tf-keras-nightly 2.19.0.dev2025010810__py3-none-any.whl → 2.19.0.dev2025011010__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- tf_keras/__init__.py +1 -1
- tf_keras/src/datasets/boston_housing.py +14 -5
- tf_keras/src/datasets/cifar10.py +9 -1
- tf_keras/src/datasets/cifar100.py +7 -1
- tf_keras/src/datasets/fashion_mnist.py +16 -4
- tf_keras/src/datasets/imdb.py +8 -0
- tf_keras/src/datasets/mnist.py +9 -3
- tf_keras/src/datasets/reuters.py +8 -0
- {tf_keras_nightly-2.19.0.dev2025010810.dist-info → tf_keras_nightly-2.19.0.dev2025011010.dist-info}/METADATA +13 -2
- {tf_keras_nightly-2.19.0.dev2025010810.dist-info → tf_keras_nightly-2.19.0.dev2025011010.dist-info}/RECORD +12 -12
- {tf_keras_nightly-2.19.0.dev2025010810.dist-info → tf_keras_nightly-2.19.0.dev2025011010.dist-info}/WHEEL +1 -1
- {tf_keras_nightly-2.19.0.dev2025010810.dist-info → tf_keras_nightly-2.19.0.dev2025011010.dist-info}/top_level.txt +0 -0
tf_keras/__init__.py
CHANGED
@@ -14,6 +14,8 @@
|
|
14
14
|
# ==============================================================================
|
15
15
|
"""Boston housing price regression dataset."""
|
16
16
|
|
17
|
+
import os
|
18
|
+
|
17
19
|
import numpy as np
|
18
20
|
|
19
21
|
from tf_keras.src.utils.data_utils import get_file
|
@@ -23,7 +25,9 @@ from tensorflow.python.util.tf_export import keras_export
|
|
23
25
|
|
24
26
|
|
25
27
|
@keras_export("keras.datasets.boston_housing.load_data")
|
26
|
-
def load_data(
|
28
|
+
def load_data(
|
29
|
+
path="boston_housing.npz", test_split=0.2, seed=113, cache_dir=None
|
30
|
+
):
|
27
31
|
"""Loads the Boston Housing dataset.
|
28
32
|
|
29
33
|
This is a dataset taken from the StatLib library which is maintained at
|
@@ -43,11 +47,12 @@ def load_data(path="boston_housing.npz", test_split=0.2, seed=113):
|
|
43
47
|
[StatLib website](http://lib.stat.cmu.edu/datasets/boston).
|
44
48
|
|
45
49
|
Args:
|
46
|
-
path: path where to cache the dataset locally
|
47
|
-
|
50
|
+
path: path where to cache the dataset locally (relative to
|
51
|
+
`~/.keras/datasets`).
|
48
52
|
test_split: fraction of the data to reserve as test set.
|
49
|
-
seed: Random seed for shuffling the data
|
50
|
-
|
53
|
+
seed: Random seed for shuffling the data before computing the test split.
|
54
|
+
cache_dir: directory where to cache the dataset locally. When None,
|
55
|
+
defaults to `~/.keras/datasets`.
|
51
56
|
|
52
57
|
Returns:
|
53
58
|
Tuple of Numpy arrays: `(x_train, y_train), (x_test, y_test)`.
|
@@ -64,12 +69,16 @@ def load_data(path="boston_housing.npz", test_split=0.2, seed=113):
|
|
64
69
|
origin_folder = (
|
65
70
|
"https://storage.googleapis.com/tensorflow/tf-keras-datasets/"
|
66
71
|
)
|
72
|
+
if cache_dir:
|
73
|
+
cache_dir = os.path.expanduser(cache_dir)
|
74
|
+
os.makedirs(cache_dir, exist_ok=True)
|
67
75
|
path = get_file(
|
68
76
|
path,
|
69
77
|
origin=origin_folder + "boston_housing.npz",
|
70
78
|
file_hash=( # noqa: E501
|
71
79
|
"f553886a1f8d56431e820c5b82552d9d95cfcb96d1e678153f8839538947dff5"
|
72
80
|
),
|
81
|
+
cache_dir=cache_dir,
|
73
82
|
)
|
74
83
|
with np.load(path, allow_pickle=True) as f:
|
75
84
|
x = f["x"]
|
tf_keras/src/datasets/cifar10.py
CHANGED
@@ -27,7 +27,7 @@ from tensorflow.python.util.tf_export import keras_export
|
|
27
27
|
|
28
28
|
|
29
29
|
@keras_export("keras.datasets.cifar10.load_data")
|
30
|
-
def load_data():
|
30
|
+
def load_data(cache_dir=None):
|
31
31
|
"""Loads the CIFAR10 dataset.
|
32
32
|
|
33
33
|
This is a dataset of 50,000 32x32 color training images and 10,000 test
|
@@ -49,6 +49,10 @@ def load_data():
|
|
49
49
|
| 8 | ship |
|
50
50
|
| 9 | truck |
|
51
51
|
|
52
|
+
Args:
|
53
|
+
cache_dir: directory where to cache the dataset locally. When None,
|
54
|
+
defaults to `~/.keras/datasets`.
|
55
|
+
|
52
56
|
Returns:
|
53
57
|
Tuple of NumPy arrays: `(x_train, y_train), (x_test, y_test)`.
|
54
58
|
|
@@ -78,6 +82,9 @@ def load_data():
|
|
78
82
|
"""
|
79
83
|
dirname = "cifar-10-batches-py"
|
80
84
|
origin = "https://www.cs.toronto.edu/~kriz/cifar-10-python.tar.gz"
|
85
|
+
if cache_dir:
|
86
|
+
cache_dir = os.path.expanduser(cache_dir)
|
87
|
+
os.makedirs(cache_dir, exist_ok=True)
|
81
88
|
path = get_file(
|
82
89
|
dirname,
|
83
90
|
origin=origin,
|
@@ -85,6 +92,7 @@ def load_data():
|
|
85
92
|
file_hash=( # noqa: E501
|
86
93
|
"6d958be074577803d12ecdefd02955f39262c83c16fe9348329d7fe0b5c001ce"
|
87
94
|
),
|
95
|
+
cache_dir=cache_dir,
|
88
96
|
)
|
89
97
|
|
90
98
|
num_train_samples = 50000
|
@@ -27,7 +27,7 @@ from tensorflow.python.util.tf_export import keras_export
|
|
27
27
|
|
28
28
|
|
29
29
|
@keras_export("keras.datasets.cifar100.load_data")
|
30
|
-
def load_data(label_mode="fine"):
|
30
|
+
def load_data(label_mode="fine", cache_dir=None):
|
31
31
|
"""Loads the CIFAR100 dataset.
|
32
32
|
|
33
33
|
This is a dataset of 50,000 32x32 color training images and
|
@@ -39,6 +39,8 @@ def load_data(label_mode="fine"):
|
|
39
39
|
label_mode: one of "fine", "coarse". If it is "fine" the category labels
|
40
40
|
are the fine-grained labels, if it is "coarse" the output labels are the
|
41
41
|
coarse-grained superclasses.
|
42
|
+
cache_dir: directory where to cache the dataset locally. When None,
|
43
|
+
defaults to `~/.keras/datasets`.
|
42
44
|
|
43
45
|
Returns:
|
44
46
|
Tuple of NumPy arrays: `(x_train, y_train), (x_test, y_test)`.
|
@@ -75,6 +77,9 @@ def load_data(label_mode="fine"):
|
|
75
77
|
|
76
78
|
dirname = "cifar-100-python"
|
77
79
|
origin = "https://www.cs.toronto.edu/~kriz/cifar-100-python.tar.gz"
|
80
|
+
if cache_dir:
|
81
|
+
cache_dir = os.path.expanduser(cache_dir)
|
82
|
+
os.makedirs(cache_dir, exist_ok=True)
|
78
83
|
path = get_file(
|
79
84
|
dirname,
|
80
85
|
origin=origin,
|
@@ -82,6 +87,7 @@ def load_data(label_mode="fine"):
|
|
82
87
|
file_hash=( # noqa: E501
|
83
88
|
"85cd44d02ba6437773c5bbd22e183051d648de2e7d6b014e1ef29b855ba677a7"
|
84
89
|
),
|
90
|
+
cache_dir=cache_dir,
|
85
91
|
)
|
86
92
|
|
87
93
|
fpath = os.path.join(path, "train")
|
@@ -26,7 +26,7 @@ from tensorflow.python.util.tf_export import keras_export
|
|
26
26
|
|
27
27
|
|
28
28
|
@keras_export("keras.datasets.fashion_mnist.load_data")
|
29
|
-
def load_data():
|
29
|
+
def load_data(cache_dir=None):
|
30
30
|
"""Loads the Fashion-MNIST dataset.
|
31
31
|
|
32
32
|
This is a dataset of 60,000 28x28 grayscale images of 10 fashion categories,
|
@@ -48,6 +48,10 @@ def load_data():
|
|
48
48
|
| 8 | Bag |
|
49
49
|
| 9 | Ankle boot |
|
50
50
|
|
51
|
+
Args:
|
52
|
+
cache_dir: directory where to cache the dataset locally. When None,
|
53
|
+
defaults to `~/.keras/datasets`.
|
54
|
+
|
51
55
|
Returns:
|
52
56
|
Tuple of NumPy arrays: `(x_train, y_train), (x_test, y_test)`.
|
53
57
|
|
@@ -77,7 +81,6 @@ def load_data():
|
|
77
81
|
The copyright for Fashion-MNIST is held by Zalando SE.
|
78
82
|
Fashion-MNIST is licensed under the [MIT license](
|
79
83
|
https://github.com/zalandoresearch/fashion-mnist/blob/master/LICENSE).
|
80
|
-
|
81
84
|
"""
|
82
85
|
dirname = os.path.join("datasets", "fashion-mnist")
|
83
86
|
base = "https://storage.googleapis.com/tensorflow/tf-keras-datasets/"
|
@@ -87,10 +90,19 @@ def load_data():
|
|
87
90
|
"t10k-labels-idx1-ubyte.gz",
|
88
91
|
"t10k-images-idx3-ubyte.gz",
|
89
92
|
]
|
90
|
-
|
93
|
+
if cache_dir:
|
94
|
+
cache_dir = os.path.expanduser(cache_dir)
|
95
|
+
os.makedirs(cache_dir, exist_ok=True)
|
91
96
|
paths = []
|
92
97
|
for fname in files:
|
93
|
-
paths.append(
|
98
|
+
paths.append(
|
99
|
+
get_file(
|
100
|
+
fname,
|
101
|
+
origin=base + fname,
|
102
|
+
cache_dir=cache_dir,
|
103
|
+
cache_subdir=dirname,
|
104
|
+
)
|
105
|
+
)
|
94
106
|
|
95
107
|
with gzip.open(paths[0], "rb") as lbpath:
|
96
108
|
y_train = np.frombuffer(lbpath.read(), np.uint8, offset=8)
|
tf_keras/src/datasets/imdb.py
CHANGED
@@ -15,6 +15,7 @@
|
|
15
15
|
"""IMDB sentiment classification dataset."""
|
16
16
|
|
17
17
|
import json
|
18
|
+
import os
|
18
19
|
|
19
20
|
import numpy as np
|
20
21
|
|
@@ -36,6 +37,7 @@ def load_data(
|
|
36
37
|
start_char=1,
|
37
38
|
oov_char=2,
|
38
39
|
index_from=3,
|
40
|
+
cache_dir=None,
|
39
41
|
**kwargs,
|
40
42
|
):
|
41
43
|
"""Loads the [IMDB dataset](https://ai.stanford.edu/~amaas/data/sentiment/).
|
@@ -73,6 +75,8 @@ def load_data(
|
|
73
75
|
Words that were cut out because of the `num_words` or
|
74
76
|
`skip_top` limits will be replaced with this character.
|
75
77
|
index_from: int. Index actual words with this index and higher.
|
78
|
+
cache_dir: directory where to cache the dataset locally. When None,
|
79
|
+
defaults to `~/.keras/datasets`.
|
76
80
|
**kwargs: Used for backwards compatibility.
|
77
81
|
|
78
82
|
Returns:
|
@@ -108,12 +112,16 @@ def load_data(
|
|
108
112
|
origin_folder = (
|
109
113
|
"https://storage.googleapis.com/tensorflow/tf-keras-datasets/"
|
110
114
|
)
|
115
|
+
if cache_dir:
|
116
|
+
cache_dir = os.path.expanduser(cache_dir)
|
117
|
+
os.makedirs(cache_dir, exist_ok=True)
|
111
118
|
path = get_file(
|
112
119
|
path,
|
113
120
|
origin=origin_folder + "imdb.npz",
|
114
121
|
file_hash=( # noqa: E501
|
115
122
|
"69664113be75683a8fe16e3ed0ab59fda8886cb3cd7ada244f7d9544e4676b9f"
|
116
123
|
),
|
124
|
+
cache_dir=cache_dir,
|
117
125
|
)
|
118
126
|
with np.load(path, allow_pickle=True) as f:
|
119
127
|
x_train, labels_train = f["x_train"], f["y_train"]
|
tf_keras/src/datasets/mnist.py
CHANGED
@@ -13,6 +13,7 @@
|
|
13
13
|
# limitations under the License.
|
14
14
|
# ==============================================================================
|
15
15
|
"""MNIST handwritten digits dataset."""
|
16
|
+
import os
|
16
17
|
|
17
18
|
import numpy as np
|
18
19
|
|
@@ -23,7 +24,7 @@ from tensorflow.python.util.tf_export import keras_export
|
|
23
24
|
|
24
25
|
|
25
26
|
@keras_export("keras.datasets.mnist.load_data")
|
26
|
-
def load_data(path="mnist.npz"):
|
27
|
+
def load_data(path="mnist.npz", cache_dir=None):
|
27
28
|
"""Loads the MNIST dataset.
|
28
29
|
|
29
30
|
This is a dataset of 60,000 28x28 grayscale images of the 10 digits,
|
@@ -32,8 +33,9 @@ def load_data(path="mnist.npz"):
|
|
32
33
|
[MNIST homepage](http://yann.lecun.com/exdb/mnist/).
|
33
34
|
|
34
35
|
Args:
|
35
|
-
path: path where to cache the dataset locally
|
36
|
-
|
36
|
+
path: path where to cache the dataset locally relative to cache_dir.
|
37
|
+
cache_dir: dir location where to cache the dataset locally. When None,
|
38
|
+
defaults to `~/.keras/datasets`.
|
37
39
|
|
38
40
|
Returns:
|
39
41
|
Tuple of NumPy arrays: `(x_train, y_train), (x_test, y_test)`.
|
@@ -72,12 +74,16 @@ def load_data(path="mnist.npz"):
|
|
72
74
|
origin_folder = (
|
73
75
|
"https://storage.googleapis.com/tensorflow/tf-keras-datasets/"
|
74
76
|
)
|
77
|
+
if cache_dir:
|
78
|
+
cache_dir = os.path.expanduser(cache_dir)
|
79
|
+
os.makedirs(cache_dir, exist_ok=True)
|
75
80
|
path = get_file(
|
76
81
|
path,
|
77
82
|
origin=origin_folder + "mnist.npz",
|
78
83
|
file_hash=( # noqa: E501
|
79
84
|
"731c5ac602752760c8e48fbffcf8c3b850d9dc2a2aedcf2cc48468fc17b673d1"
|
80
85
|
),
|
86
|
+
cache_dir=cache_dir,
|
81
87
|
)
|
82
88
|
with np.load(path, allow_pickle=True) as f:
|
83
89
|
x_train, y_train = f["x_train"], f["y_train"]
|
tf_keras/src/datasets/reuters.py
CHANGED
@@ -15,6 +15,7 @@
|
|
15
15
|
"""Reuters topic classification dataset."""
|
16
16
|
|
17
17
|
import json
|
18
|
+
import os
|
18
19
|
|
19
20
|
import numpy as np
|
20
21
|
|
@@ -37,6 +38,7 @@ def load_data(
|
|
37
38
|
start_char=1,
|
38
39
|
oov_char=2,
|
39
40
|
index_from=3,
|
41
|
+
cache_dir=None,
|
40
42
|
**kwargs,
|
41
43
|
):
|
42
44
|
"""Loads the Reuters newswire classification dataset.
|
@@ -83,6 +85,8 @@ def load_data(
|
|
83
85
|
Words that were cut out because of the `num_words` or
|
84
86
|
`skip_top` limits will be replaced with this character.
|
85
87
|
index_from: int. Index actual words with this index and higher.
|
88
|
+
cache_dir: directory where to cache the dataset locally. When None,
|
89
|
+
defaults to `~/.keras/datasets`.
|
86
90
|
**kwargs: Used for backwards compatibility.
|
87
91
|
|
88
92
|
Returns:
|
@@ -114,12 +118,16 @@ def load_data(
|
|
114
118
|
origin_folder = (
|
115
119
|
"https://storage.googleapis.com/tensorflow/tf-keras-datasets/"
|
116
120
|
)
|
121
|
+
if cache_dir:
|
122
|
+
cache_dir = os.path.expanduser(cache_dir)
|
123
|
+
os.makedirs(cache_dir, exist_ok=True)
|
117
124
|
path = get_file(
|
118
125
|
path,
|
119
126
|
origin=origin_folder + "reuters.npz",
|
120
127
|
file_hash=( # noqa: E501
|
121
128
|
"d6586e694ee56d7a4e65172e12b3e987c03096cb01eab99753921ef915959916"
|
122
129
|
),
|
130
|
+
cache_dir=cache_dir,
|
123
131
|
)
|
124
132
|
with np.load(path, allow_pickle=True) as f:
|
125
133
|
xs, labels = f["x"], f["y"]
|
@@ -1,6 +1,6 @@
|
|
1
|
-
Metadata-Version: 2.
|
1
|
+
Metadata-Version: 2.2
|
2
2
|
Name: tf_keras-nightly
|
3
|
-
Version: 2.19.0.
|
3
|
+
Version: 2.19.0.dev2025011010
|
4
4
|
Summary: Deep learning for humans.
|
5
5
|
Home-page: https://keras.io/
|
6
6
|
Download-URL: https://github.com/keras-team/tf-keras/tags
|
@@ -27,6 +27,17 @@ Classifier: Topic :: Software Development :: Libraries
|
|
27
27
|
Classifier: Topic :: Software Development :: Libraries :: Python Modules
|
28
28
|
Requires-Python: >=3.9
|
29
29
|
Requires-Dist: tf-nightly~=2.19.0.dev
|
30
|
+
Dynamic: author
|
31
|
+
Dynamic: author-email
|
32
|
+
Dynamic: classifier
|
33
|
+
Dynamic: description
|
34
|
+
Dynamic: download-url
|
35
|
+
Dynamic: home-page
|
36
|
+
Dynamic: keywords
|
37
|
+
Dynamic: license
|
38
|
+
Dynamic: requires-dist
|
39
|
+
Dynamic: requires-python
|
40
|
+
Dynamic: summary
|
30
41
|
|
31
42
|
TF-Keras is a deep learning API written in Python,
|
32
43
|
running on top of the machine learning platform TensorFlow.
|
@@ -1,4 +1,4 @@
|
|
1
|
-
tf_keras/__init__.py,sha256=
|
1
|
+
tf_keras/__init__.py,sha256=U72ujZ_e9m_CHu00HtrjM3E2ohC71ZE57uG61bvZtuc,911
|
2
2
|
tf_keras/__internal__/__init__.py,sha256=OHQbeIC0QtRBI7dgXaJaVbH8F00x8dCI-DvEcIfyMsE,671
|
3
3
|
tf_keras/__internal__/backend/__init__.py,sha256=LnMs2A6685gDG79fxqmdulIYlVE_3WmXlBTBo9ZWYcw,162
|
4
4
|
tf_keras/__internal__/layers/__init__.py,sha256=F5SGMhOTPzm-PR44VrfinURHcVeQPIEdwnZlAkSTB3A,176
|
@@ -239,14 +239,14 @@ tf_keras/src/benchmarks/benchmark_util.py,sha256=Hxepqy7JPolebZo5xxWE4UXZ7WmyAYg
|
|
239
239
|
tf_keras/src/benchmarks/distribution_util.py,sha256=mbnbRlgDGzJTqhdQw4fRIPhT2JztDviJgXT86MfQEEc,6567
|
240
240
|
tf_keras/src/benchmarks/model_memory_profile.py,sha256=9CMMHvW02qWFPN9lFNXY3w-rQfdLT5IQeWZ34K1v6fE,2248
|
241
241
|
tf_keras/src/datasets/__init__.py,sha256=YSVzC5NDV0KgkQwLZqJgWHuVZRkXkAdEVKlRs73RFXo,51
|
242
|
-
tf_keras/src/datasets/boston_housing.py,sha256=
|
242
|
+
tf_keras/src/datasets/boston_housing.py,sha256=7mK_B-HjLdHBiQ-uGX6deQUpnYF3zPPTEBSWuxjIymc,3670
|
243
243
|
tf_keras/src/datasets/cifar.py,sha256=mMMwDOf7IYGeVlLemhiA_RSXzSF3CuwFllGpokh-pKs,1394
|
244
|
-
tf_keras/src/datasets/cifar10.py,sha256=
|
245
|
-
tf_keras/src/datasets/cifar100.py,sha256=
|
246
|
-
tf_keras/src/datasets/fashion_mnist.py,sha256=
|
247
|
-
tf_keras/src/datasets/imdb.py,sha256=
|
248
|
-
tf_keras/src/datasets/mnist.py,sha256=
|
249
|
-
tf_keras/src/datasets/reuters.py,sha256=
|
244
|
+
tf_keras/src/datasets/cifar10.py,sha256=geRUHLtpFX8anDORscmrktlmfD_WVT6hW2SDVhzgx8U,4050
|
245
|
+
tf_keras/src/datasets/cifar100.py,sha256=fa7hntiBxIny7qwhrm6pXl8dlh0SN1891s_QghAko1o,3833
|
246
|
+
tf_keras/src/datasets/fashion_mnist.py,sha256=65VWDipkXL9QQCOpjdzyrFo3TLJL62iFjpxYsuL_jmw,4009
|
247
|
+
tf_keras/src/datasets/imdb.py,sha256=sx35dNz7cBfvI8ZZetYvaE7zRg23j1gWWEFCBNzOzUA,8580
|
248
|
+
tf_keras/src/datasets/mnist.py,sha256=sJe_BNuWNFS03hH5GWOYE6M258NXpxEcjKnhufEh7R0,3352
|
249
|
+
tf_keras/src/datasets/reuters.py,sha256=_5TNTUzK3roIr1K3GLjR16QtJ4ch_FRYeEIJzM7hcB0,8599
|
250
250
|
tf_keras/src/distribute/__init__.py,sha256=DbbsbJOIWEtjQiv6Stq1KEVvnoAK-E5-Zdkd2FhBZiI,734
|
251
251
|
tf_keras/src/distribute/dataset_creator_model_fit_test_base.py,sha256=e2RnS8nnCKWZDReVKNWvxjIjVZhdPLMe0xh_ydHPqaM,8547
|
252
252
|
tf_keras/src/distribute/distribute_coordinator_utils.py,sha256=WzJM0rkbxvs-ES2DvJhhf0bKpdG4fNqJBcxU-BrY6Es,29244
|
@@ -606,7 +606,7 @@ tf_keras/src/utils/legacy/__init__.py,sha256=EfMmeHYDzwvxNaktPhQbkTdcPSIGCqMhBND
|
|
606
606
|
tf_keras/utils/__init__.py,sha256=b7_d-USe_EmLo02_P99Q1rUCzKBYayPCfiYFStP-0nw,2735
|
607
607
|
tf_keras/utils/experimental/__init__.py,sha256=DzGogE2AosjxOVILQBT8PDDcqbWTc0wWnZRobCdpcec,97
|
608
608
|
tf_keras/utils/legacy/__init__.py,sha256=7ujlDa5HeSRcth2NdqA0S1P2-VZF1kB3n68jye6Dj-8,189
|
609
|
-
tf_keras_nightly-2.19.0.
|
610
|
-
tf_keras_nightly-2.19.0.
|
611
|
-
tf_keras_nightly-2.19.0.
|
612
|
-
tf_keras_nightly-2.19.0.
|
609
|
+
tf_keras_nightly-2.19.0.dev2025011010.dist-info/METADATA,sha256=T7YzIrf0nKuYtl_SjTePRd-PWj8-dqFTTCZFxUgT9GA,1857
|
610
|
+
tf_keras_nightly-2.19.0.dev2025011010.dist-info/WHEEL,sha256=In9FTNxeP60KnTkGw7wk6mJPYd_dQSjEZmXdBdMCI-8,91
|
611
|
+
tf_keras_nightly-2.19.0.dev2025011010.dist-info/top_level.txt,sha256=LC8FK7zHDNKxB17C6lGKvrZ_fZZGJsRiBK23SfiDegY,9
|
612
|
+
tf_keras_nightly-2.19.0.dev2025011010.dist-info/RECORD,,
|
File without changes
|