.py,sha256=-Wvvc5VWPYu6eOgK64JRY-JggtAU23lrO_1DThB-VB4,19168
757
- official/projects/volumetric_models/modeling/nn_blocks_3d_test.py,sha256=9A0lC95BhtBwWKuWJLNVnbP4DeGLGTCr0I8zL3Ce4kM,2986
756
+ official/projects/volumetric_models/modeling/nn_blocks_3d.py,sha256=Y5LLXur3SEdsY0yncORPMzrNbTrCaojCeE_XpiQHNic,19149
757
+ official/projects/volumetric_models/modeling/nn_blocks_3d_test.py,sha256=sa4iWrFQmY3TNVQ1ayg0HkpqpyBFjYNT7m1lsVpqtbM,2967
758
758
  official/projects/volumetric_models/modeling/segmentation_model_test.py,sha256=59-8z61aRilic-b9RTW1PhuxxW4i4AIBSO8_5JgFo-Y,2866
759
759
  official/projects/volumetric_models/modeling/backbones/__init__.py,sha256=I6KT88QELtbUmMEgP1gfEayYlnaEy15YBQL3R9LYSl8,728
760
- official/projects/volumetric_models/modeling/backbones/unet_3d.py,sha256=nU70nTFYtLcxM-hM2AMYLBt6HBmcu8QgACs6m6DoyMc,7079
761
- official/projects/volumetric_models/modeling/backbones/unet_3d_test.py,sha256=zkL_-_oLUBhGyQLXznPxFysqY-ix5ym6zsJfbXeDKMA,2540
760
+ official/projects/volumetric_models/modeling/backbones/unet_3d.py,sha256=yaYFllBjpO9uGqUteJy_aIbSke7ns-svmAntaDEM_M0,7060
761
+ official/projects/volumetric_models/modeling/backbones/unet_3d_test.py,sha256=78NVW40-JXca92qh0TUawU7GaSEqzpJ8TD5yTZ1Hbo8,2521
762
762
  official/projects/volumetric_models/modeling/decoders/__init__.py,sha256=OPBqMietl7DRogJ17Qz0dk1D1U8jwhrbBM0LXNqOV_c,741
763
- official/projects/volumetric_models/modeling/decoders/factory.py,sha256=mcf76KGLWHXOd8sR3HjdEn7ByOwXYJuejveDQTDonvA,3575
763
+ official/projects/volumetric_models/modeling/decoders/factory.py,sha256=nSoG5b4fUDgWoQAGSjENBUK0TwBeKfBCiGyGEe1w3MU,3555
764
764
  official/projects/volumetric_models/modeling/decoders/factory_test.py,sha256=HvRdiREQCp4qpLFQPrNLxIBEPb9nfwaR5dkuWIGLCZ4,3018
765
765
  official/projects/volumetric_models/modeling/decoders/unet_3d_decoder.py,sha256=TxVDGcte3JWCYNK2nzzUtBwsJzEoKIOkinkW7hQAFpc,7774
766
- official/projects/volumetric_models/modeling/decoders/unet_3d_decoder_test.py,sha256=2zLHBU8ddfVLeS9H5YB3DXqy7H4jjepWTrHlVftuqXA,2832
766
+ official/projects/volumetric_models/modeling/decoders/unet_3d_decoder_test.py,sha256=_RcHsPVXxrpjRvwKP-0-7qdpl3lHgymaiugmjWX62zw,2813
767
767
  official/projects/volumetric_models/modeling/heads/__init__.py,sha256=7oiypy0N82PDw9aSdcJBLVoGTd_oRSUOdvuJhMv4leQ,609
768
768
  official/projects/volumetric_models/modeling/heads/segmentation_heads_3d.py,sha256=cVC6melQitfFGmM5UPuvKaLkPDb-olGn-uX6RGbxRJg,7511
769
769
  official/projects/volumetric_models/modeling/heads/segmentation_heads_3d_test.py,sha256=xursU6HSqZ-m5Cw1PzrUnR3C1mGMsdtCVJuQg6V3LfU,2102
@@ -873,11 +873,11 @@ official/projects/yt8m/tasks/__init__.py,sha256=hY6au8-uu0R1gDZ5trRjDGvRGZ11HVHt
873
873
  official/projects/yt8m/tasks/yt8m_task.py,sha256=GgTfkQZAgLAm5X41pbjr5ce_d7UJajl7TPQ5NkyAqec,14817
874
874
  official/recommendation/__init__.py,sha256=7oiypy0N82PDw9aSdcJBLVoGTd_oRSUOdvuJhMv4leQ,609
875
875
  official/recommendation/constants.py,sha256=gCMNNJHwX0fUEabCiTJa7tV7KHoXD5wc-jMIOk7hLCo,2877
876
- official/recommendation/create_ncf_data.py,sha256=KsVrHmy8yzNt2IOW-CfWhGs0qPT3Hcl8E_P0IxN75nY,4018
876
+ official/recommendation/create_ncf_data.py,sha256=_UEOulLVbZLY1MN8FukpD0hEN5n030CpeWpUu46gK5I,3999
877
877
  official/recommendation/data_pipeline.py,sha256=lE9dc5zLgwXN8wohNTGTClUvFytQSqbmU-Tv0jQ3PMU,37216
878
878
  official/recommendation/data_preprocessing.py,sha256=haYd4hoEgTLEfgTDzS037Mbk-IluQzr6d-4RrdyDsNQ,10318
879
879
  official/recommendation/data_test.py,sha256=N5w17RumG1YYoZm0obsQUDNIsF0ZfPWT-kfTgv_BgY0,12831
880
- official/recommendation/movielens.py,sha256=E1E8rOwHZ8b6WE6a7aRM7Avp6NMTYI-NVAAaGqttdr8,9744
880
+ official/recommendation/movielens.py,sha256=vET5x3zc8vW9ruZatMO3gRFUdPJjeDFJtHXfWr0bOAI,9725
881
881
  official/recommendation/ncf_common.py,sha256=r9P3HH4JQl4Tu3ae3RnNrdSa2ZcH7N7ZXyxCMhJwqY0,12288
882
882
  official/recommendation/ncf_input_pipeline.py,sha256=y2DCc5IVBK3LBk9yUVWfwb2dz-DCt2T0suASZI02UxU,6974
883
883
  official/recommendation/ncf_keras_main.py,sha256=H-DHcgX6lNtCjFQ0D9dSz9iPJoFcghdjTYAmzOFjeCM,19850
@@ -1037,25 +1037,25 @@ official/vision/evaluation/wod_detection_evaluator.py,sha256=_MKvJdlUCpqShsouxhi
1037
1037
  official/vision/losses/__init__.py,sha256=7oiypy0N82PDw9aSdcJBLVoGTd_oRSUOdvuJhMv4leQ,609
1038
1038
  official/vision/losses/focal_loss.py,sha256=SvgdogRJmtS6qC0aISW766qixgDt8einSFyrbYIPM8s,3239
1039
1039
  official/vision/losses/loss_utils.py,sha256=Fyr5KwCxFkxm8NrxVvqte0kgrThylZPM1xkpBdJloVo,1579
1040
- official/vision/losses/maskrcnn_losses.py,sha256=srHvKDM6rgIoanb_nlNJ-bP72JCAgQd2BACJviz3v1o,17076
1040
+ official/vision/losses/maskrcnn_losses.py,sha256=Ye6jcE6y6uUtE_eArmcxIFVWBQEdpCII_u97nxMRsbw,17057
1041
1041
  official/vision/losses/maskrcnn_losses_test.py,sha256=iw1UgSd-1oPgnP25bW8cTfg2rqJNI7S6hYMqcBMF7uA,5348
1042
- official/vision/losses/retinanet_losses.py,sha256=dGD7_G13HjtbdFjrqqzsv_-5H3jDCVFW8bljSB2jIKs,8107
1042
+ official/vision/losses/retinanet_losses.py,sha256=rK2aiWtvAUxyHRxtyZvLZKlHNW5jk0-JVIkasVyrr4U,8088
1043
1043
  official/vision/losses/segmentation_losses.py,sha256=ubZtWxbw01iLqUyHZTAAU4l_xEfiHDg3h1TxGtXeIMM,11424
1044
1044
  official/vision/losses/segmentation_losses_test.py,sha256=b9q7WcOaMDyfk9--TqnAysAh5Ir-BsX1H0WebImxFw8,3660
1045
1045
  official/vision/modeling/__init__.py,sha256=-WBNSSGzC34biufUOgOSHD6qt-CPDlMhamT4EYr8GQ4,869
1046
- official/vision/modeling/classification_model.py,sha256=LIMbb-KjmYlwEf_jKs2qKrPX_bdOSgYm4v5EsijI6r8,4867
1047
- official/vision/modeling/classification_model_test.py,sha256=Fkxz58GcEiIU8KfchhA8jhcdtbSaNHOnW0M4ydaKJGE,7017
1046
+ official/vision/modeling/classification_model.py,sha256=LoWT-jzM2B9TFuwzk8NZ9g0gz1eXmsbGTOFQhLIc1DI,4848
1047
+ official/vision/modeling/classification_model_test.py,sha256=nzrBzu4qOxDKHWBqepbNhbLAGrOnRSHVO4Nqr5XXtKw,6998
1048
1048
  official/vision/modeling/factory.py,sha256=N_THzUltUFePX3AExkGmrEfADqJOpErr79Pk93Tsm34,18708
1049
- official/vision/modeling/factory_3d.py,sha256=P9V783V0JQZLesvSdHAGQ6fLrXHq6XnJdv97s78wF8s,3540
1050
- official/vision/modeling/factory_test.py,sha256=64QsxFiXaruNHczE_85cxFmxFTrHFjG3Ol5HfI9OeX8,6719
1049
+ official/vision/modeling/factory_3d.py,sha256=2pUdT2mC1tg20qqSHUtitGIvLKW866R2SstZ0DcJAJk,3521
1050
+ official/vision/modeling/factory_test.py,sha256=ojUEYRMdtkKq75IcesdtOlrPwTxfJUgrS12BEsHps5w,6700
1051
1051
  official/vision/modeling/maskrcnn_model.py,sha256=03QTWfRGb5wacFVo1SHOSLJ4hLc9Eq8VfEXJntylAEc,20774
1052
- official/vision/modeling/maskrcnn_model_test.py,sha256=_KqwN8VcwM8oUBSGwJjVaPC0JeuN0H_qf5GPDYNrvJQ,14844
1053
- official/vision/modeling/retinanet_model.py,sha256=binKQmYkVqTtSXdeyObSWiwIPTEutfMUuF05MOgG8xQ,10339
1054
- official/vision/modeling/retinanet_model_test.py,sha256=m9cBm8arAb0sNx5QsWRu_ildzdUDXVQHDlvjAb9x0Fk,11164
1055
- official/vision/modeling/segmentation_model.py,sha256=BrH3w0yZ60uwyEGP08iYt0rAWVlJjyUkRr0eZN3yl4s,3438
1052
+ official/vision/modeling/maskrcnn_model_test.py,sha256=UuNX3_BApjXXvuCNIMtbjkS-ZOtq8mORpOVNkG4glNU,14825
1053
+ official/vision/modeling/retinanet_model.py,sha256=SxgcAEqquogFBONsNPajiInj-SqezpqfIi2K0QBZCTk,10320
1054
+ official/vision/modeling/retinanet_model_test.py,sha256=KOHqE1wRKD_488XBnPy1qTdCkkgCpo7BYAoA67iPwNQ,11145
1055
+ official/vision/modeling/segmentation_model.py,sha256=aZd6g4P_cHJDLWS7h7cNC3YsdAuyEpRGxZMZJzsqAx4,3419
1056
1056
  official/vision/modeling/segmentation_model_test.py,sha256=fimmpt0pFMcX214Vuf0C4NcRdWLLB9F2IJeiuTFUO54,2817
1057
1057
  official/vision/modeling/video_classification_model.py,sha256=RKrT22D5yW435S9AyYlgOFCIi0knbmZFvgwh_5JubPI,4713
1058
- official/vision/modeling/video_classification_model_test.py,sha256=HL0hVwOFJCxSjDNFVK42MwzuoDx5r4rvraEbBXVkX8c,3271
1058
+ official/vision/modeling/video_classification_model_test.py,sha256=V6dZUHSdV-2R5l0dAnAr7ArFdYIHFm6mbQgtt_7GbbY,3252
1059
1059
  official/vision/modeling/backbones/__init__.py,sha256=sq2NgKWiD2aqGmM-xGPPFIXtEM26gT9mSVrR6qDAFA0,1399
1060
1060
  official/vision/modeling/backbones/efficientnet.py,sha256=j716OGSpkzgpDA4jV-Hk73mAGPULrPwlwHuS_9j40bE,12438
1061
1061
  official/vision/modeling/backbones/efficientnet_test.py,sha256=TYsUieiLrEU5913s3Yxhv-9eaolQK_kfzJm77lyCF0M,3762
@@ -1119,25 +1119,25 @@ official/vision/modeling/layers/roi_generator.py,sha256=ZL-m5IObg8JsXJ_DZ0QQusv2
1119
1119
  official/vision/modeling/layers/roi_sampler.py,sha256=uajmniFsZrmAR_-ojva_dVm9xZU3wze5EqCryP9gUoQ,10006
1120
1120
  official/vision/modeling/models/__init__.py,sha256=9tSOgQ3WTOmg91vIOdiAzpcHCvMJ76nFqCDyQR095k4,1020
1121
1121
  official/vision/ops/__init__.py,sha256=7oiypy0N82PDw9aSdcJBLVoGTd_oRSUOdvuJhMv4leQ,609
1122
- official/vision/ops/anchor.py,sha256=awu5WOXwTK8H5j2MppnRQcvPHNXSCiBnKcJCnISNfnE,20631
1122
+ official/vision/ops/anchor.py,sha256=kPM7gkja4XfUxMXxBew65nxrmu5rjWFwc1ywsyinAO4,20611
1123
1123
  official/vision/ops/anchor_generator.py,sha256=cN2k9rw4EpHPGrtSm8Ea51QERPy6WB1XGwYKjAkP8Uw,7276
1124
1124
  official/vision/ops/anchor_generator_test.py,sha256=qL4LCRr7UzwWlXmWNuS_yVwXe0ygNdMwYOz5T6Mrar4,5302
1125
- official/vision/ops/anchor_test.py,sha256=PP2UNanwQjdiGxGaL9FZjU0vqTUbOp_Ni_1Kedga9aU,9015
1125
+ official/vision/ops/anchor_test.py,sha256=Tjsybwb8hK8Zx5wd1F4fUp_wSezohR6nBTtl8mwvwug,8996
1126
1126
  official/vision/ops/augment.py,sha256=20K-OWV_GLbpzv8sY5rBe6x3H5MIRbTlDWOPTfNlGeY,108290
1127
1127
  official/vision/ops/augment_test.py,sha256=9QISeqJ79JgkI2-Hn4pMxPRRin3mbOd7mSJ4v7S8W6E,25881
1128
1128
  official/vision/ops/box_matcher.py,sha256=AvZd7CUUZnT4FwETLyVz3Uxb3gO-o94OwlZrvm7CtX0,9067
1129
1129
  official/vision/ops/box_matcher_test.py,sha256=YdxaTITaUyKBA27Pss5MZKF2ibBfSu879222c7lKngU,2438
1130
- official/vision/ops/box_ops.py,sha256=FRKLYzVYd3zFqEYX6Ql4Pr39csvR2Vc-OQv-WxhegFM,34618
1130
+ official/vision/ops/box_ops.py,sha256=-DCqteo6n6Ag3fbT5TlmBgulDP1RyvdXJk_w-o0M9Nk,34599
1131
1131
  official/vision/ops/iou_similarity.py,sha256=-It6wRvpyaNiCkV8ml3Q1f-43u5Gko5fVT5uDS4ILPA,5851
1132
1132
  official/vision/ops/iou_similarity_test.py,sha256=x5jlcMqMCUYC5cRgdbR0VlAW67AoXotKAytE5m5bkek,1908
1133
- official/vision/ops/mask_ops.py,sha256=cZLpIowzEA57bXPDbVXa6mktZVHvGSH-TQ1CxHjpQXw,10270
1134
- official/vision/ops/mask_ops_test.py,sha256=D3xbbbleJd4HkpWOSDSEy6hNihsRBY93BqPF6JP-dJk,2835
1135
- official/vision/ops/nms.py,sha256=bKYDAtyV5j6PG7g-RGF2ZccCI5V1xVvuajNblCy1TGs,8125
1133
+ official/vision/ops/mask_ops.py,sha256=X0hHlL0vUKl1Jt2LWbZDDulpS1CSJPSg-2VeqXb0oRM,10250
1134
+ official/vision/ops/mask_ops_test.py,sha256=leC0GTvdNeT0XyDnRmZwS1JSJ6NDMOpJcqNlUDpMwQI,2816
1135
+ official/vision/ops/nms.py,sha256=zUzJLuL-vk5feTK1MEOI49qmK8VxGVGl8GIMzN702yk,8106
1136
1136
  official/vision/ops/preprocess_ops.py,sha256=1NcE_iFPyzREdql0CRKGobFieCA6niSJcXV3Uqw635k,42588
1137
1137
  official/vision/ops/preprocess_ops_3d.py,sha256=o0ivTBK2BwaiPp_NhVG_yBc10VUySxfE7eKQkL7RNaU,16762
1138
1138
  official/vision/ops/preprocess_ops_3d_test.py,sha256=LA3-Ue4FTjdsr5Kl_BnpAMNcfikWylMisD2GrBTOLzA,9309
1139
- official/vision/ops/preprocess_ops_test.py,sha256=0ZZXkOnjfxax2R0womyyhIKPecyF9wvZm82PpzdClM8,17658
1140
- official/vision/ops/sampling_ops.py,sha256=1jywCA_E4qDUFWsykCLUwZsWtQSR0QREXdJhvP5qCvc,16072
1139
+ official/vision/ops/preprocess_ops_test.py,sha256=nuNRdVL9PETUDHic-2pm7PTTtr4KN79CoDw6_M8Zw9w,17638
1140
+ official/vision/ops/sampling_ops.py,sha256=Fy-EhbHrHkfoDP57MKA0qpGvf6PuxqN1wD9PbqO3S74,16053
1141
1141
  official/vision/ops/spatial_transform_ops.py,sha256=PVEJGAn0ygtsrid84vD5GgV0jsjyWoNn14RBzreMxM4,38389
1142
1142
  official/vision/ops/target_gather.py,sha256=Ir3X76yXYEVFSYX5h-yfS8SMkY37GYuypBP2C8ykggo,3965
1143
1143
  official/vision/ops/target_gather_test.py,sha256=yiTZg7w4HYh19pw9yIDppvenscp8MSBGlhDko180l08,2561
@@ -1153,8 +1153,8 @@ official/vision/serving/export_saved_model.py,sha256=oeP99VFTOTUcxs2H8wFZtJy2sxi
1153
1153
  official/vision/serving/export_saved_model_lib.py,sha256=KtaQc26BMHAyf6OllnyFFy-mmNcxjne8KVQqjSoMdH8,8119
1154
1154
  official/vision/serving/export_saved_model_lib_test.py,sha256=ggDN65ndXlab7cF0HefDCENDnAhJgs5C3ZCx0boZeeg,2409
1155
1155
  official/vision/serving/export_saved_model_lib_v2.py,sha256=8GQ0IrEB2r2OxsAW5tW3l076HvPSRQTwomSRhiwYddA,3710
1156
- official/vision/serving/export_tfhub.py,sha256=2-LzrgbnxvdawL2v0s2RgClc6R6YidKK2vnbEaBwRSY,3500
1157
- official/vision/serving/export_tfhub_lib.py,sha256=BZC4XSbly0DLDSlWnphjWaD0Q6SOtNa_ihMzAjN-Trg,2880
1156
+ official/vision/serving/export_tfhub.py,sha256=yG0PgPdN3hw9DOJpZ3fbBP97qn6j3ZzM8pmcUBYXx60,3481
1157
+ official/vision/serving/export_tfhub_lib.py,sha256=-aI8vKn9Ws67u-XGaPCQmSutNT9H2DuTPBC4-cVCPig,2860
1158
1158
  official/vision/serving/export_tflite.py,sha256=OhIVHrcDvB83p4WroheWcTmeYArMV9TJcgUVJWytWIc,5115
1159
1159
  official/vision/serving/export_tflite_lib.py,sha256=2AWkyEsLvMBE19m2WAa0IpyFsHV8sIR4Gvcv5ZQWbmg,7272
1160
1160
  official/vision/serving/export_utils.py,sha256=8mJb1MF_6kk3lbqZOZq2Lwu4A2L1KWxjnWnV_ZpYlVI,4881
@@ -1222,9 +1222,9 @@ tensorflow_models/tensorflow_models_test.py,sha256=nc6A9K53OGqF25xN5St8EiWvdVbda
1222
1222
  tensorflow_models/nlp/__init__.py,sha256=4tA5Pf4qaFwT-fIFOpX7x7FHJpnyJT-5UgOeFYTyMlc,807
1223
1223
  tensorflow_models/uplift/__init__.py,sha256=mqfa55gweOdpKoaQyid4A_4u7xw__FcQeSIF0k_pYmI,999
1224
1224
  tensorflow_models/vision/__init__.py,sha256=zBorY_v5xva1uI-qxhZO3Qh-Dii-Suq6wEYh6hKHDfc,833
1225
- tf_models_nightly-2.19.0.dev20241114.dist-info/AUTHORS,sha256=1dG3fXVu9jlo7bul8xuix5F5vOnczMk7_yWn4y70uw0,337
1226
- tf_models_nightly-2.19.0.dev20241114.dist-info/LICENSE,sha256=WxeBS_DejPZQabxtfMOM_xn8qoZNJDQjrT7z2wG1I4U,11512
1227
- tf_models_nightly-2.19.0.dev20241114.dist-info/METADATA,sha256=CBTh_BADbTMsLmIlAfnuVib-b0oLtAJgPtglYoFsMGA,1432
1228
- tf_models_nightly-2.19.0.dev20241114.dist-info/WHEEL,sha256=kGT74LWyRUZrL4VgLh6_g12IeVl_9u9ZVhadrgXZUEY,110
1229
- tf_models_nightly-2.19.0.dev20241114.dist-info/top_level.txt,sha256=gum2FfO5R4cvjl2-QtP-S1aNmsvIZaFFT6VFzU0f4-g,33
1230
- tf_models_nightly-2.19.0.dev20241114.dist-info/RECORD,,
1225
+ tf_models_nightly-2.19.0.dev20241115.dist-info/AUTHORS,sha256=1dG3fXVu9jlo7bul8xuix5F5vOnczMk7_yWn4y70uw0,337
1226
+ tf_models_nightly-2.19.0.dev20241115.dist-info/LICENSE,sha256=WxeBS_DejPZQabxtfMOM_xn8qoZNJDQjrT7z2wG1I4U,11512
1227
+ tf_models_nightly-2.19.0.dev20241115.dist-info/METADATA,sha256=Qoysjdq7xvO8oyzaJ7n1Fw6z5AyQxkLBnZ-2hrR7ot8,1432
1228
+ tf_models_nightly-2.19.0.dev20241115.dist-info/WHEEL,sha256=kGT74LWyRUZrL4VgLh6_g12IeVl_9u9ZVhadrgXZUEY,110
1229
+ tf_models_nightly-2.19.0.dev20241115.dist-info/top_level.txt,sha256=gum2FfO5R4cvjl2-QtP-S1aNmsvIZaFFT6VFzU0f4-g,33
1230
+ tf_models_nightly-2.19.0.dev20241115.dist-info/RECORD,,