tf-models-nightly 2.18.0.dev20240819__py2.py3-none-any.whl → 2.18.0.dev20240821__py2.py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- official/legacy/transformer/transformer_main.py +0 -2
- official/projects/maskconver/__init__.py +14 -0
- official/projects/maskconver/configs/__init__.py +14 -0
- official/projects/maskconver/configs/backbones.py +43 -0
- official/projects/maskconver/configs/decoders.py +36 -0
- official/projects/maskconver/configs/maskconver.py +523 -0
- official/projects/maskconver/configs/multiscale_maskconver.py +215 -0
- official/projects/maskconver/tasks/__init__.py +14 -0
- official/projects/maskconver/tasks/maskconver.py +641 -0
- official/projects/maskconver/tasks/multiscale_maskconver.py +278 -0
- official/projects/maskconver/train.py +30 -0
- {tf_models_nightly-2.18.0.dev20240819.dist-info → tf_models_nightly-2.18.0.dev20240821.dist-info}/METADATA +1 -1
- {tf_models_nightly-2.18.0.dev20240819.dist-info → tf_models_nightly-2.18.0.dev20240821.dist-info}/RECORD +17 -7
- {tf_models_nightly-2.18.0.dev20240819.dist-info → tf_models_nightly-2.18.0.dev20240821.dist-info}/AUTHORS +0 -0
- {tf_models_nightly-2.18.0.dev20240819.dist-info → tf_models_nightly-2.18.0.dev20240821.dist-info}/LICENSE +0 -0
- {tf_models_nightly-2.18.0.dev20240819.dist-info → tf_models_nightly-2.18.0.dev20240821.dist-info}/WHEEL +0 -0
- {tf_models_nightly-2.18.0.dev20240819.dist-info → tf_models_nightly-2.18.0.dev20240821.dist-info}/top_level.txt +0 -0
@@ -0,0 +1,278 @@
|
|
1
|
+
# Copyright 2024 The TensorFlow Authors. All Rights Reserved.
|
2
|
+
#
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4
|
+
# you may not use this file except in compliance with the License.
|
5
|
+
# You may obtain a copy of the License at
|
6
|
+
#
|
7
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8
|
+
#
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12
|
+
# See the License for the specific language governing permissions and
|
13
|
+
# limitations under the License.
|
14
|
+
|
15
|
+
"""Panoptic Multi-scale MaskConver task definition."""
|
16
|
+
from typing import Any, Dict, List, Mapping, Optional, Tuple
|
17
|
+
import tensorflow as tf, tf_keras
|
18
|
+
|
19
|
+
from official.common import dataset_fn
|
20
|
+
from official.core import task_factory
|
21
|
+
from official.projects.maskconver.configs import multiscale_maskconver as exp_cfg
|
22
|
+
from official.projects.maskconver.dataloaders import multiscale_maskconver_input
|
23
|
+
from official.projects.maskconver.losses import maskconver_losses
|
24
|
+
from official.projects.maskconver.modeling import factory
|
25
|
+
from official.projects.maskconver.modeling.layers import copypaste
|
26
|
+
from official.projects.maskconver.tasks import maskconver
|
27
|
+
from official.projects.volumetric_models.losses import segmentation_losses as volumeteric_segmentation_losses
|
28
|
+
from official.vision.dataloaders import input_reader_factory
|
29
|
+
|
30
|
+
|
31
|
+
@task_factory.register_task_cls(exp_cfg.MultiScaleMaskConverTask)
|
32
|
+
class PanopticMultiScaleMaskConverTask(maskconver.PanopticMaskRCNNTask):
|
33
|
+
|
34
|
+
"""A single-replica view of training procedure.
|
35
|
+
|
36
|
+
Panoptic Mask R-CNN task provides artifacts for training/evalution procedures,
|
37
|
+
including loading/iterating over Datasets, initializing the model, calculating
|
38
|
+
the loss, post-processing, and customized metrics with reduction.
|
39
|
+
"""
|
40
|
+
|
41
|
+
def build_model(self) -> tf_keras.Model:
|
42
|
+
"""Build Panoptic Mask R-CNN model."""
|
43
|
+
|
44
|
+
tf_keras.utils.set_random_seed(0)
|
45
|
+
tf.config.experimental.enable_op_determinism()
|
46
|
+
input_specs = tf_keras.layers.InputSpec(
|
47
|
+
shape=[None] + self.task_config.model.input_size)
|
48
|
+
|
49
|
+
l2_weight_decay = self.task_config.losses.l2_weight_decay
|
50
|
+
# Divide weight decay by 2.0 to match the implementation of tf.nn.l2_loss.
|
51
|
+
# (https://www.tensorflow.org/api_docs/python/tf/keras/regularizers/l2)
|
52
|
+
# (https://www.tensorflow.org/api_docs/python/tf/nn/l2_loss)
|
53
|
+
l2_regularizer = (tf_keras.regularizers.l2(
|
54
|
+
l2_weight_decay / 2.0) if l2_weight_decay else None)
|
55
|
+
|
56
|
+
model = factory.build_multiscale_maskconver_model(
|
57
|
+
input_specs=input_specs,
|
58
|
+
model_config=self.task_config.model,
|
59
|
+
l2_regularizer=l2_regularizer)
|
60
|
+
|
61
|
+
# Get images and labels with batch size of 1.
|
62
|
+
images, labels = next(
|
63
|
+
iter(self.build_inputs(self.task_config.validation_data)))
|
64
|
+
images = tf.nest.map_structure(lambda x: x[0:1, ...], images)
|
65
|
+
labels = tf.nest.map_structure(lambda x: x[0:1, ...], labels)
|
66
|
+
_ = model(
|
67
|
+
images,
|
68
|
+
image_info=labels['image_info'],
|
69
|
+
training=False)
|
70
|
+
return model
|
71
|
+
|
72
|
+
def build_inputs(
|
73
|
+
self,
|
74
|
+
params: exp_cfg.DataConfig,
|
75
|
+
input_context: Optional[tf.distribute.InputContext] = None
|
76
|
+
) -> tf.data.Dataset:
|
77
|
+
"""Build input dataset."""
|
78
|
+
decoder_cfg = params.decoder.get()
|
79
|
+
|
80
|
+
if params.decoder.type == 'simple_decoder':
|
81
|
+
decoder = multiscale_maskconver_input.TfExampleDecoder(
|
82
|
+
regenerate_source_id=decoder_cfg.regenerate_source_id,
|
83
|
+
mask_binarize_threshold=decoder_cfg.mask_binarize_threshold,
|
84
|
+
include_panoptic_masks=decoder_cfg.include_panoptic_masks,
|
85
|
+
panoptic_category_mask_key=decoder_cfg.panoptic_category_mask_key,
|
86
|
+
panoptic_instance_mask_key=decoder_cfg.panoptic_instance_mask_key)
|
87
|
+
else:
|
88
|
+
raise ValueError('Unknown decoder type: {}!'.format(params.decoder.type))
|
89
|
+
|
90
|
+
if params.parser.copypaste:
|
91
|
+
sample_fn = copypaste.CopyPaste(
|
92
|
+
self.task_config.model.input_size[:2],
|
93
|
+
copypaste_frequency=params.parser.copypaste.copypaste_frequency,
|
94
|
+
copypaste_aug_scale_max=params.parser.copypaste.copypaste_aug_scale_max,
|
95
|
+
copypaste_aug_scale_min=params.parser.copypaste.copypaste_aug_scale_min,
|
96
|
+
aug_scale_min=params.parser.copypaste.aug_scale_min,
|
97
|
+
aug_scale_max=params.parser.copypaste.aug_scale_max,
|
98
|
+
random_flip=params.parser.aug_rand_hflip,
|
99
|
+
num_thing_classes=self.task_config.model.num_thing_classes)
|
100
|
+
else:
|
101
|
+
sample_fn = None
|
102
|
+
|
103
|
+
parser = multiscale_maskconver_input.Parser(
|
104
|
+
output_size=self.task_config.model.input_size[:2],
|
105
|
+
min_level=self.task_config.model.min_level,
|
106
|
+
max_level=self.task_config.model.max_level,
|
107
|
+
fpn_low_range=params.parser.fpn_low_range,
|
108
|
+
fpn_high_range=params.parser.fpn_high_range,
|
109
|
+
dtype=params.dtype,
|
110
|
+
aug_rand_hflip=params.parser.aug_rand_hflip,
|
111
|
+
aug_scale_min=params.parser.aug_scale_min,
|
112
|
+
aug_scale_max=params.parser.aug_scale_max,
|
113
|
+
max_num_instances=params.parser.max_num_instances,
|
114
|
+
segmentation_resize_eval_groundtruth=params.parser
|
115
|
+
.segmentation_resize_eval_groundtruth,
|
116
|
+
segmentation_groundtruth_padded_size=params.parser
|
117
|
+
.segmentation_groundtruth_padded_size,
|
118
|
+
segmentation_ignore_label=params.parser.segmentation_ignore_label,
|
119
|
+
panoptic_ignore_label=params.parser.panoptic_ignore_label,
|
120
|
+
num_panoptic_categories=self.task_config.model.num_classes,
|
121
|
+
num_thing_categories=self.task_config.model.num_thing_classes,
|
122
|
+
mask_target_level=params.parser.mask_target_level,
|
123
|
+
level=self.task_config.model.level,
|
124
|
+
gaussian_iou=params.parser.gaussaian_iou,
|
125
|
+
aug_type=params.parser.aug_type,)
|
126
|
+
|
127
|
+
reader = input_reader_factory.input_reader_generator(
|
128
|
+
params,
|
129
|
+
dataset_fn=dataset_fn.pick_dataset_fn(params.file_type),
|
130
|
+
sample_fn=sample_fn.copypaste_fn(
|
131
|
+
params.is_training) if sample_fn else None,
|
132
|
+
decoder_fn=decoder.decode,
|
133
|
+
parser_fn=parser.parse_fn(params.is_training))
|
134
|
+
dataset = reader.read(input_context=input_context)
|
135
|
+
|
136
|
+
return dataset
|
137
|
+
|
138
|
+
def build_losses(self,
|
139
|
+
outputs: Mapping[str, Any],
|
140
|
+
labels: Mapping[str, Any],
|
141
|
+
iteration: Any,
|
142
|
+
aux_losses: Optional[Any] = None,
|
143
|
+
step=None) -> Dict[str, tf.Tensor]:
|
144
|
+
"""Build Panoptic Mask R-CNN losses."""
|
145
|
+
# pylint: disable=line-too-long
|
146
|
+
loss_params = self._task_config.losses
|
147
|
+
center_loss_fn = maskconver_losses.PenaltyReducedLogisticFocalLoss(
|
148
|
+
alpha=loss_params.alpha, beta=loss_params.beta)
|
149
|
+
|
150
|
+
true_flattened_ct_heatmap = labels['panoptic_heatmaps']
|
151
|
+
true_flattened_ct_heatmap = tf.cast(true_flattened_ct_heatmap, tf.float32)
|
152
|
+
|
153
|
+
pred_flattened_ct_heatmap = outputs['class_heatmaps']
|
154
|
+
pred_flattened_ct_heatmap = tf.cast(pred_flattened_ct_heatmap, tf.float32)
|
155
|
+
|
156
|
+
center_loss = center_loss_fn(
|
157
|
+
target_tensor=true_flattened_ct_heatmap,
|
158
|
+
prediction_tensor=pred_flattened_ct_heatmap,
|
159
|
+
weights=1.0)
|
160
|
+
|
161
|
+
replica_context = tf.distribute.get_replica_context()
|
162
|
+
global_num_instances = replica_context.all_reduce(
|
163
|
+
tf.distribute.ReduceOp.SUM, labels['num_instances'])
|
164
|
+
num_replicas = tf.distribute.get_strategy().num_replicas_in_sync
|
165
|
+
num_instances = tf.cast(global_num_instances, tf.float32) / tf.cast(num_replicas, tf.float32) + 1.0
|
166
|
+
|
167
|
+
center_loss = tf.reduce_sum(center_loss) / num_instances
|
168
|
+
|
169
|
+
gt_masks = labels['panoptic_masks']
|
170
|
+
gt_mask_weights = labels['panoptic_mask_weights'][:, None, None, :] * tf.ones_like(gt_masks)
|
171
|
+
panoptic_padding_mask = labels['panoptic_padding_mask'][:, :, :, None] * tf.ones_like(gt_masks)
|
172
|
+
|
173
|
+
# gt_masks
|
174
|
+
_, h, w, q = gt_masks.get_shape().as_list()
|
175
|
+
predicted_masks = tf.cast(outputs['mask_proposal_logits'], tf.float32)
|
176
|
+
predicted_masks = tf.image.resize(
|
177
|
+
predicted_masks, tf.shape(gt_masks)[1:3], method='bilinear')
|
178
|
+
|
179
|
+
mask_loss_fn = tf_keras.losses.BinaryCrossentropy(
|
180
|
+
from_logits=True,
|
181
|
+
label_smoothing=0.0,
|
182
|
+
axis=-1,
|
183
|
+
reduction=tf_keras.losses.Reduction.NONE,
|
184
|
+
name='binary_crossentropy')
|
185
|
+
|
186
|
+
mask_weights = tf.cast(gt_masks >= 0, tf.float32) * gt_mask_weights * (
|
187
|
+
1 - panoptic_padding_mask) # b, h, w, # max inst
|
188
|
+
mask_loss = mask_loss_fn(
|
189
|
+
tf.expand_dims(gt_masks, -1),
|
190
|
+
tf.expand_dims(predicted_masks, -1),
|
191
|
+
sample_weight=tf.expand_dims(mask_weights, -1))
|
192
|
+
|
193
|
+
mask_loss = tf.reshape(mask_loss, [-1, h * w, q])
|
194
|
+
mask_loss = tf.reduce_sum(tf.reduce_mean(mask_loss, axis=1)) / num_instances
|
195
|
+
|
196
|
+
# Dice loss
|
197
|
+
masked_predictions = tf.sigmoid(predicted_masks) * tf.cast(
|
198
|
+
gt_mask_weights > 0, tf.float32) * (1 - panoptic_padding_mask)
|
199
|
+
masked_gt_masks = gt_masks * tf.cast(gt_mask_weights > 0, tf.float32) * (
|
200
|
+
1 - panoptic_padding_mask)
|
201
|
+
|
202
|
+
masked_predictions = tf.transpose(masked_predictions, [0, 3, 1, 2])
|
203
|
+
masked_predictions = tf.reshape(masked_predictions, [-1, h, w, 1])
|
204
|
+
masked_gt_masks = tf.transpose(masked_gt_masks, [0, 3, 1, 2])
|
205
|
+
masked_gt_masks = tf.reshape(masked_gt_masks, [-1, h, w, 1])
|
206
|
+
|
207
|
+
dice_loss_fn = volumeteric_segmentation_losses.SegmentationLossDiceScore(
|
208
|
+
metric_type='adaptive', axis=(2, 3))
|
209
|
+
dice_loss = dice_loss_fn(logits=masked_predictions, labels=masked_gt_masks)
|
210
|
+
|
211
|
+
total_loss = center_loss + loss_params.mask_weight * (mask_loss + dice_loss)
|
212
|
+
if aux_losses:
|
213
|
+
total_loss += tf.add_n(aux_losses)
|
214
|
+
|
215
|
+
total_loss = loss_params.loss_weight * total_loss
|
216
|
+
|
217
|
+
losses = {'total_loss': total_loss,
|
218
|
+
'mask_loss': mask_loss,
|
219
|
+
'center_loss': center_loss,
|
220
|
+
'dice_loss': dice_loss,}
|
221
|
+
return losses
|
222
|
+
|
223
|
+
def train_step(self,
|
224
|
+
inputs: Tuple[Any, Any],
|
225
|
+
model: tf_keras.Model,
|
226
|
+
optimizer: tf_keras.optimizers.Optimizer,
|
227
|
+
metrics: Optional[List[Any]] = None) -> Dict[str, Any]:
|
228
|
+
"""Does forward and backward.
|
229
|
+
|
230
|
+
Args:
|
231
|
+
inputs: a dictionary of input tensors.
|
232
|
+
model: the model, forward pass definition.
|
233
|
+
optimizer: the optimizer for this training step.
|
234
|
+
metrics: a nested structure of metrics objects.
|
235
|
+
|
236
|
+
Returns:
|
237
|
+
A dictionary of logs.
|
238
|
+
"""
|
239
|
+
images, labels = inputs
|
240
|
+
num_replicas = tf.distribute.get_strategy().num_replicas_in_sync
|
241
|
+
|
242
|
+
with tf.GradientTape() as tape:
|
243
|
+
outputs = model(
|
244
|
+
images,
|
245
|
+
box_indices=labels['panoptic_box_indices'],
|
246
|
+
classes=labels['panoptic_classes'],
|
247
|
+
training=True)
|
248
|
+
outputs = tf.nest.map_structure(
|
249
|
+
lambda x: tf.cast(x, tf.float32), outputs)
|
250
|
+
|
251
|
+
# Computes per-replica loss.
|
252
|
+
losses = self.build_losses(
|
253
|
+
outputs=outputs,
|
254
|
+
labels=labels,
|
255
|
+
aux_losses=model.losses,
|
256
|
+
iteration=optimizer.iterations,
|
257
|
+
step=optimizer.iterations)
|
258
|
+
scaled_loss = losses['total_loss'] / num_replicas
|
259
|
+
|
260
|
+
# For mixed_precision policy, when LossScaleOptimizer is used, loss is
|
261
|
+
# scaled for numerical stability.
|
262
|
+
if isinstance(optimizer, tf_keras.mixed_precision.LossScaleOptimizer):
|
263
|
+
scaled_loss = optimizer.get_scaled_loss(scaled_loss)
|
264
|
+
|
265
|
+
tvars = model.trainable_variables
|
266
|
+
grads = tape.gradient(scaled_loss, tvars)
|
267
|
+
# Scales back gradient when LossScaleOptimizer is used.
|
268
|
+
if isinstance(optimizer, tf_keras.mixed_precision.LossScaleOptimizer):
|
269
|
+
grads = optimizer.get_unscaled_gradients(grads)
|
270
|
+
optimizer.apply_gradients(list(zip(grads, tvars)))
|
271
|
+
|
272
|
+
logs = {self.loss: losses['total_loss']}
|
273
|
+
|
274
|
+
if metrics:
|
275
|
+
for m in metrics:
|
276
|
+
m.update_state(losses[m.name])
|
277
|
+
|
278
|
+
return logs
|
@@ -0,0 +1,30 @@
|
|
1
|
+
# Copyright 2024 The TensorFlow Authors. All Rights Reserved.
|
2
|
+
#
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4
|
+
# you may not use this file except in compliance with the License.
|
5
|
+
# You may obtain a copy of the License at
|
6
|
+
#
|
7
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8
|
+
#
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12
|
+
# See the License for the specific language governing permissions and
|
13
|
+
# limitations under the License.
|
14
|
+
|
15
|
+
"""Panoptic MaskRCNN trainer."""
|
16
|
+
|
17
|
+
from absl import app
|
18
|
+
|
19
|
+
from official.common import flags as tfm_flags
|
20
|
+
from official.projects.maskconver.configs import maskconver as maskconver_cfg # pylint: disable=unused-import
|
21
|
+
from official.projects.maskconver.configs import multiscale_maskconver as multiscale_maskconver_cfg # pylint: disable=unused-import
|
22
|
+
from official.projects.maskconver.modeling import fpn # pylint: disable=unused-import
|
23
|
+
from official.projects.maskconver.tasks import maskconver as maskconver_task # pylint: disable=unused-import
|
24
|
+
from official.projects.maskconver.tasks import multiscale_maskconver as multiscale_maskconver_task # pylint: disable=unused-import
|
25
|
+
from official.vision import train
|
26
|
+
|
27
|
+
|
28
|
+
if __name__ == '__main__':
|
29
|
+
tfm_flags.define_flags()
|
30
|
+
app.run(train.main)
|
@@ -163,7 +163,7 @@ official/legacy/transformer/optimizer.py,sha256=VbM_Dnblv4hmtaFugBh1cFK2_mnihxoW
|
|
163
163
|
official/legacy/transformer/transformer.py,sha256=6ZCu61XxU1LRdMah1NKvEA-pF23gNr3n3d3rBybtv-Q,21761
|
164
164
|
official/legacy/transformer/transformer_forward_test.py,sha256=pnvQ8g9k5FCQeKB523rtAxKfB4VbDtyeBrhy6xvfaeY,6070
|
165
165
|
official/legacy/transformer/transformer_layers_test.py,sha256=0aCeywTKqSOTrZtkVBvy3FJhL4pwppeM4er1w01MAeI,3576
|
166
|
-
official/legacy/transformer/transformer_main.py,sha256=
|
166
|
+
official/legacy/transformer/transformer_main.py,sha256=rn2E4MiwNL6uGwcl5Njnw-3h86HOq8sQfBp3gXITSRw,18110
|
167
167
|
official/legacy/transformer/transformer_main_test.py,sha256=aZnbdbJCsDazU4tUhAs_xpuXZe0ZrZJgCxQy0ez92SY,6641
|
168
168
|
official/legacy/transformer/transformer_test.py,sha256=2eD65briKm6pcEpveYcFuNh3wSWt3bcYETClbarewqc,3638
|
169
169
|
official/legacy/transformer/translate.py,sha256=OO5B5qlSMu2hGMd2KYn1DyUaPDC4tuQm-2vA-xric8o,6961
|
@@ -531,6 +531,16 @@ official/projects/deepmac_maskrcnn/serving/detection_test.py,sha256=t5YdUlmPa3Ft
|
|
531
531
|
official/projects/deepmac_maskrcnn/serving/export_saved_model.py,sha256=oXGf3Sd7umPWuBW3ZbOrTVIz8kSm23ki8N-OpHs__so,3991
|
532
532
|
official/projects/deepmac_maskrcnn/tasks/__init__.py,sha256=7oiypy0N82PDw9aSdcJBLVoGTd_oRSUOdvuJhMv4leQ,609
|
533
533
|
official/projects/deepmac_maskrcnn/tasks/deep_mask_head_rcnn.py,sha256=5GwDu4XVk1NRzGU9IA07Joqib7QLx6wZQ_h8fAfm-rY,9436
|
534
|
+
official/projects/maskconver/__init__.py,sha256=7oiypy0N82PDw9aSdcJBLVoGTd_oRSUOdvuJhMv4leQ,609
|
535
|
+
official/projects/maskconver/train.py,sha256=XDW0ArwYLcJpT137J3QgBEaoZHb-GE3rGbnKNsSVynI,1397
|
536
|
+
official/projects/maskconver/configs/__init__.py,sha256=7oiypy0N82PDw9aSdcJBLVoGTd_oRSUOdvuJhMv4leQ,609
|
537
|
+
official/projects/maskconver/configs/backbones.py,sha256=hbx64MddUeOQuviLZK4NsYnDMxaWTAJxLngUUUw8IIQ,1467
|
538
|
+
official/projects/maskconver/configs/decoders.py,sha256=F1u9ef1YA0MphPYvzHWpIDTtY834E1zM-eLd3XJd-8c,1163
|
539
|
+
official/projects/maskconver/configs/maskconver.py,sha256=mSjY3epff8zVG52YSNPcS1QMaKxgmQWkCfuV26SuD8Y,18925
|
540
|
+
official/projects/maskconver/configs/multiscale_maskconver.py,sha256=yDZVLMSVNZyo23sTzfxzthDgHJh_VGGkYxyTEVEqjw8,8106
|
541
|
+
official/projects/maskconver/tasks/__init__.py,sha256=7oiypy0N82PDw9aSdcJBLVoGTd_oRSUOdvuJhMv4leQ,609
|
542
|
+
official/projects/maskconver/tasks/maskconver.py,sha256=AAoFojpD8r7MQdaDlYBjNs3-ryow1nvmVe1pUnWWwto,25256
|
543
|
+
official/projects/maskconver/tasks/multiscale_maskconver.py,sha256=D_77WLT4zBBFdj-uo6yU3JfrxVvept2o87wg2sqbEz8,11730
|
534
544
|
official/projects/maxvit/__init__.py,sha256=7oiypy0N82PDw9aSdcJBLVoGTd_oRSUOdvuJhMv4leQ,609
|
535
545
|
official/projects/maxvit/registry_imports.py,sha256=anP9wyf9iahIxbm7wUXq32GXq5zUWQ1q6gSS7r1jY18,934
|
536
546
|
official/projects/maxvit/train.py,sha256=03CS9XA8ag92YZpgAPED_DgPGMlnIwYNtPTAXFzuqdA,958
|
@@ -1212,9 +1222,9 @@ tensorflow_models/tensorflow_models_test.py,sha256=nc6A9K53OGqF25xN5St8EiWvdVbda
|
|
1212
1222
|
tensorflow_models/nlp/__init__.py,sha256=4tA5Pf4qaFwT-fIFOpX7x7FHJpnyJT-5UgOeFYTyMlc,807
|
1213
1223
|
tensorflow_models/uplift/__init__.py,sha256=mqfa55gweOdpKoaQyid4A_4u7xw__FcQeSIF0k_pYmI,999
|
1214
1224
|
tensorflow_models/vision/__init__.py,sha256=zBorY_v5xva1uI-qxhZO3Qh-Dii-Suq6wEYh6hKHDfc,833
|
1215
|
-
tf_models_nightly-2.18.0.
|
1216
|
-
tf_models_nightly-2.18.0.
|
1217
|
-
tf_models_nightly-2.18.0.
|
1218
|
-
tf_models_nightly-2.18.0.
|
1219
|
-
tf_models_nightly-2.18.0.
|
1220
|
-
tf_models_nightly-2.18.0.
|
1225
|
+
tf_models_nightly-2.18.0.dev20240821.dist-info/AUTHORS,sha256=1dG3fXVu9jlo7bul8xuix5F5vOnczMk7_yWn4y70uw0,337
|
1226
|
+
tf_models_nightly-2.18.0.dev20240821.dist-info/LICENSE,sha256=WxeBS_DejPZQabxtfMOM_xn8qoZNJDQjrT7z2wG1I4U,11512
|
1227
|
+
tf_models_nightly-2.18.0.dev20240821.dist-info/METADATA,sha256=1Oiaoy13IoCPmkJnKs1cGXnoYIlVgj3T5IXpECL_75o,1432
|
1228
|
+
tf_models_nightly-2.18.0.dev20240821.dist-info/WHEEL,sha256=kGT74LWyRUZrL4VgLh6_g12IeVl_9u9ZVhadrgXZUEY,110
|
1229
|
+
tf_models_nightly-2.18.0.dev20240821.dist-info/top_level.txt,sha256=gum2FfO5R4cvjl2-QtP-S1aNmsvIZaFFT6VFzU0f4-g,33
|
1230
|
+
tf_models_nightly-2.18.0.dev20240821.dist-info/RECORD,,
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|