tf-models-nightly 2.17.0.dev20240412__py2.py3-none-any.whl → 2.17.0.dev20240413__py2.py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -183,6 +183,9 @@ class LossMetric(tf_keras.metrics.Metric):
183
183
  def result(self) -> tf.Tensor | dict[str, tf.Tensor]:
184
184
  return self._loss.result()
185
185
 
186
+ def reset_state(self):
187
+ self._loss.reset_state()
188
+
186
189
  def get_config(self) -> dict[str, Any]:
187
190
  config = super().get_config()
188
191
  config["loss_fn"] = tf_keras.utils.serialize_keras_object(self._loss_fn)
@@ -193,6 +193,11 @@ class SlicedMetric(tf_keras.metrics.Metric):
193
193
  f"{metric_result}."
194
194
  )
195
195
 
196
+ def reset_state(self):
197
+ self._metric.reset_state()
198
+ for metric in self._sliced_metrics:
199
+ metric.reset_state()
200
+
196
201
  def get_config(self):
197
202
  return {
198
203
  "name": self.name,
@@ -315,6 +315,33 @@ class SlicedMetricTest(keras_test_case.KerasTestCase, parameterized.TestCase):
315
315
  }
316
316
  self.assertDictEqual(expected_result, metric.result())
317
317
 
318
+ def test_reset_state(self):
319
+ metric = sliced_metric.SlicedMetric(
320
+ metric=tf_keras.metrics.AUC(curve="PR", from_logits=False, name="auc"),
321
+ slicing_spec={"control": False, "treatment": True},
322
+ )
323
+
324
+ expected_initial_result = {
325
+ "auc": 0.0,
326
+ "auc/control": 0.0,
327
+ "auc/treatment": 0.0,
328
+ }
329
+ self.assertAllClose(expected_initial_result, metric.result())
330
+
331
+ metric.update_state(
332
+ tf.constant([[0], [0], [1], [1]]), # y_true
333
+ tf.constant([[0.2], [0.6], [0.3], [0.7]]), # y_pred
334
+ slicing_feature=tf.constant([[True], [False], [True], [False]]),
335
+ )
336
+
337
+ result = metric.result()
338
+ self.assertGreater(result["auc"], 0.0)
339
+ self.assertGreater(result["auc/control"], 0.0)
340
+ self.assertGreater(result["auc/treatment"], 0.0)
341
+
342
+ metric.reset_state()
343
+ self.assertAllClose(expected_initial_result, metric.result())
344
+
318
345
  def test_metric_config(self):
319
346
  metric = sliced_metric.SlicedMetric(
320
347
  tf_keras.metrics.SparseTopKCategoricalAccuracy(k=2, name="accuracy@2"),
@@ -21,6 +21,7 @@ from official.recommendation.uplift import keras_test_case
21
21
  from official.recommendation.uplift import keys
22
22
  from official.recommendation.uplift.layers.uplift_networks import two_tower_uplift_network
23
23
  from official.recommendation.uplift.losses import true_logits_loss
24
+ from official.recommendation.uplift.metrics import loss_metric
24
25
  from official.recommendation.uplift.models import two_tower_uplift_model
25
26
 
26
27
 
@@ -127,6 +128,53 @@ class TwoTowerUpliftModelTest(
127
128
  }
128
129
  self.assertAllClose(expected_predictions, model.predict(dataset))
129
130
 
131
+ def test_classification_model_trains(self):
132
+ tf_keras.utils.set_random_seed(1)
133
+
134
+ # Create binary classifier uplift model.
135
+ uplift_network = self._get_uplift_network(
136
+ control_feature_encoder=None, control_input_combiner=None
137
+ )
138
+ model = two_tower_uplift_model.TwoTowerUpliftModel(
139
+ treatment_indicator_feature_name="is_treatment",
140
+ uplift_network=uplift_network,
141
+ inverse_link_fn=tf.math.sigmoid,
142
+ )
143
+ model.compile(
144
+ optimizer=tf_keras.optimizers.SGD(0.1),
145
+ loss=true_logits_loss.TrueLogitsLoss(
146
+ loss_fn=tf_keras.losses.binary_crossentropy, from_logits=True
147
+ ),
148
+ metrics=[
149
+ loss_metric.LossMetric(
150
+ tf_keras.metrics.AUC(curve="PR", from_logits=True, name="aucpr")
151
+ ),
152
+ ],
153
+ )
154
+
155
+ # Create toy classification dataset.
156
+ treatment = tf.constant([[1], [1], [0], [1], [1], [1], [0], [1], [0], [1]])
157
+ y = treatment
158
+ dataset = tf.data.Dataset.from_tensor_slices((
159
+ {
160
+ "shared_feature": np.random.normal(size=(10, 1)),
161
+ "treatment_feature": np.random.normal(size=(10, 1)),
162
+ "is_treatment": treatment,
163
+ },
164
+ y,
165
+ )).batch(5)
166
+
167
+ # Test model training.
168
+ history = model.fit(dataset, epochs=100)
169
+ self.assertIn("loss", history.history)
170
+ self.assertLen(history.history["loss"], 100)
171
+ self.assertBetween(
172
+ history.history["loss"][-1], 0.0, history.history["loss"][0]
173
+ )
174
+ self.assertIn("aucpr", history.history)
175
+ self.assertLess(history.history["aucpr"][0], 1.0)
176
+ self.assertEqual(history.history["aucpr"][-1], 1.0)
177
+
130
178
  @parameterized.named_parameters(
131
179
  {
132
180
  "testcase_name": "identity",
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: tf-models-nightly
3
- Version: 2.17.0.dev20240412
3
+ Version: 2.17.0.dev20240413
4
4
  Summary: TensorFlow Official Models
5
5
  Home-page: https://github.com/tensorflow/models
6
6
  Author: Google Inc.
@@ -912,11 +912,11 @@ official/recommendation/uplift/metrics/label_mean.py,sha256=ECaes7FZmsksnwySn7jf
912
912
  official/recommendation/uplift/metrics/label_mean_test.py,sha256=b_d3lNlpkDm2xKLUkxfiXeQg7pjL8HNx7y9NaYarpV0,7083
913
913
  official/recommendation/uplift/metrics/label_variance.py,sha256=9DCl42BJkehxfWD3pSbZnRNvwfhVM6VyHwivGdaU72s,3610
914
914
  official/recommendation/uplift/metrics/label_variance_test.py,sha256=k0mdEU1WU53-HIEO5HGtfp1MleifD-h4bZNKtTvM3Ws,7681
915
- official/recommendation/uplift/metrics/loss_metric.py,sha256=owN7A98TCc_UhOURvGfccaoVGOthdHdx1_fawEUGnmw,7289
915
+ official/recommendation/uplift/metrics/loss_metric.py,sha256=gYZdnTsuL_2q1FZuPip-DaWxt_Q-02YYaePyMBVNx7w,7344
916
916
  official/recommendation/uplift/metrics/loss_metric_test.py,sha256=48rQG8bKFdy0xBFjoOLXKRUlYpCEyAzSmPOFoF7FX94,16021
917
917
  official/recommendation/uplift/metrics/metric_configs.py,sha256=Z-r79orE4EycQ5TJ7xdI5LhjOHT3wzChYyDxcxGqLXk,1670
918
- official/recommendation/uplift/metrics/sliced_metric.py,sha256=O2I2apZK6IfOQK9Q_mgSiTUCnGokczp4e14zrrYNeRU,8564
919
- official/recommendation/uplift/metrics/sliced_metric_test.py,sha256=dhY41X8lqT_WW04XLjyjDerZwujEBGeTXtxf4NkYThw,11359
918
+ official/recommendation/uplift/metrics/sliced_metric.py,sha256=uhvzudOWtMNKZ0avwGhX-37UELR9Cq9b4C0g8erBkXw,8688
919
+ official/recommendation/uplift/metrics/sliced_metric_test.py,sha256=bhVGyI1tOkFkVOtruJo3p6XopDFyG1JW5qdZm9-RqeU,12248
920
920
  official/recommendation/uplift/metrics/treatment_fraction.py,sha256=WHrKfsN42xU7S-pK99xEVpVtd3zLD7UidLT1K8vgIn4,2757
921
921
  official/recommendation/uplift/metrics/treatment_fraction_test.py,sha256=LtFljDdz9yfH1GNDMo8OcdS4yhsez5WyHsthH3qJf3s,5430
922
922
  official/recommendation/uplift/metrics/treatment_sliced_metric.py,sha256=S0ZSoOHcjeWDWiEZlRnFHtRkOzizvrfmsFwbYP0Z0rY,3804
@@ -927,7 +927,7 @@ official/recommendation/uplift/metrics/variance.py,sha256=rhwZzUX-cRbwr-7vhC0I0b
927
927
  official/recommendation/uplift/metrics/variance_test.py,sha256=EPISeHOFIh6WfODuC0SXbnmMugh90acMmm4BJkEZXlo,7757
928
928
  official/recommendation/uplift/models/__init__.py,sha256=kWy2K5LGXHVyyrTjJvbVFcBjj1bjPRI2dpIq-sfdhvo,716
929
929
  official/recommendation/uplift/models/two_tower_uplift_model.py,sha256=Fb6nLFAOqch81ravK57K9kggAeqvtJcBtKGZwCex0ts,5028
930
- official/recommendation/uplift/models/two_tower_uplift_model_test.py,sha256=yvg-FMq66tqD9IYC0lQWZcKvs_bqmiKc5s8p2K2FFrw,8361
930
+ official/recommendation/uplift/models/two_tower_uplift_model_test.py,sha256=J7qC9f0fDG1aIrLz85K1qUzTFyAIH0v8eA1yfPJb9YY,10061
931
931
  official/utils/__init__.py,sha256=7oiypy0N82PDw9aSdcJBLVoGTd_oRSUOdvuJhMv4leQ,609
932
932
  official/utils/hyperparams_flags.py,sha256=2FCAxfblio6ay36Yf4o7Nx188wRzFM1mbKOtVXiZCzo,4607
933
933
  official/utils/docs/__init__.py,sha256=7oiypy0N82PDw9aSdcJBLVoGTd_oRSUOdvuJhMv4leQ,609
@@ -1204,9 +1204,9 @@ tensorflow_models/tensorflow_models_test.py,sha256=nc6A9K53OGqF25xN5St8EiWvdVbda
1204
1204
  tensorflow_models/nlp/__init__.py,sha256=4tA5Pf4qaFwT-fIFOpX7x7FHJpnyJT-5UgOeFYTyMlc,807
1205
1205
  tensorflow_models/uplift/__init__.py,sha256=mqfa55gweOdpKoaQyid4A_4u7xw__FcQeSIF0k_pYmI,999
1206
1206
  tensorflow_models/vision/__init__.py,sha256=zBorY_v5xva1uI-qxhZO3Qh-Dii-Suq6wEYh6hKHDfc,833
1207
- tf_models_nightly-2.17.0.dev20240412.dist-info/AUTHORS,sha256=1dG3fXVu9jlo7bul8xuix5F5vOnczMk7_yWn4y70uw0,337
1208
- tf_models_nightly-2.17.0.dev20240412.dist-info/LICENSE,sha256=WxeBS_DejPZQabxtfMOM_xn8qoZNJDQjrT7z2wG1I4U,11512
1209
- tf_models_nightly-2.17.0.dev20240412.dist-info/METADATA,sha256=y_U6M920Hgob94pOpRJWfqistgFzPqBH0Ds0HOZOpoo,1432
1210
- tf_models_nightly-2.17.0.dev20240412.dist-info/WHEEL,sha256=kGT74LWyRUZrL4VgLh6_g12IeVl_9u9ZVhadrgXZUEY,110
1211
- tf_models_nightly-2.17.0.dev20240412.dist-info/top_level.txt,sha256=gum2FfO5R4cvjl2-QtP-S1aNmsvIZaFFT6VFzU0f4-g,33
1212
- tf_models_nightly-2.17.0.dev20240412.dist-info/RECORD,,
1207
+ tf_models_nightly-2.17.0.dev20240413.dist-info/AUTHORS,sha256=1dG3fXVu9jlo7bul8xuix5F5vOnczMk7_yWn4y70uw0,337
1208
+ tf_models_nightly-2.17.0.dev20240413.dist-info/LICENSE,sha256=WxeBS_DejPZQabxtfMOM_xn8qoZNJDQjrT7z2wG1I4U,11512
1209
+ tf_models_nightly-2.17.0.dev20240413.dist-info/METADATA,sha256=DqjFt5jNaqGygdbDJo34myYN5F7c6EboWUtItI2AQVQ,1432
1210
+ tf_models_nightly-2.17.0.dev20240413.dist-info/WHEEL,sha256=kGT74LWyRUZrL4VgLh6_g12IeVl_9u9ZVhadrgXZUEY,110
1211
+ tf_models_nightly-2.17.0.dev20240413.dist-info/top_level.txt,sha256=gum2FfO5R4cvjl2-QtP-S1aNmsvIZaFFT6VFzU0f4-g,33
1212
+ tf_models_nightly-2.17.0.dev20240413.dist-info/RECORD,,