tf-models-nightly 2.18.0.dev20240724__py2.py3-none-any.whl → 2.18.0.dev20240726__py2.py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -37,7 +37,7 @@ class GatedFeedforward(tf_keras.layers.Layer):
37
37
  dropout: Dropout probability for the output dropout.
38
38
  use_gate: Whether to use gated linear units. If True, assuming `GELU` as the
39
39
  activation and omitting bias, will apply
40
- `GEGLU(x, W, V, W_2) = (GEGLU(xW) * xV)W2`; if False, will follow
40
+ `GEGLU(x, W, V, W_2) = (GELU(xW) * xV)W2`; if False, will follow
41
41
  "Attention Is All You Need" (https://arxiv.org/abs/1706.03762) paper and
42
42
  apply `FFN(x, W, W_2) = GELU(xW_1)W_2.`
43
43
  num_blocks: The number of feedforward blocks to stack. Each block contains a
@@ -60,7 +60,7 @@ def sample_top_k(logits, top_k):
60
60
  top_k_logits = tf.math.top_k(logits, k=top_k)
61
61
  indices_to_remove = logits < tf.expand_dims(top_k_logits[0][..., -1], -1)
62
62
  top_k_logits = set_tensor_by_indices_to_value(logits, indices_to_remove,
63
- np.NINF)
63
+ -np.inf)
64
64
  return top_k_logits
65
65
 
66
66
 
@@ -103,7 +103,7 @@ def sample_top_p(logits, top_p):
103
103
  indices_to_remove = scatter_values_on_batch_indices(sorted_indices_to_remove,
104
104
  sorted_indices)
105
105
  top_p_logits = set_tensor_by_indices_to_value(logits, indices_to_remove,
106
- np.NINF)
106
+ -np.inf)
107
107
  return top_p_logits
108
108
 
109
109
 
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: tf-models-nightly
3
- Version: 2.18.0.dev20240724
3
+ Version: 2.18.0.dev20240726
4
4
  Summary: TensorFlow Official Models
5
5
  Home-page: https://github.com/tensorflow/models
6
6
  Author: Google Inc.
@@ -311,7 +311,7 @@ official/nlp/modeling/layers/cls_head.py,sha256=0X_gdjnAt6TZVrH_xkDcQCpwLuVz5Pb7
311
311
  official/nlp/modeling/layers/cls_head_test.py,sha256=01oMmiuyp1lDEXBYa9r3krn6BtH-QuSedGOca9LViEc,8888
312
312
  official/nlp/modeling/layers/factorized_embedding.py,sha256=4oFRYJbpoaSxqv8hTWY2JPGPllp-zhniz99IyRtlzV8,2902
313
313
  official/nlp/modeling/layers/factorized_embedding_test.py,sha256=S-fAkhU8j1N5E1_W9kiC0C3WcXsIDLC3Oi7t3I_LMTc,2589
314
- official/nlp/modeling/layers/gated_feedforward.py,sha256=uMzsUsVYeVjJ5ChMi6LCNVfKnoksUG0azaItyfKHyDA,9691
314
+ official/nlp/modeling/layers/gated_feedforward.py,sha256=z-zhkyHGnaq3Tl5u58qK9teJ2FpHXO_XDFbEIWGokQc,9690
315
315
  official/nlp/modeling/layers/gated_feedforward_test.py,sha256=v-ZFliRi4s-6TroKi2Kc4zrcWO1rYGJwBxwHtiqh19w,4494
316
316
  official/nlp/modeling/layers/gaussian_process.py,sha256=YFzBuxdR1xWLEPNYbi40pDq1WYXJsacpisCNtVhX_7o,20450
317
317
  official/nlp/modeling/layers/gaussian_process_test.py,sha256=2ReFEBVdNcR175hNGP-xkDSHSgIH9yuE0rgl3HeFKv4,10101
@@ -422,7 +422,7 @@ official/nlp/modeling/ops/beam_search.py,sha256=1kwoD3SF1BiWbxeN4u77CjJXJ2hCEzOW
422
422
  official/nlp/modeling/ops/beam_search_test.py,sha256=Sz1sirBnYktqQ82NbyLefVpkmLVr7BPVApVxW8DRuoI,7589
423
423
  official/nlp/modeling/ops/decoding_module.py,sha256=-Aw_A2dUbRu7jd-DY4a7iWme-yNSvfng9g_XWdCGwXI,11279
424
424
  official/nlp/modeling/ops/decoding_module_test.py,sha256=VTYYaZxihkDz1FkkwUIyc3EuCqGIW9fJS-3mYw3c4-8,2623
425
- official/nlp/modeling/ops/sampling_module.py,sha256=gyUoOnNdh6TJGebce5BMUxTrhk79HzPM3whuEu5BP9A,19250
425
+ official/nlp/modeling/ops/sampling_module.py,sha256=eUW83HbJTuMI7a0clZrFYzJ-27mnIGCPdJTyLy6sQ1c,19250
426
426
  official/nlp/modeling/ops/segment_extractor.py,sha256=Xb1YjGw-22IF71WBr5dhaYLXKm2Xr5KSLGq1Ru1EiyI,9603
427
427
  official/nlp/modeling/ops/segment_extractor_test.py,sha256=bQoqDdyK8-e7CSgCAUJh4PWWL2nYYYKlmW2kogcLe_k,5408
428
428
  official/nlp/serving/__init__.py,sha256=Yqe5TjLrAR68lQ5G781dwlbbT6mELRByDipCtr4jQY4,610
@@ -1212,9 +1212,9 @@ tensorflow_models/tensorflow_models_test.py,sha256=nc6A9K53OGqF25xN5St8EiWvdVbda
1212
1212
  tensorflow_models/nlp/__init__.py,sha256=4tA5Pf4qaFwT-fIFOpX7x7FHJpnyJT-5UgOeFYTyMlc,807
1213
1213
  tensorflow_models/uplift/__init__.py,sha256=mqfa55gweOdpKoaQyid4A_4u7xw__FcQeSIF0k_pYmI,999
1214
1214
  tensorflow_models/vision/__init__.py,sha256=zBorY_v5xva1uI-qxhZO3Qh-Dii-Suq6wEYh6hKHDfc,833
1215
- tf_models_nightly-2.18.0.dev20240724.dist-info/AUTHORS,sha256=1dG3fXVu9jlo7bul8xuix5F5vOnczMk7_yWn4y70uw0,337
1216
- tf_models_nightly-2.18.0.dev20240724.dist-info/LICENSE,sha256=WxeBS_DejPZQabxtfMOM_xn8qoZNJDQjrT7z2wG1I4U,11512
1217
- tf_models_nightly-2.18.0.dev20240724.dist-info/METADATA,sha256=r9mZj5KYI4OuQ3MpBNcqTBkYmAhr1VjLYcadY5qCsDs,1432
1218
- tf_models_nightly-2.18.0.dev20240724.dist-info/WHEEL,sha256=kGT74LWyRUZrL4VgLh6_g12IeVl_9u9ZVhadrgXZUEY,110
1219
- tf_models_nightly-2.18.0.dev20240724.dist-info/top_level.txt,sha256=gum2FfO5R4cvjl2-QtP-S1aNmsvIZaFFT6VFzU0f4-g,33
1220
- tf_models_nightly-2.18.0.dev20240724.dist-info/RECORD,,
1215
+ tf_models_nightly-2.18.0.dev20240726.dist-info/AUTHORS,sha256=1dG3fXVu9jlo7bul8xuix5F5vOnczMk7_yWn4y70uw0,337
1216
+ tf_models_nightly-2.18.0.dev20240726.dist-info/LICENSE,sha256=WxeBS_DejPZQabxtfMOM_xn8qoZNJDQjrT7z2wG1I4U,11512
1217
+ tf_models_nightly-2.18.0.dev20240726.dist-info/METADATA,sha256=mhsZPS0MlKLt74wLxOnTpaTaW87pyZNTlsDNy8JHDrU,1432
1218
+ tf_models_nightly-2.18.0.dev20240726.dist-info/WHEEL,sha256=kGT74LWyRUZrL4VgLh6_g12IeVl_9u9ZVhadrgXZUEY,110
1219
+ tf_models_nightly-2.18.0.dev20240726.dist-info/top_level.txt,sha256=gum2FfO5R4cvjl2-QtP-S1aNmsvIZaFFT6VFzU0f4-g,33
1220
+ tf_models_nightly-2.18.0.dev20240726.dist-info/RECORD,,