tf-models-nightly 2.18.0.dev20240724__py2.py3-none-any.whl → 2.18.0.dev20240726__py2.py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- official/nlp/modeling/layers/gated_feedforward.py +1 -1
- official/nlp/modeling/ops/sampling_module.py +2 -2
- {tf_models_nightly-2.18.0.dev20240724.dist-info → tf_models_nightly-2.18.0.dev20240726.dist-info}/METADATA +1 -1
- {tf_models_nightly-2.18.0.dev20240724.dist-info → tf_models_nightly-2.18.0.dev20240726.dist-info}/RECORD +8 -8
- {tf_models_nightly-2.18.0.dev20240724.dist-info → tf_models_nightly-2.18.0.dev20240726.dist-info}/AUTHORS +0 -0
- {tf_models_nightly-2.18.0.dev20240724.dist-info → tf_models_nightly-2.18.0.dev20240726.dist-info}/LICENSE +0 -0
- {tf_models_nightly-2.18.0.dev20240724.dist-info → tf_models_nightly-2.18.0.dev20240726.dist-info}/WHEEL +0 -0
- {tf_models_nightly-2.18.0.dev20240724.dist-info → tf_models_nightly-2.18.0.dev20240726.dist-info}/top_level.txt +0 -0
@@ -37,7 +37,7 @@ class GatedFeedforward(tf_keras.layers.Layer):
|
|
37
37
|
dropout: Dropout probability for the output dropout.
|
38
38
|
use_gate: Whether to use gated linear units. If True, assuming `GELU` as the
|
39
39
|
activation and omitting bias, will apply
|
40
|
-
`GEGLU(x, W, V, W_2) = (
|
40
|
+
`GEGLU(x, W, V, W_2) = (GELU(xW) * xV)W2`; if False, will follow
|
41
41
|
"Attention Is All You Need" (https://arxiv.org/abs/1706.03762) paper and
|
42
42
|
apply `FFN(x, W, W_2) = GELU(xW_1)W_2.`
|
43
43
|
num_blocks: The number of feedforward blocks to stack. Each block contains a
|
@@ -60,7 +60,7 @@ def sample_top_k(logits, top_k):
|
|
60
60
|
top_k_logits = tf.math.top_k(logits, k=top_k)
|
61
61
|
indices_to_remove = logits < tf.expand_dims(top_k_logits[0][..., -1], -1)
|
62
62
|
top_k_logits = set_tensor_by_indices_to_value(logits, indices_to_remove,
|
63
|
-
np.
|
63
|
+
-np.inf)
|
64
64
|
return top_k_logits
|
65
65
|
|
66
66
|
|
@@ -103,7 +103,7 @@ def sample_top_p(logits, top_p):
|
|
103
103
|
indices_to_remove = scatter_values_on_batch_indices(sorted_indices_to_remove,
|
104
104
|
sorted_indices)
|
105
105
|
top_p_logits = set_tensor_by_indices_to_value(logits, indices_to_remove,
|
106
|
-
np.
|
106
|
+
-np.inf)
|
107
107
|
return top_p_logits
|
108
108
|
|
109
109
|
|
@@ -311,7 +311,7 @@ official/nlp/modeling/layers/cls_head.py,sha256=0X_gdjnAt6TZVrH_xkDcQCpwLuVz5Pb7
|
|
311
311
|
official/nlp/modeling/layers/cls_head_test.py,sha256=01oMmiuyp1lDEXBYa9r3krn6BtH-QuSedGOca9LViEc,8888
|
312
312
|
official/nlp/modeling/layers/factorized_embedding.py,sha256=4oFRYJbpoaSxqv8hTWY2JPGPllp-zhniz99IyRtlzV8,2902
|
313
313
|
official/nlp/modeling/layers/factorized_embedding_test.py,sha256=S-fAkhU8j1N5E1_W9kiC0C3WcXsIDLC3Oi7t3I_LMTc,2589
|
314
|
-
official/nlp/modeling/layers/gated_feedforward.py,sha256=
|
314
|
+
official/nlp/modeling/layers/gated_feedforward.py,sha256=z-zhkyHGnaq3Tl5u58qK9teJ2FpHXO_XDFbEIWGokQc,9690
|
315
315
|
official/nlp/modeling/layers/gated_feedforward_test.py,sha256=v-ZFliRi4s-6TroKi2Kc4zrcWO1rYGJwBxwHtiqh19w,4494
|
316
316
|
official/nlp/modeling/layers/gaussian_process.py,sha256=YFzBuxdR1xWLEPNYbi40pDq1WYXJsacpisCNtVhX_7o,20450
|
317
317
|
official/nlp/modeling/layers/gaussian_process_test.py,sha256=2ReFEBVdNcR175hNGP-xkDSHSgIH9yuE0rgl3HeFKv4,10101
|
@@ -422,7 +422,7 @@ official/nlp/modeling/ops/beam_search.py,sha256=1kwoD3SF1BiWbxeN4u77CjJXJ2hCEzOW
|
|
422
422
|
official/nlp/modeling/ops/beam_search_test.py,sha256=Sz1sirBnYktqQ82NbyLefVpkmLVr7BPVApVxW8DRuoI,7589
|
423
423
|
official/nlp/modeling/ops/decoding_module.py,sha256=-Aw_A2dUbRu7jd-DY4a7iWme-yNSvfng9g_XWdCGwXI,11279
|
424
424
|
official/nlp/modeling/ops/decoding_module_test.py,sha256=VTYYaZxihkDz1FkkwUIyc3EuCqGIW9fJS-3mYw3c4-8,2623
|
425
|
-
official/nlp/modeling/ops/sampling_module.py,sha256=
|
425
|
+
official/nlp/modeling/ops/sampling_module.py,sha256=eUW83HbJTuMI7a0clZrFYzJ-27mnIGCPdJTyLy6sQ1c,19250
|
426
426
|
official/nlp/modeling/ops/segment_extractor.py,sha256=Xb1YjGw-22IF71WBr5dhaYLXKm2Xr5KSLGq1Ru1EiyI,9603
|
427
427
|
official/nlp/modeling/ops/segment_extractor_test.py,sha256=bQoqDdyK8-e7CSgCAUJh4PWWL2nYYYKlmW2kogcLe_k,5408
|
428
428
|
official/nlp/serving/__init__.py,sha256=Yqe5TjLrAR68lQ5G781dwlbbT6mELRByDipCtr4jQY4,610
|
@@ -1212,9 +1212,9 @@ tensorflow_models/tensorflow_models_test.py,sha256=nc6A9K53OGqF25xN5St8EiWvdVbda
|
|
1212
1212
|
tensorflow_models/nlp/__init__.py,sha256=4tA5Pf4qaFwT-fIFOpX7x7FHJpnyJT-5UgOeFYTyMlc,807
|
1213
1213
|
tensorflow_models/uplift/__init__.py,sha256=mqfa55gweOdpKoaQyid4A_4u7xw__FcQeSIF0k_pYmI,999
|
1214
1214
|
tensorflow_models/vision/__init__.py,sha256=zBorY_v5xva1uI-qxhZO3Qh-Dii-Suq6wEYh6hKHDfc,833
|
1215
|
-
tf_models_nightly-2.18.0.
|
1216
|
-
tf_models_nightly-2.18.0.
|
1217
|
-
tf_models_nightly-2.18.0.
|
1218
|
-
tf_models_nightly-2.18.0.
|
1219
|
-
tf_models_nightly-2.18.0.
|
1220
|
-
tf_models_nightly-2.18.0.
|
1215
|
+
tf_models_nightly-2.18.0.dev20240726.dist-info/AUTHORS,sha256=1dG3fXVu9jlo7bul8xuix5F5vOnczMk7_yWn4y70uw0,337
|
1216
|
+
tf_models_nightly-2.18.0.dev20240726.dist-info/LICENSE,sha256=WxeBS_DejPZQabxtfMOM_xn8qoZNJDQjrT7z2wG1I4U,11512
|
1217
|
+
tf_models_nightly-2.18.0.dev20240726.dist-info/METADATA,sha256=mhsZPS0MlKLt74wLxOnTpaTaW87pyZNTlsDNy8JHDrU,1432
|
1218
|
+
tf_models_nightly-2.18.0.dev20240726.dist-info/WHEEL,sha256=kGT74LWyRUZrL4VgLh6_g12IeVl_9u9ZVhadrgXZUEY,110
|
1219
|
+
tf_models_nightly-2.18.0.dev20240726.dist-info/top_level.txt,sha256=gum2FfO5R4cvjl2-QtP-S1aNmsvIZaFFT6VFzU0f4-g,33
|
1220
|
+
tf_models_nightly-2.18.0.dev20240726.dist-info/RECORD,,
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|