tf-models-nightly 2.17.0.dev20240412__py2.py3-none-any.whl → 2.17.0.dev20240414__py2.py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -183,6 +183,9 @@ class LossMetric(tf_keras.metrics.Metric):
183
183
  def result(self) -> tf.Tensor | dict[str, tf.Tensor]:
184
184
  return self._loss.result()
185
185
 
186
+ def reset_state(self):
187
+ self._loss.reset_state()
188
+
186
189
  def get_config(self) -> dict[str, Any]:
187
190
  config = super().get_config()
188
191
  config["loss_fn"] = tf_keras.utils.serialize_keras_object(self._loss_fn)
@@ -0,0 +1,123 @@
1
+ # Copyright 2024 The TensorFlow Authors. All Rights Reserved.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+
15
+ """Poisson regression metrics."""
16
+
17
+ from __future__ import annotations
18
+
19
+ from typing import Any
20
+
21
+ import tensorflow as tf, tf_keras
22
+
23
+ from official.recommendation.uplift import types
24
+ from official.recommendation.uplift.metrics import loss_metric
25
+
26
+
27
+ @tf_keras.utils.register_keras_serializable(package="Uplift")
28
+ class LogLoss(loss_metric.LossMetric):
29
+ """Computes the (weighted) poisson log loss sliced by treatment group.
30
+
31
+ Given labels `y` and the model's predictions `x`, the loss is computed as:
32
+ `loss = x - y * log(x) + [y * log(y) - y + 0.5 * log(2 * pi * y)]`
33
+
34
+ Note that from a numerical perspective it is preferred to compute the loss
35
+ from the model's logits as opposed to directly using its predictions, where
36
+ `logits = log(x) = log(prediction)`. In this case the loss is computed as:
37
+ `loss = exp(logits) - y * logits + [y * log(y) - y + 0.5 * log(2 * pi * y)]`
38
+
39
+ Example standalone usage:
40
+
41
+ >>> poisson_loss = poisson_metrics.LogLoss()
42
+ >>> y_true = tf.constant([[1.0], [0.0]])
43
+ >>> y_pred = types.TwoTowerTrainingOutputs(
44
+ true_logits=tf.constant([[1.0], [0.0]]),
45
+ is_treatment=tf.constant([[1], [0]]),
46
+ )
47
+ >>> poisson_loss(y_true=y_true, y_pred=y_pred)
48
+ {
49
+ "poisson_log_loss/treatment": 1.7182817 # exp(1) - 1 * 1
50
+ "poisson_log_loss/control": 1.0 # exp(0) - 0 * 0
51
+ "poisson_log_loss": 1.3591409 # (1.7182817 + 1.0) / 2
52
+ }
53
+
54
+ Example usage with the `model.compile()` API:
55
+
56
+ >>> model.compile(
57
+ ... optimizer="sgd",
58
+ ... loss=TrueLogitsLoss(tf.nn.log_poisson_loss),
59
+ ... metrics=[poisson_metrics.LogLoss()]
60
+ ... )
61
+ """
62
+
63
+ def __init__(
64
+ self,
65
+ from_logits: bool = True,
66
+ compute_full_loss: bool = False,
67
+ slice_by_treatment: bool = True,
68
+ name: str = "poisson_log_loss",
69
+ dtype: tf.DType = tf.float32,
70
+ ):
71
+ """Initializes the instance.
72
+
73
+ Args:
74
+ from_logits: When `y_pred` is of type `tf.Tensor`, specifies whether
75
+ `y_pred` represents the model's logits or predictions. Otherwise, when
76
+ `y_pred` is of type `TwoTowerTrainingOutputs`, set this to `True` in
77
+ order to compute the loss using the true logits.
78
+ compute_full_loss: Specifies whether the full log loss will be computed.
79
+ If `True`, the expression `[y_true * log(y_true) - y_true + 0.5 * log(2
80
+ * pi * y_true)]` will be added to the loss, otherwise the loss will be
81
+ computed solely by the expression `[y_pred - y_true * log(y_pred)]`.
82
+ slice_by_treatment: Specifies whether the loss should be sliced by the
83
+ treatment indicator tensor. If `True`, the metric's result will return
84
+ the loss values sliced by the treatment group. Note that this can only
85
+ be set to `True` when `y_pred` is of type `TwoTowerTrainingOutputs`.
86
+ name: Optional name for the instance.
87
+ dtype: Optional data type for the instance.
88
+ """
89
+ super().__init__(
90
+ loss_fn=tf.nn.log_poisson_loss,
91
+ from_logits=from_logits,
92
+ compute_full_loss=compute_full_loss,
93
+ slice_by_treatment=slice_by_treatment,
94
+ name=name,
95
+ dtype=dtype,
96
+ )
97
+
98
+ def update_state(
99
+ self,
100
+ y_true: tf.Tensor,
101
+ y_pred: types.TwoTowerTrainingOutputs | tf.Tensor,
102
+ sample_weight: tf.Tensor | None = None,
103
+ ):
104
+ if not self._from_logits:
105
+ if isinstance(y_pred, types.TwoTowerTrainingOutputs):
106
+ raise ValueError(
107
+ "`from_logits` must be set to `True` when `y_pred` is of type"
108
+ " TwoTowerTrainingOutputs. Note that the true logits and true"
109
+ " predictions are assumed to be linked to each other through the"
110
+ " log link function: `true_logits = tf.math.log(true_predictions)."
111
+ )
112
+ y_pred = tf.math.log(y_pred)
113
+
114
+ super().update_state(y_true, y_pred, sample_weight)
115
+
116
+ def get_config(self) -> dict[str, Any]:
117
+ config = super().get_config()
118
+ del config["loss_fn"]
119
+ return config
120
+
121
+ @classmethod
122
+ def from_config(cls, config: dict[str, Any]) -> LogLoss:
123
+ return cls(**config)
@@ -0,0 +1,181 @@
1
+ # Copyright 2024 The TensorFlow Authors. All Rights Reserved.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+
15
+ """Tests for poisson regression metrics."""
16
+
17
+ from absl.testing import parameterized
18
+ import tensorflow as tf, tf_keras
19
+
20
+ from official.recommendation.uplift import keras_test_case
21
+ from official.recommendation.uplift import types
22
+ from official.recommendation.uplift.metrics import poisson_metrics
23
+
24
+
25
+ def _get_two_tower_outputs(
26
+ true_logits: tf.Tensor, is_treatment: tf.Tensor
27
+ ) -> types.TwoTowerTrainingOutputs:
28
+ # Only the true_logits and is_treatment tensors are needed for testing.
29
+ return types.TwoTowerTrainingOutputs(
30
+ shared_embedding=tf.ones_like(is_treatment),
31
+ control_predictions=tf.ones_like(is_treatment),
32
+ treatment_predictions=tf.ones_like(is_treatment),
33
+ uplift=tf.ones_like(is_treatment),
34
+ control_logits=tf.ones_like(is_treatment),
35
+ treatment_logits=tf.ones_like(is_treatment),
36
+ true_logits=true_logits,
37
+ true_predictions=tf.ones_like(is_treatment),
38
+ is_treatment=is_treatment,
39
+ )
40
+
41
+
42
+ class LogLossTest(keras_test_case.KerasTestCase, parameterized.TestCase):
43
+
44
+ @parameterized.named_parameters(
45
+ {
46
+ "testcase_name": "two_tower_outputs_not_sliced",
47
+ "from_logits": True,
48
+ "compute_full_loss": False,
49
+ "slice_by_treatment": False,
50
+ "y_true": tf.constant([[0], [0], [2], [7]], dtype=tf.float32),
51
+ "y_pred": _get_two_tower_outputs(
52
+ true_logits=tf.constant([[1], [2], [3], [4]], dtype=tf.float32),
53
+ is_treatment=tf.constant([[1], [0], [1], [0]]),
54
+ ),
55
+ "expected_loss": tf.reduce_mean(
56
+ tf.nn.log_poisson_loss(
57
+ tf.constant([[0], [0], [2], [7]], dtype=tf.float32),
58
+ tf.constant([[1], [2], [3], [4]], dtype=tf.float32),
59
+ )
60
+ ),
61
+ },
62
+ {
63
+ "testcase_name": "two_tower_outputs_sliced",
64
+ "from_logits": True,
65
+ "compute_full_loss": False,
66
+ "slice_by_treatment": True,
67
+ "y_true": tf.constant([[1], [0]], dtype=tf.float32),
68
+ "y_pred": _get_two_tower_outputs(
69
+ true_logits=tf.constant([[1], [0]], dtype=tf.float32),
70
+ is_treatment=tf.constant([[1], [0]]),
71
+ ),
72
+ "expected_loss": {
73
+ "poisson_log_loss/treatment": (
74
+ tf.math.exp(1.0) - 1 # exp(1) - 1 * 1
75
+ ),
76
+ "poisson_log_loss/control": 1.0, # exp(0) - 0 * 0
77
+ "poisson_log_loss": ((tf.math.exp(1.0) - 1) + 1) / 2,
78
+ },
79
+ },
80
+ {
81
+ "testcase_name": "tensor_outputs_from_logits",
82
+ "from_logits": True,
83
+ "compute_full_loss": False,
84
+ "slice_by_treatment": False,
85
+ "y_true": tf.constant([[0], [0], [2], [7]], dtype=tf.float32),
86
+ "y_pred": tf.constant([[1], [2], [3], [4]], dtype=tf.float32),
87
+ "expected_loss": tf.reduce_mean(
88
+ tf.nn.log_poisson_loss(
89
+ tf.constant([[0], [0], [2], [7]], dtype=tf.float32),
90
+ tf.constant([[1], [2], [3], [4]], dtype=tf.float32),
91
+ )
92
+ ),
93
+ },
94
+ {
95
+ "testcase_name": "tensor_outputs_from_logits_full_loss",
96
+ "from_logits": True,
97
+ "compute_full_loss": True,
98
+ "slice_by_treatment": False,
99
+ "y_true": tf.constant([[0], [0], [2], [7]], dtype=tf.float32),
100
+ "y_pred": tf.constant([[1], [2], [3], [4]], dtype=tf.float32),
101
+ "expected_loss": tf.reduce_mean(
102
+ tf.nn.log_poisson_loss(
103
+ tf.constant([[0], [0], [2], [7]], dtype=tf.float32),
104
+ tf.constant([[1], [2], [3], [4]], dtype=tf.float32),
105
+ compute_full_loss=True,
106
+ )
107
+ ),
108
+ },
109
+ {
110
+ "testcase_name": "tensor_outputs_from_predictions",
111
+ "from_logits": False,
112
+ "compute_full_loss": False,
113
+ "slice_by_treatment": False,
114
+ "y_true": tf.constant([[0], [0], [2], [7]], dtype=tf.float32),
115
+ "y_pred": tf.constant([[1], [2], [3], [4]], dtype=tf.float32),
116
+ "expected_loss": tf.reduce_mean(
117
+ tf.nn.log_poisson_loss(
118
+ tf.constant([[0], [0], [2], [7]], dtype=tf.float32),
119
+ tf.math.log(
120
+ tf.constant([[1], [2], [3], [4]], dtype=tf.float32)
121
+ ),
122
+ )
123
+ ),
124
+ },
125
+ {
126
+ "testcase_name": "tensor_outputs_from_predictions_full_loss",
127
+ "from_logits": False,
128
+ "compute_full_loss": True,
129
+ "slice_by_treatment": False,
130
+ "y_true": tf.constant([[0], [0], [2], [7]], dtype=tf.float32),
131
+ "y_pred": tf.constant([[1], [2], [3], [4]], dtype=tf.float32),
132
+ "expected_loss": tf.reduce_mean(
133
+ tf.nn.log_poisson_loss(
134
+ tf.constant([[0], [0], [2], [7]], dtype=tf.float32),
135
+ tf.math.log(
136
+ tf.constant([[1], [2], [3], [4]], dtype=tf.float32)
137
+ ),
138
+ compute_full_loss=True,
139
+ )
140
+ ),
141
+ },
142
+ )
143
+ def test_metric_computes_correct_loss(
144
+ self,
145
+ from_logits: bool,
146
+ compute_full_loss: bool,
147
+ slice_by_treatment: bool,
148
+ y_true: tf.Tensor,
149
+ y_pred: tf.Tensor,
150
+ expected_loss: tf.Tensor,
151
+ ):
152
+ metric = poisson_metrics.LogLoss(
153
+ from_logits=from_logits,
154
+ compute_full_loss=compute_full_loss,
155
+ slice_by_treatment=slice_by_treatment,
156
+ )
157
+ metric.update_state(y_true, y_pred)
158
+ self.assertAllClose(expected_loss, metric.result())
159
+
160
+ @parameterized.product(
161
+ from_logits=(True, False),
162
+ compute_full_loss=(True, False),
163
+ )
164
+ def test_metric_is_configurable(
165
+ self, from_logits: bool, compute_full_loss: bool
166
+ ):
167
+ metric = poisson_metrics.LogLoss(
168
+ from_logits=from_logits,
169
+ compute_full_loss=compute_full_loss,
170
+ slice_by_treatment=False,
171
+ )
172
+ self.assertLayerConfigurable(
173
+ layer=metric,
174
+ y_true=tf.constant([[0], [0], [2], [7]], dtype=tf.float32),
175
+ y_pred=tf.constant([[1], [2], [3], [4]], dtype=tf.float32),
176
+ serializable=True,
177
+ )
178
+
179
+
180
+ if __name__ == "__main__":
181
+ tf.test.main()
@@ -193,6 +193,11 @@ class SlicedMetric(tf_keras.metrics.Metric):
193
193
  f"{metric_result}."
194
194
  )
195
195
 
196
+ def reset_state(self):
197
+ self._metric.reset_state()
198
+ for metric in self._sliced_metrics:
199
+ metric.reset_state()
200
+
196
201
  def get_config(self):
197
202
  return {
198
203
  "name": self.name,
@@ -315,6 +315,33 @@ class SlicedMetricTest(keras_test_case.KerasTestCase, parameterized.TestCase):
315
315
  }
316
316
  self.assertDictEqual(expected_result, metric.result())
317
317
 
318
+ def test_reset_state(self):
319
+ metric = sliced_metric.SlicedMetric(
320
+ metric=tf_keras.metrics.AUC(curve="PR", from_logits=False, name="auc"),
321
+ slicing_spec={"control": False, "treatment": True},
322
+ )
323
+
324
+ expected_initial_result = {
325
+ "auc": 0.0,
326
+ "auc/control": 0.0,
327
+ "auc/treatment": 0.0,
328
+ }
329
+ self.assertAllClose(expected_initial_result, metric.result())
330
+
331
+ metric.update_state(
332
+ tf.constant([[0], [0], [1], [1]]), # y_true
333
+ tf.constant([[0.2], [0.6], [0.3], [0.7]]), # y_pred
334
+ slicing_feature=tf.constant([[True], [False], [True], [False]]),
335
+ )
336
+
337
+ result = metric.result()
338
+ self.assertGreater(result["auc"], 0.0)
339
+ self.assertGreater(result["auc/control"], 0.0)
340
+ self.assertGreater(result["auc/treatment"], 0.0)
341
+
342
+ metric.reset_state()
343
+ self.assertAllClose(expected_initial_result, metric.result())
344
+
318
345
  def test_metric_config(self):
319
346
  metric = sliced_metric.SlicedMetric(
320
347
  tf_keras.metrics.SparseTopKCategoricalAccuracy(k=2, name="accuracy@2"),
@@ -21,6 +21,7 @@ from official.recommendation.uplift import keras_test_case
21
21
  from official.recommendation.uplift import keys
22
22
  from official.recommendation.uplift.layers.uplift_networks import two_tower_uplift_network
23
23
  from official.recommendation.uplift.losses import true_logits_loss
24
+ from official.recommendation.uplift.metrics import loss_metric
24
25
  from official.recommendation.uplift.models import two_tower_uplift_model
25
26
 
26
27
 
@@ -127,6 +128,53 @@ class TwoTowerUpliftModelTest(
127
128
  }
128
129
  self.assertAllClose(expected_predictions, model.predict(dataset))
129
130
 
131
+ def test_classification_model_trains(self):
132
+ tf_keras.utils.set_random_seed(1)
133
+
134
+ # Create binary classifier uplift model.
135
+ uplift_network = self._get_uplift_network(
136
+ control_feature_encoder=None, control_input_combiner=None
137
+ )
138
+ model = two_tower_uplift_model.TwoTowerUpliftModel(
139
+ treatment_indicator_feature_name="is_treatment",
140
+ uplift_network=uplift_network,
141
+ inverse_link_fn=tf.math.sigmoid,
142
+ )
143
+ model.compile(
144
+ optimizer=tf_keras.optimizers.SGD(0.1),
145
+ loss=true_logits_loss.TrueLogitsLoss(
146
+ loss_fn=tf_keras.losses.binary_crossentropy, from_logits=True
147
+ ),
148
+ metrics=[
149
+ loss_metric.LossMetric(
150
+ tf_keras.metrics.AUC(curve="PR", from_logits=True, name="aucpr")
151
+ ),
152
+ ],
153
+ )
154
+
155
+ # Create toy classification dataset.
156
+ treatment = tf.constant([[1], [1], [0], [1], [1], [1], [0], [1], [0], [1]])
157
+ y = treatment
158
+ dataset = tf.data.Dataset.from_tensor_slices((
159
+ {
160
+ "shared_feature": np.random.normal(size=(10, 1)),
161
+ "treatment_feature": np.random.normal(size=(10, 1)),
162
+ "is_treatment": treatment,
163
+ },
164
+ y,
165
+ )).batch(5)
166
+
167
+ # Test model training.
168
+ history = model.fit(dataset, epochs=100)
169
+ self.assertIn("loss", history.history)
170
+ self.assertLen(history.history["loss"], 100)
171
+ self.assertBetween(
172
+ history.history["loss"][-1], 0.0, history.history["loss"][0]
173
+ )
174
+ self.assertIn("aucpr", history.history)
175
+ self.assertLess(history.history["aucpr"][0], 1.0)
176
+ self.assertEqual(history.history["aucpr"][-1], 1.0)
177
+
130
178
  @parameterized.named_parameters(
131
179
  {
132
180
  "testcase_name": "identity",
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: tf-models-nightly
3
- Version: 2.17.0.dev20240412
3
+ Version: 2.17.0.dev20240414
4
4
  Summary: TensorFlow Official Models
5
5
  Home-page: https://github.com/tensorflow/models
6
6
  Author: Google Inc.
@@ -912,11 +912,13 @@ official/recommendation/uplift/metrics/label_mean.py,sha256=ECaes7FZmsksnwySn7jf
912
912
  official/recommendation/uplift/metrics/label_mean_test.py,sha256=b_d3lNlpkDm2xKLUkxfiXeQg7pjL8HNx7y9NaYarpV0,7083
913
913
  official/recommendation/uplift/metrics/label_variance.py,sha256=9DCl42BJkehxfWD3pSbZnRNvwfhVM6VyHwivGdaU72s,3610
914
914
  official/recommendation/uplift/metrics/label_variance_test.py,sha256=k0mdEU1WU53-HIEO5HGtfp1MleifD-h4bZNKtTvM3Ws,7681
915
- official/recommendation/uplift/metrics/loss_metric.py,sha256=owN7A98TCc_UhOURvGfccaoVGOthdHdx1_fawEUGnmw,7289
915
+ official/recommendation/uplift/metrics/loss_metric.py,sha256=gYZdnTsuL_2q1FZuPip-DaWxt_Q-02YYaePyMBVNx7w,7344
916
916
  official/recommendation/uplift/metrics/loss_metric_test.py,sha256=48rQG8bKFdy0xBFjoOLXKRUlYpCEyAzSmPOFoF7FX94,16021
917
917
  official/recommendation/uplift/metrics/metric_configs.py,sha256=Z-r79orE4EycQ5TJ7xdI5LhjOHT3wzChYyDxcxGqLXk,1670
918
- official/recommendation/uplift/metrics/sliced_metric.py,sha256=O2I2apZK6IfOQK9Q_mgSiTUCnGokczp4e14zrrYNeRU,8564
919
- official/recommendation/uplift/metrics/sliced_metric_test.py,sha256=dhY41X8lqT_WW04XLjyjDerZwujEBGeTXtxf4NkYThw,11359
918
+ official/recommendation/uplift/metrics/poisson_metrics.py,sha256=LJnovpST0H9kFGu-ziDstWOVlAYARLo9oPLDTjzrdu4,4623
919
+ official/recommendation/uplift/metrics/poisson_metrics_test.py,sha256=Kd8CuQeEBlxRklA-7mGKHcUD0CyskE1S3cJqk6mEvv4,6756
920
+ official/recommendation/uplift/metrics/sliced_metric.py,sha256=uhvzudOWtMNKZ0avwGhX-37UELR9Cq9b4C0g8erBkXw,8688
921
+ official/recommendation/uplift/metrics/sliced_metric_test.py,sha256=bhVGyI1tOkFkVOtruJo3p6XopDFyG1JW5qdZm9-RqeU,12248
920
922
  official/recommendation/uplift/metrics/treatment_fraction.py,sha256=WHrKfsN42xU7S-pK99xEVpVtd3zLD7UidLT1K8vgIn4,2757
921
923
  official/recommendation/uplift/metrics/treatment_fraction_test.py,sha256=LtFljDdz9yfH1GNDMo8OcdS4yhsez5WyHsthH3qJf3s,5430
922
924
  official/recommendation/uplift/metrics/treatment_sliced_metric.py,sha256=S0ZSoOHcjeWDWiEZlRnFHtRkOzizvrfmsFwbYP0Z0rY,3804
@@ -927,7 +929,7 @@ official/recommendation/uplift/metrics/variance.py,sha256=rhwZzUX-cRbwr-7vhC0I0b
927
929
  official/recommendation/uplift/metrics/variance_test.py,sha256=EPISeHOFIh6WfODuC0SXbnmMugh90acMmm4BJkEZXlo,7757
928
930
  official/recommendation/uplift/models/__init__.py,sha256=kWy2K5LGXHVyyrTjJvbVFcBjj1bjPRI2dpIq-sfdhvo,716
929
931
  official/recommendation/uplift/models/two_tower_uplift_model.py,sha256=Fb6nLFAOqch81ravK57K9kggAeqvtJcBtKGZwCex0ts,5028
930
- official/recommendation/uplift/models/two_tower_uplift_model_test.py,sha256=yvg-FMq66tqD9IYC0lQWZcKvs_bqmiKc5s8p2K2FFrw,8361
932
+ official/recommendation/uplift/models/two_tower_uplift_model_test.py,sha256=J7qC9f0fDG1aIrLz85K1qUzTFyAIH0v8eA1yfPJb9YY,10061
931
933
  official/utils/__init__.py,sha256=7oiypy0N82PDw9aSdcJBLVoGTd_oRSUOdvuJhMv4leQ,609
932
934
  official/utils/hyperparams_flags.py,sha256=2FCAxfblio6ay36Yf4o7Nx188wRzFM1mbKOtVXiZCzo,4607
933
935
  official/utils/docs/__init__.py,sha256=7oiypy0N82PDw9aSdcJBLVoGTd_oRSUOdvuJhMv4leQ,609
@@ -1204,9 +1206,9 @@ tensorflow_models/tensorflow_models_test.py,sha256=nc6A9K53OGqF25xN5St8EiWvdVbda
1204
1206
  tensorflow_models/nlp/__init__.py,sha256=4tA5Pf4qaFwT-fIFOpX7x7FHJpnyJT-5UgOeFYTyMlc,807
1205
1207
  tensorflow_models/uplift/__init__.py,sha256=mqfa55gweOdpKoaQyid4A_4u7xw__FcQeSIF0k_pYmI,999
1206
1208
  tensorflow_models/vision/__init__.py,sha256=zBorY_v5xva1uI-qxhZO3Qh-Dii-Suq6wEYh6hKHDfc,833
1207
- tf_models_nightly-2.17.0.dev20240412.dist-info/AUTHORS,sha256=1dG3fXVu9jlo7bul8xuix5F5vOnczMk7_yWn4y70uw0,337
1208
- tf_models_nightly-2.17.0.dev20240412.dist-info/LICENSE,sha256=WxeBS_DejPZQabxtfMOM_xn8qoZNJDQjrT7z2wG1I4U,11512
1209
- tf_models_nightly-2.17.0.dev20240412.dist-info/METADATA,sha256=y_U6M920Hgob94pOpRJWfqistgFzPqBH0Ds0HOZOpoo,1432
1210
- tf_models_nightly-2.17.0.dev20240412.dist-info/WHEEL,sha256=kGT74LWyRUZrL4VgLh6_g12IeVl_9u9ZVhadrgXZUEY,110
1211
- tf_models_nightly-2.17.0.dev20240412.dist-info/top_level.txt,sha256=gum2FfO5R4cvjl2-QtP-S1aNmsvIZaFFT6VFzU0f4-g,33
1212
- tf_models_nightly-2.17.0.dev20240412.dist-info/RECORD,,
1209
+ tf_models_nightly-2.17.0.dev20240414.dist-info/AUTHORS,sha256=1dG3fXVu9jlo7bul8xuix5F5vOnczMk7_yWn4y70uw0,337
1210
+ tf_models_nightly-2.17.0.dev20240414.dist-info/LICENSE,sha256=WxeBS_DejPZQabxtfMOM_xn8qoZNJDQjrT7z2wG1I4U,11512
1211
+ tf_models_nightly-2.17.0.dev20240414.dist-info/METADATA,sha256=SMm31t0MLz8wyx_vZ3yIklTbV1qbniqgblIk9XWmtEY,1432
1212
+ tf_models_nightly-2.17.0.dev20240414.dist-info/WHEEL,sha256=kGT74LWyRUZrL4VgLh6_g12IeVl_9u9ZVhadrgXZUEY,110
1213
+ tf_models_nightly-2.17.0.dev20240414.dist-info/top_level.txt,sha256=gum2FfO5R4cvjl2-QtP-S1aNmsvIZaFFT6VFzU0f4-g,33
1214
+ tf_models_nightly-2.17.0.dev20240414.dist-info/RECORD,,