tf-models-nightly 2.17.0.dev20240617__py2.py3-none-any.whl → 2.17.0.dev20240618__py2.py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -138,19 +138,19 @@ class VarianceTest(keras_test_case.KerasTestCase, parameterized.TestCase):
138
138
  def test_float_sample_weight(self, values, sample_weight, expected_variance):
139
139
  metric = variance.Variance()
140
140
  metric(values, sample_weight=sample_weight)
141
- self.assertEqual(expected_variance, metric.result())
141
+ self.assertAllClose(expected_variance, metric.result())
142
142
 
143
143
  def test_empty_input(self):
144
144
  metric = variance.Variance()
145
145
  values = tf.constant([0, 1, 2, 3])
146
146
  metric(values)
147
- self.assertEqual(1.25, metric.result())
147
+ self.assertAllClose(1.25, metric.result())
148
148
  metric(tf.ones(shape=(0,)), sample_weight=None)
149
- self.assertEqual(1.25, metric.result())
149
+ self.assertAllClose(1.25, metric.result())
150
150
 
151
151
  def test_initial_state(self):
152
152
  metric = variance.Variance()
153
- self.assertEqual(0.0, metric.result())
153
+ self.assertAllClose(0.0, metric.result())
154
154
 
155
155
  def test_dtype_correctness(self):
156
156
  # 1 << 128 overflows for float32 but fits in float64.
@@ -196,24 +196,26 @@ class VarianceTest(keras_test_case.KerasTestCase, parameterized.TestCase):
196
196
  values = tf.constant([1, 2, 1, 4])
197
197
  metric.update_state(values)
198
198
 
199
- self.assertEqual(values.numpy().var(), metric.result())
200
- self.assertEqual(values.numpy().var(), metric.result())
199
+ self.assertAllClose(values.numpy().var(), metric.result())
200
+ self.assertAllClose(values.numpy().var(), metric.result())
201
201
 
202
202
  metric.update_state(tf.constant([-1, -2, 0]))
203
203
 
204
- self.assertEqual(np.array([1, 2, 1, 4, -1, -2, 0]).var(), metric.result())
204
+ self.assertAllClose(
205
+ np.array([1, 2, 1, 4, -1, -2, 0]).var(), metric.result()
206
+ )
205
207
 
206
208
  def test_reset_state(self):
207
209
  metric = variance.Variance()
208
210
  values = tf.constant([1, 2, 1, 4])
209
211
 
210
212
  metric.update_state(values)
211
- self.assertEqual(1.5, metric.result())
213
+ self.assertAllClose(1.5, metric.result())
212
214
 
213
215
  metric.reset_state()
214
216
 
215
217
  metric.update_state(values, sample_weight=tf.constant([1, 0, 1, 0]))
216
- self.assertEqual(0.0, metric.result())
218
+ self.assertAllClose(0.0, metric.result())
217
219
 
218
220
  def test_numpy_correctness(self):
219
221
  metric = variance.Variance()
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: tf-models-nightly
3
- Version: 2.17.0.dev20240617
3
+ Version: 2.17.0.dev20240618
4
4
  Summary: TensorFlow Official Models
5
5
  Home-page: https://github.com/tensorflow/models
6
6
  Author: Google Inc.
@@ -930,7 +930,7 @@ official/recommendation/uplift/metrics/treatment_sliced_metric_test.py,sha256=-S
930
930
  official/recommendation/uplift/metrics/uplift_mean.py,sha256=9I2_8p3bXj5S5MF1pcKzb761bE9lF45OOuInFgEK6HQ,3425
931
931
  official/recommendation/uplift/metrics/uplift_mean_test.py,sha256=oZZjdSORNGhQLUMmUy-imz65Kc3OapzKFH5iYYdMmS4,7411
932
932
  official/recommendation/uplift/metrics/variance.py,sha256=rhwZzUX-cRbwr-7vhC0I0bEQ9KpeHoPq2T0tijdO3G4,2332
933
- official/recommendation/uplift/metrics/variance_test.py,sha256=EPISeHOFIh6WfODuC0SXbnmMugh90acMmm4BJkEZXlo,7757
933
+ official/recommendation/uplift/metrics/variance_test.py,sha256=rSKjdAGxCoZNL3Y_cMFjp7fzWNoRMl_uRFzW5ddpNOs,7798
934
934
  official/recommendation/uplift/models/__init__.py,sha256=kWy2K5LGXHVyyrTjJvbVFcBjj1bjPRI2dpIq-sfdhvo,716
935
935
  official/recommendation/uplift/models/two_tower_uplift_model.py,sha256=Fb6nLFAOqch81ravK57K9kggAeqvtJcBtKGZwCex0ts,5028
936
936
  official/recommendation/uplift/models/two_tower_uplift_model_test.py,sha256=J7qC9f0fDG1aIrLz85K1qUzTFyAIH0v8eA1yfPJb9YY,10061
@@ -1212,9 +1212,9 @@ tensorflow_models/tensorflow_models_test.py,sha256=nc6A9K53OGqF25xN5St8EiWvdVbda
1212
1212
  tensorflow_models/nlp/__init__.py,sha256=4tA5Pf4qaFwT-fIFOpX7x7FHJpnyJT-5UgOeFYTyMlc,807
1213
1213
  tensorflow_models/uplift/__init__.py,sha256=mqfa55gweOdpKoaQyid4A_4u7xw__FcQeSIF0k_pYmI,999
1214
1214
  tensorflow_models/vision/__init__.py,sha256=zBorY_v5xva1uI-qxhZO3Qh-Dii-Suq6wEYh6hKHDfc,833
1215
- tf_models_nightly-2.17.0.dev20240617.dist-info/AUTHORS,sha256=1dG3fXVu9jlo7bul8xuix5F5vOnczMk7_yWn4y70uw0,337
1216
- tf_models_nightly-2.17.0.dev20240617.dist-info/LICENSE,sha256=WxeBS_DejPZQabxtfMOM_xn8qoZNJDQjrT7z2wG1I4U,11512
1217
- tf_models_nightly-2.17.0.dev20240617.dist-info/METADATA,sha256=smo4EnD9zKiTmnXASYFdhNZWvd7hPuGFZoCZZx39UP8,1432
1218
- tf_models_nightly-2.17.0.dev20240617.dist-info/WHEEL,sha256=kGT74LWyRUZrL4VgLh6_g12IeVl_9u9ZVhadrgXZUEY,110
1219
- tf_models_nightly-2.17.0.dev20240617.dist-info/top_level.txt,sha256=gum2FfO5R4cvjl2-QtP-S1aNmsvIZaFFT6VFzU0f4-g,33
1220
- tf_models_nightly-2.17.0.dev20240617.dist-info/RECORD,,
1215
+ tf_models_nightly-2.17.0.dev20240618.dist-info/AUTHORS,sha256=1dG3fXVu9jlo7bul8xuix5F5vOnczMk7_yWn4y70uw0,337
1216
+ tf_models_nightly-2.17.0.dev20240618.dist-info/LICENSE,sha256=WxeBS_DejPZQabxtfMOM_xn8qoZNJDQjrT7z2wG1I4U,11512
1217
+ tf_models_nightly-2.17.0.dev20240618.dist-info/METADATA,sha256=8e2zoMsfMjS1K7i_0fiD5ryok1ZSBwb42dwZbHgLUIc,1432
1218
+ tf_models_nightly-2.17.0.dev20240618.dist-info/WHEEL,sha256=kGT74LWyRUZrL4VgLh6_g12IeVl_9u9ZVhadrgXZUEY,110
1219
+ tf_models_nightly-2.17.0.dev20240618.dist-info/top_level.txt,sha256=gum2FfO5R4cvjl2-QtP-S1aNmsvIZaFFT6VFzU0f4-g,33
1220
+ tf_models_nightly-2.17.0.dev20240618.dist-info/RECORD,,