tf-models-nightly 2.18.0.dev20241023__py2.py3-none-any.whl → 2.18.0.dev20241025__py2.py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- official/vision/ops/preprocess_ops.py +3 -3
- official/vision/ops/preprocess_ops_test.py +12 -4
- {tf_models_nightly-2.18.0.dev20241023.dist-info → tf_models_nightly-2.18.0.dev20241025.dist-info}/METADATA +1 -1
- {tf_models_nightly-2.18.0.dev20241023.dist-info → tf_models_nightly-2.18.0.dev20241025.dist-info}/RECORD +8 -8
- {tf_models_nightly-2.18.0.dev20241023.dist-info → tf_models_nightly-2.18.0.dev20241025.dist-info}/AUTHORS +0 -0
- {tf_models_nightly-2.18.0.dev20241023.dist-info → tf_models_nightly-2.18.0.dev20241025.dist-info}/LICENSE +0 -0
- {tf_models_nightly-2.18.0.dev20241023.dist-info → tf_models_nightly-2.18.0.dev20241025.dist-info}/WHEEL +0 -0
- {tf_models_nightly-2.18.0.dev20241023.dist-info → tf_models_nightly-2.18.0.dev20241025.dist-info}/top_level.txt +0 -0
@@ -182,7 +182,7 @@ def resize_and_crop_image(
|
|
182
182
|
2. Pad the rescaled image to the padded_size.
|
183
183
|
|
184
184
|
Args:
|
185
|
-
image: a `Tensor` of shape [height, width,
|
185
|
+
image: a `Tensor` of shape [height, width, c] representing an image.
|
186
186
|
desired_size: a `Tensor` or `int` list/tuple of two elements representing
|
187
187
|
[height, width] of the desired actual output image size.
|
188
188
|
padded_size: a `Tensor` or `int` list/tuple of two elements representing
|
@@ -201,7 +201,7 @@ def resize_and_crop_image(
|
|
201
201
|
behaviour is to place it at left top corner.
|
202
202
|
|
203
203
|
Returns:
|
204
|
-
output_image: `Tensor` of shape [height, width,
|
204
|
+
output_image: `Tensor` of shape [height, width, c] where [height, width]
|
205
205
|
equals to `output_size`.
|
206
206
|
image_info: a 2D `Tensor` that encodes the information of the image and the
|
207
207
|
applied preprocessing. It is in the format of
|
@@ -786,7 +786,7 @@ def random_horizontal_flip(
|
|
786
786
|
"""Randomly flips input image and bounding boxes and/or masks horizontally.
|
787
787
|
|
788
788
|
Expects input tensors without the batch dimension; i.e. for RGB image assume
|
789
|
-
rank-3 input like [h, w,
|
789
|
+
rank-3 input like [h, w, c], for masks assume either [h, w, 1] or [1, h, w].
|
790
790
|
|
791
791
|
Args:
|
792
792
|
image: `tf.Tensor`, the image to apply the random flip, [h, w, channels].
|
@@ -80,11 +80,19 @@ class InputUtilsTest(parameterized.TestCase, tf.test.TestCase):
|
|
80
80
|
aug_scale_max=2.0,
|
81
81
|
output_scales=(20 / 100, 10 / 200),
|
82
82
|
),
|
83
|
+
dict(
|
84
|
+
testcase_name='no_jittering_with_4_channels',
|
85
|
+
input_size=(100, 200),
|
86
|
+
desired_size=(20, 10),
|
87
|
+
aug_scale_max=1.0,
|
88
|
+
output_scales=(20 / 100, 10 / 200),
|
89
|
+
channels=4,
|
90
|
+
),
|
83
91
|
)
|
84
92
|
def test_resize_and_crop_image_not_keep_aspect_ratio(
|
85
|
-
self, input_size, desired_size, aug_scale_max, output_scales
|
93
|
+
self, input_size, desired_size, aug_scale_max, output_scales, channels=3
|
86
94
|
):
|
87
|
-
image = tf.convert_to_tensor(np.random.rand(*input_size,
|
95
|
+
image = tf.convert_to_tensor(np.random.rand(*input_size, channels))
|
88
96
|
|
89
97
|
resized_image, image_info = preprocess_ops.resize_and_crop_image(
|
90
98
|
image,
|
@@ -95,7 +103,7 @@ class InputUtilsTest(parameterized.TestCase, tf.test.TestCase):
|
|
95
103
|
)
|
96
104
|
resized_image_shape = tf.shape(resized_image)
|
97
105
|
|
98
|
-
self.assertAllEqual([*desired_size,
|
106
|
+
self.assertAllEqual([*desired_size, channels], resized_image_shape.numpy())
|
99
107
|
if aug_scale_max == 1:
|
100
108
|
self.assertNDArrayNear(
|
101
109
|
[input_size, desired_size, output_scales, [0.0, 0.0]],
|
@@ -108,7 +116,7 @@ class InputUtilsTest(parameterized.TestCase, tf.test.TestCase):
|
|
108
116
|
(100, 256, 128, 256, 32, 1.0, 1.0, 128, 256),
|
109
117
|
(200, 512, 200, 128, 32, 0.25, 0.25, 224, 128),
|
110
118
|
)
|
111
|
-
def
|
119
|
+
def test_resize_and_crop_image_rectangular_case(
|
112
120
|
self,
|
113
121
|
input_height,
|
114
122
|
input_width,
|
@@ -1133,10 +1133,10 @@ official/vision/ops/iou_similarity_test.py,sha256=x5jlcMqMCUYC5cRgdbR0VlAW67AoXo
|
|
1133
1133
|
official/vision/ops/mask_ops.py,sha256=cZLpIowzEA57bXPDbVXa6mktZVHvGSH-TQ1CxHjpQXw,10270
|
1134
1134
|
official/vision/ops/mask_ops_test.py,sha256=D3xbbbleJd4HkpWOSDSEy6hNihsRBY93BqPF6JP-dJk,2835
|
1135
1135
|
official/vision/ops/nms.py,sha256=bKYDAtyV5j6PG7g-RGF2ZccCI5V1xVvuajNblCy1TGs,8125
|
1136
|
-
official/vision/ops/preprocess_ops.py,sha256=
|
1136
|
+
official/vision/ops/preprocess_ops.py,sha256=1NcE_iFPyzREdql0CRKGobFieCA6niSJcXV3Uqw635k,42588
|
1137
1137
|
official/vision/ops/preprocess_ops_3d.py,sha256=o0ivTBK2BwaiPp_NhVG_yBc10VUySxfE7eKQkL7RNaU,16762
|
1138
1138
|
official/vision/ops/preprocess_ops_3d_test.py,sha256=LA3-Ue4FTjdsr5Kl_BnpAMNcfikWylMisD2GrBTOLzA,9309
|
1139
|
-
official/vision/ops/preprocess_ops_test.py,sha256=
|
1139
|
+
official/vision/ops/preprocess_ops_test.py,sha256=0ZZXkOnjfxax2R0womyyhIKPecyF9wvZm82PpzdClM8,17658
|
1140
1140
|
official/vision/ops/sampling_ops.py,sha256=1jywCA_E4qDUFWsykCLUwZsWtQSR0QREXdJhvP5qCvc,16072
|
1141
1141
|
official/vision/ops/spatial_transform_ops.py,sha256=PVEJGAn0ygtsrid84vD5GgV0jsjyWoNn14RBzreMxM4,38389
|
1142
1142
|
official/vision/ops/target_gather.py,sha256=Ir3X76yXYEVFSYX5h-yfS8SMkY37GYuypBP2C8ykggo,3965
|
@@ -1222,9 +1222,9 @@ tensorflow_models/tensorflow_models_test.py,sha256=nc6A9K53OGqF25xN5St8EiWvdVbda
|
|
1222
1222
|
tensorflow_models/nlp/__init__.py,sha256=4tA5Pf4qaFwT-fIFOpX7x7FHJpnyJT-5UgOeFYTyMlc,807
|
1223
1223
|
tensorflow_models/uplift/__init__.py,sha256=mqfa55gweOdpKoaQyid4A_4u7xw__FcQeSIF0k_pYmI,999
|
1224
1224
|
tensorflow_models/vision/__init__.py,sha256=zBorY_v5xva1uI-qxhZO3Qh-Dii-Suq6wEYh6hKHDfc,833
|
1225
|
-
tf_models_nightly-2.18.0.
|
1226
|
-
tf_models_nightly-2.18.0.
|
1227
|
-
tf_models_nightly-2.18.0.
|
1228
|
-
tf_models_nightly-2.18.0.
|
1229
|
-
tf_models_nightly-2.18.0.
|
1230
|
-
tf_models_nightly-2.18.0.
|
1225
|
+
tf_models_nightly-2.18.0.dev20241025.dist-info/AUTHORS,sha256=1dG3fXVu9jlo7bul8xuix5F5vOnczMk7_yWn4y70uw0,337
|
1226
|
+
tf_models_nightly-2.18.0.dev20241025.dist-info/LICENSE,sha256=WxeBS_DejPZQabxtfMOM_xn8qoZNJDQjrT7z2wG1I4U,11512
|
1227
|
+
tf_models_nightly-2.18.0.dev20241025.dist-info/METADATA,sha256=6x83EsCyNpKZywrh5TooIxBMhJjY7bNjELsCaSOhwnE,1432
|
1228
|
+
tf_models_nightly-2.18.0.dev20241025.dist-info/WHEEL,sha256=kGT74LWyRUZrL4VgLh6_g12IeVl_9u9ZVhadrgXZUEY,110
|
1229
|
+
tf_models_nightly-2.18.0.dev20241025.dist-info/top_level.txt,sha256=gum2FfO5R4cvjl2-QtP-S1aNmsvIZaFFT6VFzU0f4-g,33
|
1230
|
+
tf_models_nightly-2.18.0.dev20241025.dist-info/RECORD,,
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|