tf-models-nightly 2.17.0.dev20240604__py2.py3-none-any.whl → 2.17.0.dev20240606__py2.py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- official/nlp/modeling/layers/multi_query_attention.py +208 -0
- official/nlp/modeling/layers/multi_query_attention_test.py +215 -0
- {tf_models_nightly-2.17.0.dev20240604.dist-info → tf_models_nightly-2.17.0.dev20240606.dist-info}/METADATA +1 -1
- {tf_models_nightly-2.17.0.dev20240604.dist-info → tf_models_nightly-2.17.0.dev20240606.dist-info}/RECORD +8 -6
- {tf_models_nightly-2.17.0.dev20240604.dist-info → tf_models_nightly-2.17.0.dev20240606.dist-info}/AUTHORS +0 -0
- {tf_models_nightly-2.17.0.dev20240604.dist-info → tf_models_nightly-2.17.0.dev20240606.dist-info}/LICENSE +0 -0
- {tf_models_nightly-2.17.0.dev20240604.dist-info → tf_models_nightly-2.17.0.dev20240606.dist-info}/WHEEL +0 -0
- {tf_models_nightly-2.17.0.dev20240604.dist-info → tf_models_nightly-2.17.0.dev20240606.dist-info}/top_level.txt +0 -0
@@ -0,0 +1,208 @@
|
|
1
|
+
# Copyright 2024 The TensorFlow Authors. All Rights Reserved.
|
2
|
+
#
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4
|
+
# you may not use this file except in compliance with the License.
|
5
|
+
# You may obtain a copy of the License at
|
6
|
+
#
|
7
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8
|
+
#
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12
|
+
# See the License for the specific language governing permissions and
|
13
|
+
# limitations under the License.
|
14
|
+
|
15
|
+
"""Keras-based attention layers to support multi-query attention.
|
16
|
+
|
17
|
+
Based on https://arxiv.org/pdf/1911.02150.pdf and
|
18
|
+
https://arxiv.org/pdf/2305.13245.pdf.
|
19
|
+
"""
|
20
|
+
|
21
|
+
import string
|
22
|
+
from typing import Optional, Sequence, Union
|
23
|
+
|
24
|
+
import tensorflow as tf, tf_keras
|
25
|
+
|
26
|
+
_CHR_IDX = string.ascii_lowercase
|
27
|
+
|
28
|
+
|
29
|
+
def _build_proj_equation(
|
30
|
+
free_dims: int, bound_dims: int, output_dims: int
|
31
|
+
) -> ...:
|
32
|
+
"""Builds an einsum equation for projections inside attention layer.
|
33
|
+
|
34
|
+
Args:
|
35
|
+
free_dims: The number of free dimensions which are copied from input to
|
36
|
+
output.
|
37
|
+
bound_dims: The number of bound dimensions part of input which are combined
|
38
|
+
with the kernel to produce output.
|
39
|
+
output_dims: The number of output dimensions.
|
40
|
+
|
41
|
+
Returns:
|
42
|
+
A tuple of einsum equation, bias axes and output rank.
|
43
|
+
"""
|
44
|
+
|
45
|
+
input_str = ""
|
46
|
+
kernel_str = ""
|
47
|
+
output_str = ""
|
48
|
+
bias_axes = ""
|
49
|
+
letter_offset = 0
|
50
|
+
for i in range(free_dims):
|
51
|
+
char = _CHR_IDX[i + letter_offset]
|
52
|
+
input_str += char
|
53
|
+
output_str += char
|
54
|
+
|
55
|
+
letter_offset += free_dims
|
56
|
+
for i in range(bound_dims):
|
57
|
+
char = _CHR_IDX[i + letter_offset]
|
58
|
+
input_str += char
|
59
|
+
kernel_str += char
|
60
|
+
|
61
|
+
letter_offset += bound_dims
|
62
|
+
for i in range(output_dims):
|
63
|
+
char = _CHR_IDX[i + letter_offset]
|
64
|
+
kernel_str += char
|
65
|
+
output_str += char
|
66
|
+
bias_axes += char
|
67
|
+
equation = f"{input_str},{kernel_str}->{output_str}"
|
68
|
+
|
69
|
+
return equation, bias_axes, len(output_str)
|
70
|
+
|
71
|
+
|
72
|
+
def _get_output_shape(
|
73
|
+
output_rank: int, known_last_dims: Sequence[int]
|
74
|
+
) -> list[Optional[int]]:
|
75
|
+
return [None] * (output_rank - len(known_last_dims)) + list(known_last_dims)
|
76
|
+
|
77
|
+
|
78
|
+
class MultiHeadAttention(tf_keras.layers.MultiHeadAttention):
|
79
|
+
"""Multi-query attention layer."""
|
80
|
+
|
81
|
+
def __init__(self, num_kv_heads=None, **kwargs):
|
82
|
+
# num_kv_heads defines the number of key/value heads. A value of 1 means
|
83
|
+
# that the key/value heads are shared across all query heads. Any other
|
84
|
+
# value must be less than num_heads and must divide num_heads exactly. If
|
85
|
+
# num_kv_heads is greater than 1, query heads are split into groups of
|
86
|
+
# num_kv_heads.
|
87
|
+
super().__init__(**kwargs)
|
88
|
+
self._num_kv_heads = num_kv_heads or self._num_heads
|
89
|
+
assert (
|
90
|
+
self._num_kv_heads < self._num_heads
|
91
|
+
), "num_kv_heads must be less than num_heads."
|
92
|
+
assert (
|
93
|
+
self._num_heads % self._num_kv_heads == 0
|
94
|
+
), "num_kv_heads needs to divide num_heads exactly."
|
95
|
+
|
96
|
+
def _build_from_signature(
|
97
|
+
self,
|
98
|
+
query: Union[tf.Tensor, tf.TensorShape],
|
99
|
+
value: Union[tf.Tensor, tf.TensorShape],
|
100
|
+
key: Optional[Union[tf.Tensor, tf.TensorShape]] = None,
|
101
|
+
):
|
102
|
+
"""Builds layers and variables.
|
103
|
+
|
104
|
+
Once the method is called, self._built_from_signature will be set to
|
105
|
+
True.
|
106
|
+
|
107
|
+
Args:
|
108
|
+
query: Query tensor or TensorShape.
|
109
|
+
value: Value tensor or TensorShape.
|
110
|
+
key: Key tensor or TensorShape.
|
111
|
+
"""
|
112
|
+
# pytype: disable=attribute-error
|
113
|
+
super()._build_from_signature(query=query, value=value, key=key)
|
114
|
+
# pytype: enable=attribute-error
|
115
|
+
|
116
|
+
with tf.init_scope():
|
117
|
+
# Key, value are shared across heads in multi-query attention.
|
118
|
+
# Overwrite the K, V projections, logits & attend einsum equations to
|
119
|
+
# remove the number of attention head dimension in K, V related tensors.
|
120
|
+
#
|
121
|
+
# The following capital letters are used to denote the tensor dimension
|
122
|
+
# parameters:
|
123
|
+
# B = batch size
|
124
|
+
# S = length of the key/value (source)
|
125
|
+
# T = length of the query (target)
|
126
|
+
# N = number of query attention heads
|
127
|
+
# K = number of key/value heads
|
128
|
+
# n = N // K
|
129
|
+
# H = dimensions of each attention head.
|
130
|
+
#
|
131
|
+
if self._num_kv_heads == 1:
|
132
|
+
output_dims = 1
|
133
|
+
key_last_dims = [self._key_dim]
|
134
|
+
value_last_dims = [self._value_dim]
|
135
|
+
self._dot_product_equation = "...SH,...TNH->...NTS"
|
136
|
+
self._combine_equation = "...NTS,...SH->...TNH"
|
137
|
+
else:
|
138
|
+
output_dims = 2
|
139
|
+
key_last_dims = [self._num_kv_heads, self._key_dim]
|
140
|
+
value_last_dims = [self._num_kv_heads, self._value_dim]
|
141
|
+
self._dot_product_equation = "...SKH,...TKnH->...nKTS"
|
142
|
+
self._combine_equation = "...nKTS,...SKH->...TnKH"
|
143
|
+
|
144
|
+
einsum_equation, bias_axes, output_rank = _build_proj_equation(
|
145
|
+
free_dims=self._key_shape.rank - 1,
|
146
|
+
bound_dims=1,
|
147
|
+
output_dims=output_dims,
|
148
|
+
)
|
149
|
+
self._key_dense = tf_keras.layers.EinsumDense(
|
150
|
+
einsum_equation,
|
151
|
+
output_shape=_get_output_shape(output_rank - 1, key_last_dims),
|
152
|
+
bias_axes=bias_axes if self._use_bias else None,
|
153
|
+
name="key",
|
154
|
+
**self._get_common_kwargs_for_sublayer(),
|
155
|
+
)
|
156
|
+
einsum_equation, bias_axes, output_rank = _build_proj_equation(
|
157
|
+
free_dims=self._value_shape.rank - 1,
|
158
|
+
bound_dims=1,
|
159
|
+
output_dims=output_dims,
|
160
|
+
)
|
161
|
+
self._value_dense = tf_keras.layers.EinsumDense(
|
162
|
+
einsum_equation,
|
163
|
+
output_shape=_get_output_shape(output_rank - 1, value_last_dims),
|
164
|
+
bias_axes=bias_axes if self._use_bias else None,
|
165
|
+
name="value",
|
166
|
+
**self._get_common_kwargs_for_sublayer(),
|
167
|
+
)
|
168
|
+
|
169
|
+
def _compute_attention(
|
170
|
+
self, query, key, value, attention_mask=None, training=None
|
171
|
+
):
|
172
|
+
if self._num_kv_heads > 1:
|
173
|
+
query = tf.reshape(
|
174
|
+
query,
|
175
|
+
[
|
176
|
+
tf.shape(query)[0],
|
177
|
+
tf.shape(query)[1],
|
178
|
+
self._num_kv_heads,
|
179
|
+
self._num_heads // self._num_kv_heads,
|
180
|
+
tf.shape(query)[-1],
|
181
|
+
],
|
182
|
+
)
|
183
|
+
|
184
|
+
# pytype: disable=attribute-error
|
185
|
+
attention_output, attention_scores = super()._compute_attention(
|
186
|
+
query, key, value, attention_mask=attention_mask, training=training
|
187
|
+
)
|
188
|
+
# pytype: enable=attribute-error
|
189
|
+
if self._num_kv_heads != 1:
|
190
|
+
attention_output = tf.reshape(
|
191
|
+
attention_output,
|
192
|
+
[
|
193
|
+
tf.shape(attention_output)[0],
|
194
|
+
tf.shape(attention_output)[1],
|
195
|
+
self._num_heads,
|
196
|
+
tf.shape(attention_output)[-1],
|
197
|
+
],
|
198
|
+
)
|
199
|
+
attention_scores = tf.reshape(
|
200
|
+
attention_scores,
|
201
|
+
[
|
202
|
+
tf.shape(attention_scores)[0],
|
203
|
+
self._num_heads,
|
204
|
+
tf.shape(attention_scores)[-2],
|
205
|
+
tf.shape(attention_scores)[-1],
|
206
|
+
],
|
207
|
+
)
|
208
|
+
return attention_output, attention_scores
|
@@ -0,0 +1,215 @@
|
|
1
|
+
# Copyright 2024 The TensorFlow Authors. All Rights Reserved.
|
2
|
+
#
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4
|
+
# you may not use this file except in compliance with the License.
|
5
|
+
# You may obtain a copy of the License at
|
6
|
+
#
|
7
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8
|
+
#
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12
|
+
# See the License for the specific language governing permissions and
|
13
|
+
# limitations under the License.
|
14
|
+
|
15
|
+
"""Tests for multi-query attention layer."""
|
16
|
+
|
17
|
+
from absl.testing import parameterized
|
18
|
+
import numpy as np
|
19
|
+
import tensorflow as tf, tf_keras
|
20
|
+
|
21
|
+
from official.nlp.modeling.layers import multi_query_attention
|
22
|
+
|
23
|
+
|
24
|
+
class MultiQueryAttentionTest(tf.test.TestCase, parameterized.TestCase):
|
25
|
+
|
26
|
+
@parameterized.named_parameters(
|
27
|
+
("key_value_same_proj_mqa", 1, None, None, [40, 80]),
|
28
|
+
("key_value_different_proj_mqa", 1, 32, 60, [40, 60]),
|
29
|
+
("key_value_same_proj_gqa", 3, None, None, [40, 80]),
|
30
|
+
("key_value_different_proj_gqa", 3, 32, 60, [40, 60]),
|
31
|
+
)
|
32
|
+
def test_non_masked_attention(
|
33
|
+
self, num_kv_heads, value_dim, output_shape, output_dims
|
34
|
+
):
|
35
|
+
"""Test that the attention layer can be created without a mask tensor."""
|
36
|
+
test_layer = multi_query_attention.MultiHeadAttention(
|
37
|
+
num_heads=12,
|
38
|
+
num_kv_heads=num_kv_heads,
|
39
|
+
key_dim=64,
|
40
|
+
value_dim=value_dim,
|
41
|
+
output_shape=output_shape,
|
42
|
+
)
|
43
|
+
# Create a 3-dimensional input (the first dimension is implicit).
|
44
|
+
query = tf_keras.Input(shape=(40, 80))
|
45
|
+
value = tf_keras.Input(shape=(20, 80))
|
46
|
+
output = test_layer(query=query, value=value)
|
47
|
+
self.assertEqual(output.shape.as_list(), [None] + output_dims)
|
48
|
+
|
49
|
+
@parameterized.named_parameters(
|
50
|
+
("_mqa", 1),
|
51
|
+
("_gqa", 3),
|
52
|
+
)
|
53
|
+
def test_non_masked_self_attention(self, num_kv_heads):
|
54
|
+
"""Test with one input (self-attenntion) and no mask tensor."""
|
55
|
+
test_layer = multi_query_attention.MultiHeadAttention(
|
56
|
+
num_heads=12, num_kv_heads=num_kv_heads, key_dim=64
|
57
|
+
)
|
58
|
+
# Create a 3-dimensional input (the first dimension is implicit).
|
59
|
+
query = tf_keras.Input(shape=(40, 80))
|
60
|
+
output = test_layer(query, query)
|
61
|
+
self.assertEqual(output.shape.as_list(), [None, 40, 80])
|
62
|
+
|
63
|
+
@parameterized.named_parameters(
|
64
|
+
("_mqa", 1),
|
65
|
+
("_gqa", 3),
|
66
|
+
)
|
67
|
+
def test_attention_scores(self, num_kv_heads):
|
68
|
+
"""Test attention outputs with coefficients."""
|
69
|
+
test_layer = multi_query_attention.MultiHeadAttention(
|
70
|
+
num_heads=12, num_kv_heads=num_kv_heads, key_dim=64
|
71
|
+
)
|
72
|
+
# Create a 3-dimensional input (the first dimension is implicit).
|
73
|
+
query = tf_keras.Input(shape=(40, 80))
|
74
|
+
output, coef = test_layer(query, query, return_attention_scores=True)
|
75
|
+
self.assertEqual(output.shape.as_list(), [None, 40, 80])
|
76
|
+
self.assertEqual(coef.shape.as_list(), [None, 12, 40, 40])
|
77
|
+
|
78
|
+
@parameterized.named_parameters(
|
79
|
+
("_mqa", 1),
|
80
|
+
("_gqa", 3),
|
81
|
+
)
|
82
|
+
def test_attention_scores_with_values(self, num_kv_heads):
|
83
|
+
"""Test attention outputs with coefficients."""
|
84
|
+
test_layer = multi_query_attention.MultiHeadAttention(
|
85
|
+
num_heads=12, num_kv_heads=num_kv_heads, key_dim=64
|
86
|
+
)
|
87
|
+
# Create a 3-dimensional input (the first dimension is implicit).
|
88
|
+
query = tf_keras.Input(shape=(40, 80))
|
89
|
+
value = tf_keras.Input(shape=(60, 80))
|
90
|
+
output, coef = test_layer(query, value, return_attention_scores=True)
|
91
|
+
self.assertEqual(output.shape.as_list(), [None, 40, 80])
|
92
|
+
self.assertEqual(coef.shape.as_list(), [None, 12, 40, 60])
|
93
|
+
|
94
|
+
@parameterized.named_parameters(
|
95
|
+
("with_bias_mqa", 1, True),
|
96
|
+
("no_bias_mqa", 1, False),
|
97
|
+
("with_bias_gqa", 2, True),
|
98
|
+
("no_bias_gqa", 2, False),
|
99
|
+
)
|
100
|
+
def test_masked_attention(self, num_kv_heads, use_bias):
|
101
|
+
"""Test with a mask tensor."""
|
102
|
+
test_layer = multi_query_attention.MultiHeadAttention(
|
103
|
+
num_heads=4, num_kv_heads=num_kv_heads, key_dim=2, use_bias=use_bias
|
104
|
+
)
|
105
|
+
# Create a 3-dimensional input (the first dimension is implicit).
|
106
|
+
batch_size = 3
|
107
|
+
query = tf_keras.Input(shape=(4, 8))
|
108
|
+
value = tf_keras.Input(shape=(2, 8))
|
109
|
+
mask_tensor = tf_keras.Input(shape=(4, 2))
|
110
|
+
output = test_layer(query=query, value=value, attention_mask=mask_tensor)
|
111
|
+
|
112
|
+
# Create a model containing the test layer.
|
113
|
+
model = tf_keras.Model([query, value, mask_tensor], output)
|
114
|
+
|
115
|
+
# Generate data for the input (non-mask) tensors.
|
116
|
+
from_data = 10 * np.random.random_sample((batch_size, 4, 8))
|
117
|
+
to_data = 10 * np.random.random_sample((batch_size, 2, 8))
|
118
|
+
|
119
|
+
# Invoke the data with a random set of mask data. This should mask at
|
120
|
+
# least one element.
|
121
|
+
mask_data = np.random.randint(2, size=(batch_size, 4, 2))
|
122
|
+
masked_output_data = model.predict([from_data, to_data, mask_data])
|
123
|
+
|
124
|
+
# Invoke the same data, but with a null mask (where no elements are
|
125
|
+
# masked).
|
126
|
+
null_mask_data = np.ones((batch_size, 4, 2))
|
127
|
+
unmasked_output_data = model.predict([from_data, to_data, null_mask_data])
|
128
|
+
|
129
|
+
# Because one data is masked and one is not, the outputs should not be
|
130
|
+
# the same.
|
131
|
+
self.assertNotAllClose(masked_output_data, unmasked_output_data)
|
132
|
+
|
133
|
+
# Tests the layer with three inputs: Q, K, V.
|
134
|
+
key = tf_keras.Input(shape=(2, 8))
|
135
|
+
output = test_layer(
|
136
|
+
query, value=value, key=key, attention_mask=mask_tensor
|
137
|
+
)
|
138
|
+
model = tf_keras.Model([query, value, key, mask_tensor], output)
|
139
|
+
|
140
|
+
masked_output_data = model.predict(
|
141
|
+
[from_data, to_data, to_data, mask_data]
|
142
|
+
)
|
143
|
+
unmasked_output_data = model.predict(
|
144
|
+
[from_data, to_data, to_data, null_mask_data]
|
145
|
+
)
|
146
|
+
# Because one data is masked and one is not, the outputs should not be
|
147
|
+
# the same.
|
148
|
+
self.assertNotAllClose(masked_output_data, unmasked_output_data)
|
149
|
+
|
150
|
+
if use_bias:
|
151
|
+
self.assertLen(test_layer._query_dense.trainable_variables, 2)
|
152
|
+
self.assertLen(test_layer._output_dense.trainable_variables, 2)
|
153
|
+
else:
|
154
|
+
self.assertLen(test_layer._query_dense.trainable_variables, 1)
|
155
|
+
self.assertLen(test_layer._output_dense.trainable_variables, 1)
|
156
|
+
|
157
|
+
@parameterized.named_parameters(
|
158
|
+
("_mqa", 1),
|
159
|
+
("_gqa", 2),
|
160
|
+
)
|
161
|
+
def test_masked_attention_with_scores(self, num_kv_heads):
|
162
|
+
"""Test with a mask tensor."""
|
163
|
+
test_layer = multi_query_attention.MultiHeadAttention(
|
164
|
+
num_heads=4, num_kv_heads=num_kv_heads, key_dim=2
|
165
|
+
)
|
166
|
+
# Create a 3-dimensional input (the first dimension is implicit).
|
167
|
+
batch_size = 3
|
168
|
+
query = tf_keras.Input(shape=(4, 8))
|
169
|
+
value = tf_keras.Input(shape=(2, 8))
|
170
|
+
mask_tensor = tf_keras.Input(shape=(4, 2))
|
171
|
+
output = test_layer(query=query, value=value, attention_mask=mask_tensor)
|
172
|
+
|
173
|
+
# Create a model containing the test layer.
|
174
|
+
model = tf_keras.Model([query, value, mask_tensor], output)
|
175
|
+
|
176
|
+
# Generate data for the input (non-mask) tensors.
|
177
|
+
from_data = 10 * np.random.random_sample((batch_size, 4, 8))
|
178
|
+
to_data = 10 * np.random.random_sample((batch_size, 2, 8))
|
179
|
+
|
180
|
+
# Invoke the data with a random set of mask data. This should mask at
|
181
|
+
# least one element.
|
182
|
+
mask_data = np.random.randint(2, size=(batch_size, 4, 2))
|
183
|
+
masked_output_data = model.predict([from_data, to_data, mask_data])
|
184
|
+
|
185
|
+
# Invoke the same data, but with a null mask (where no elements are
|
186
|
+
# masked).
|
187
|
+
null_mask_data = np.ones((batch_size, 4, 2))
|
188
|
+
unmasked_output_data = model.predict([from_data, to_data, null_mask_data])
|
189
|
+
|
190
|
+
# Because one data is masked and one is not, the outputs should not be
|
191
|
+
# the same.
|
192
|
+
self.assertNotAllClose(masked_output_data, unmasked_output_data)
|
193
|
+
|
194
|
+
# Create a model containing attention scores.
|
195
|
+
output, scores = test_layer(
|
196
|
+
query=query,
|
197
|
+
value=value,
|
198
|
+
attention_mask=mask_tensor,
|
199
|
+
return_attention_scores=True,
|
200
|
+
)
|
201
|
+
model = tf_keras.Model([query, value, mask_tensor], [output, scores])
|
202
|
+
masked_output_data_score, masked_score = model.predict(
|
203
|
+
[from_data, to_data, mask_data]
|
204
|
+
)
|
205
|
+
unmasked_output_data_score, unmasked_score = model.predict(
|
206
|
+
[from_data, to_data, null_mask_data]
|
207
|
+
)
|
208
|
+
self.assertNotAllClose(masked_output_data_score, unmasked_output_data_score)
|
209
|
+
self.assertAllClose(masked_output_data, masked_output_data_score)
|
210
|
+
self.assertAllClose(unmasked_output_data, unmasked_output_data_score)
|
211
|
+
self.assertNotAllClose(masked_score, unmasked_score)
|
212
|
+
|
213
|
+
|
214
|
+
if __name__ == "__main__":
|
215
|
+
tf.test.main()
|
@@ -329,6 +329,8 @@ official/nlp/modeling/layers/moe.py,sha256=azoK1Cz5l-5yT-FOtb7VYSbePTxmoje-2XAcq
|
|
329
329
|
official/nlp/modeling/layers/moe_test.py,sha256=sr4hys2su_fcf9-6t0awqOkico92pQ3I2ApVF2rvvf0,9414
|
330
330
|
official/nlp/modeling/layers/multi_channel_attention.py,sha256=fInxZUAPrrgCoCkM62JylM_vf5Wp8D0uZAvd5yuooVU,7322
|
331
331
|
official/nlp/modeling/layers/multi_channel_attention_test.py,sha256=KcKuq22gOOq8HBzxRs3gGCwDRhmJPzYxfzfnqorQ1fw,1922
|
332
|
+
official/nlp/modeling/layers/multi_query_attention.py,sha256=fFPBa9IBVj_O5x5OfGuHUFnJmiouNL6F1KsBCeHUqwM,6978
|
333
|
+
official/nlp/modeling/layers/multi_query_attention_test.py,sha256=3VFF2hz85YExWPwdbhYWaSrIaSOkC1x7axdGfXr0W90,8512
|
332
334
|
official/nlp/modeling/layers/on_device_embedding.py,sha256=FgsHyRXf5TWVTyo4OeKImmrTnn4uOPJgS3AGKzKMWYY,4582
|
333
335
|
official/nlp/modeling/layers/on_device_embedding_test.py,sha256=M-LUba4QXV37s9Cx7aH8LL3bz_YotC6qITmWRI7Fhjk,8589
|
334
336
|
official/nlp/modeling/layers/pack_optimization.py,sha256=C2prsYZMSkL8FBjz6Syc_Tu4JgzppaeIHyGDDoWzs8c,10289
|
@@ -1208,9 +1210,9 @@ tensorflow_models/tensorflow_models_test.py,sha256=nc6A9K53OGqF25xN5St8EiWvdVbda
|
|
1208
1210
|
tensorflow_models/nlp/__init__.py,sha256=4tA5Pf4qaFwT-fIFOpX7x7FHJpnyJT-5UgOeFYTyMlc,807
|
1209
1211
|
tensorflow_models/uplift/__init__.py,sha256=mqfa55gweOdpKoaQyid4A_4u7xw__FcQeSIF0k_pYmI,999
|
1210
1212
|
tensorflow_models/vision/__init__.py,sha256=zBorY_v5xva1uI-qxhZO3Qh-Dii-Suq6wEYh6hKHDfc,833
|
1211
|
-
tf_models_nightly-2.17.0.
|
1212
|
-
tf_models_nightly-2.17.0.
|
1213
|
-
tf_models_nightly-2.17.0.
|
1214
|
-
tf_models_nightly-2.17.0.
|
1215
|
-
tf_models_nightly-2.17.0.
|
1216
|
-
tf_models_nightly-2.17.0.
|
1213
|
+
tf_models_nightly-2.17.0.dev20240606.dist-info/AUTHORS,sha256=1dG3fXVu9jlo7bul8xuix5F5vOnczMk7_yWn4y70uw0,337
|
1214
|
+
tf_models_nightly-2.17.0.dev20240606.dist-info/LICENSE,sha256=WxeBS_DejPZQabxtfMOM_xn8qoZNJDQjrT7z2wG1I4U,11512
|
1215
|
+
tf_models_nightly-2.17.0.dev20240606.dist-info/METADATA,sha256=lAg2jWgOJTr2BqPQAYugSYGcJOYFHeKst5MSY8bdGog,1432
|
1216
|
+
tf_models_nightly-2.17.0.dev20240606.dist-info/WHEEL,sha256=kGT74LWyRUZrL4VgLh6_g12IeVl_9u9ZVhadrgXZUEY,110
|
1217
|
+
tf_models_nightly-2.17.0.dev20240606.dist-info/top_level.txt,sha256=gum2FfO5R4cvjl2-QtP-S1aNmsvIZaFFT6VFzU0f4-g,33
|
1218
|
+
tf_models_nightly-2.17.0.dev20240606.dist-info/RECORD,,
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|