tf-keras-nightly 2.19.0.dev2024121210__py3-none-any.whl → 2.21.0.dev2025123010__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (62) hide show
  1. tf_keras/__init__.py +1 -1
  2. tf_keras/protobuf/projector_config_pb2.py +23 -12
  3. tf_keras/protobuf/saved_metadata_pb2.py +21 -10
  4. tf_keras/protobuf/versions_pb2.py +19 -8
  5. tf_keras/src/__init__.py +1 -1
  6. tf_keras/src/backend.py +1 -1
  7. tf_keras/src/datasets/boston_housing.py +14 -5
  8. tf_keras/src/datasets/cifar10.py +9 -1
  9. tf_keras/src/datasets/cifar100.py +7 -1
  10. tf_keras/src/datasets/fashion_mnist.py +16 -4
  11. tf_keras/src/datasets/imdb.py +8 -0
  12. tf_keras/src/datasets/mnist.py +9 -3
  13. tf_keras/src/datasets/reuters.py +8 -0
  14. tf_keras/src/engine/base_layer.py +235 -97
  15. tf_keras/src/engine/base_layer_utils.py +17 -5
  16. tf_keras/src/engine/base_layer_v1.py +12 -3
  17. tf_keras/src/engine/data_adapter.py +35 -19
  18. tf_keras/src/engine/functional.py +36 -15
  19. tf_keras/src/engine/input_layer.py +9 -0
  20. tf_keras/src/engine/input_spec.py +11 -1
  21. tf_keras/src/engine/sequential.py +29 -12
  22. tf_keras/src/layers/activation/softmax.py +26 -11
  23. tf_keras/src/layers/attention/multi_head_attention.py +8 -1
  24. tf_keras/src/layers/core/tf_op_layer.py +4 -0
  25. tf_keras/src/layers/normalization/spectral_normalization.py +29 -22
  26. tf_keras/src/layers/rnn/cell_wrappers.py +13 -1
  27. tf_keras/src/metrics/confusion_metrics.py +51 -4
  28. tf_keras/src/models/sharpness_aware_minimization.py +17 -7
  29. tf_keras/src/preprocessing/sequence.py +2 -2
  30. tf_keras/src/saving/legacy/saved_model/save_impl.py +28 -12
  31. tf_keras/src/saving/legacy/saving_utils.py +14 -2
  32. tf_keras/src/saving/saving_api.py +18 -5
  33. tf_keras/src/saving/saving_lib.py +1 -1
  34. tf_keras/src/utils/layer_utils.py +45 -3
  35. tf_keras/src/utils/metrics_utils.py +4 -1
  36. tf_keras/src/utils/tf_utils.py +2 -2
  37. {tf_keras_nightly-2.19.0.dev2024121210.dist-info → tf_keras_nightly-2.21.0.dev2025123010.dist-info}/METADATA +14 -3
  38. {tf_keras_nightly-2.19.0.dev2024121210.dist-info → tf_keras_nightly-2.21.0.dev2025123010.dist-info}/RECORD +40 -62
  39. {tf_keras_nightly-2.19.0.dev2024121210.dist-info → tf_keras_nightly-2.21.0.dev2025123010.dist-info}/WHEEL +1 -1
  40. tf_keras/src/layers/preprocessing/benchmarks/bucketized_column_dense_benchmark.py +0 -85
  41. tf_keras/src/layers/preprocessing/benchmarks/category_encoding_benchmark.py +0 -84
  42. tf_keras/src/layers/preprocessing/benchmarks/category_hash_dense_benchmark.py +0 -89
  43. tf_keras/src/layers/preprocessing/benchmarks/category_hash_varlen_benchmark.py +0 -89
  44. tf_keras/src/layers/preprocessing/benchmarks/category_vocab_file_dense_benchmark.py +0 -110
  45. tf_keras/src/layers/preprocessing/benchmarks/category_vocab_file_varlen_benchmark.py +0 -103
  46. tf_keras/src/layers/preprocessing/benchmarks/category_vocab_list_dense_benchmark.py +0 -87
  47. tf_keras/src/layers/preprocessing/benchmarks/category_vocab_list_indicator_dense_benchmark.py +0 -96
  48. tf_keras/src/layers/preprocessing/benchmarks/category_vocab_list_indicator_varlen_benchmark.py +0 -96
  49. tf_keras/src/layers/preprocessing/benchmarks/category_vocab_list_varlen_benchmark.py +0 -87
  50. tf_keras/src/layers/preprocessing/benchmarks/discretization_adapt_benchmark.py +0 -109
  51. tf_keras/src/layers/preprocessing/benchmarks/embedding_dense_benchmark.py +0 -86
  52. tf_keras/src/layers/preprocessing/benchmarks/embedding_varlen_benchmark.py +0 -89
  53. tf_keras/src/layers/preprocessing/benchmarks/hashed_crossing_benchmark.py +0 -90
  54. tf_keras/src/layers/preprocessing/benchmarks/hashing_benchmark.py +0 -105
  55. tf_keras/src/layers/preprocessing/benchmarks/image_preproc_benchmark.py +0 -159
  56. tf_keras/src/layers/preprocessing/benchmarks/index_lookup_adapt_benchmark.py +0 -135
  57. tf_keras/src/layers/preprocessing/benchmarks/index_lookup_forward_benchmark.py +0 -144
  58. tf_keras/src/layers/preprocessing/benchmarks/normalization_adapt_benchmark.py +0 -124
  59. tf_keras/src/layers/preprocessing/benchmarks/weighted_embedding_varlen_benchmark.py +0 -99
  60. tf_keras/src/saving/legacy/saved_model/create_test_saved_model.py +0 -37
  61. tf_keras/src/tests/keras_doctest.py +0 -159
  62. {tf_keras_nightly-2.19.0.dev2024121210.dist-info → tf_keras_nightly-2.21.0.dev2025123010.dist-info}/top_level.txt +0 -0
@@ -1,4 +1,4 @@
1
- tf_keras/__init__.py,sha256=aorCxm5YAk0qgMbigY14iS15vA3WV-hqiDc7eopl-2Q,911
1
+ tf_keras/__init__.py,sha256=o1qbOe_ffzZ4LRxDpb9Ga8DP1A89Fhr9103F88EajA4,911
2
2
  tf_keras/__internal__/__init__.py,sha256=OHQbeIC0QtRBI7dgXaJaVbH8F00x8dCI-DvEcIfyMsE,671
3
3
  tf_keras/__internal__/backend/__init__.py,sha256=LnMs2A6685gDG79fxqmdulIYlVE_3WmXlBTBo9ZWYcw,162
4
4
  tf_keras/__internal__/layers/__init__.py,sha256=F5SGMhOTPzm-PR44VrfinURHcVeQPIEdwnZlAkSTB3A,176
@@ -201,14 +201,14 @@ tf_keras/preprocessing/image/__init__.py,sha256=H6rbMLtlGIy_jBLCSDklVTMXUjEUe8KQ
201
201
  tf_keras/preprocessing/sequence/__init__.py,sha256=Zg9mw0TIRIc-BmVtdXvW3jdIQo05VHZX_xmqZDMuaik,285
202
202
  tf_keras/preprocessing/text/__init__.py,sha256=1yQd-VZD6SjnEpPyBFLucYMxu9A5DnAnIec2tba9zQk,329
203
203
  tf_keras/protobuf/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
204
- tf_keras/protobuf/projector_config_pb2.py,sha256=GHQfZbNY6IgeVYvL1A9o5ET7EiG-jv--zhbAJg9Ez3k,1821
205
- tf_keras/protobuf/saved_metadata_pb2.py,sha256=K4ROX6DQeyFej5TBrUvfY7e_gzpQuCRuiuiVgk3ehhg,1585
206
- tf_keras/protobuf/versions_pb2.py,sha256=HP6fzinb4-KIEZaINXIAe-BpxQnGROxrxECgGcpcvFE,1119
204
+ tf_keras/protobuf/projector_config_pb2.py,sha256=Qn_IXcjH7GYRpehPH4hznWxGDPn_No8kLTJHWkkCAu4,2208
205
+ tf_keras/protobuf/saved_metadata_pb2.py,sha256=nI5xD26EgxUpHE2JyJsyDEHi6O8Tunue9j_JN9BUX08,1946
206
+ tf_keras/protobuf/versions_pb2.py,sha256=0XsJrhgwioUlNc4hdeJ8tee3tWSTvZnLEwJd--wAVr4,1450
207
207
  tf_keras/regularizers/__init__.py,sha256=D6TnroEDjnyP79TY_624g2DToxVWuKzuaiBAn_gUQaY,634
208
208
  tf_keras/saving/__init__.py,sha256=Xo0imlDhiYV7Rowy8BjMwrFJuAB8h2DdIuVcxvaeEa0,681
209
- tf_keras/src/__init__.py,sha256=ktueaG_fEdT2BKApAf_y3NT4BQiz8Ux9qkOGhkiKcXY,1502
209
+ tf_keras/src/__init__.py,sha256=p7hwxQsHJzS7Qq-OTj-gcJgsGn9bw5FN9IQ03yQO_Ls,1502
210
210
  tf_keras/src/activations.py,sha256=QNTCdIuNGww5BPwkkjkaNZf4j09m27Nqi-r4aTBOxnk,22630
211
- tf_keras/src/backend.py,sha256=025YEbBOWW2J_iqO3IpPx549tsJtcHqtlQadXq4ssWs,248504
211
+ tf_keras/src/backend.py,sha256=-_L2aB0n9ZkFsRoivRX-BjGxBpJG27PunUm9DzN0fvU,248509
212
212
  tf_keras/src/backend_config.py,sha256=DaKkQg6jLmzR2GtgjNxwFoHuTXwVcAzx_Hx8XgAKPNs,4516
213
213
  tf_keras/src/callbacks.py,sha256=NTfP_-gtstxjrT8LduyXWm6_ThW9vCBjoK7YHYllCqU,134312
214
214
  tf_keras/src/callbacks_v1.py,sha256=iT1NSRgN0Yw3joDTB3uKy4bEzb6Az6E5CTNH77wElUs,22154
@@ -239,14 +239,14 @@ tf_keras/src/benchmarks/benchmark_util.py,sha256=Hxepqy7JPolebZo5xxWE4UXZ7WmyAYg
239
239
  tf_keras/src/benchmarks/distribution_util.py,sha256=mbnbRlgDGzJTqhdQw4fRIPhT2JztDviJgXT86MfQEEc,6567
240
240
  tf_keras/src/benchmarks/model_memory_profile.py,sha256=9CMMHvW02qWFPN9lFNXY3w-rQfdLT5IQeWZ34K1v6fE,2248
241
241
  tf_keras/src/datasets/__init__.py,sha256=YSVzC5NDV0KgkQwLZqJgWHuVZRkXkAdEVKlRs73RFXo,51
242
- tf_keras/src/datasets/boston_housing.py,sha256=1s19TzPp3ku8GRIFdQhgPSbMMH0KyKnyLuZku6rDdu8,3391
242
+ tf_keras/src/datasets/boston_housing.py,sha256=7mK_B-HjLdHBiQ-uGX6deQUpnYF3zPPTEBSWuxjIymc,3670
243
243
  tf_keras/src/datasets/cifar.py,sha256=mMMwDOf7IYGeVlLemhiA_RSXzSF3CuwFllGpokh-pKs,1394
244
- tf_keras/src/datasets/cifar10.py,sha256=uGMJJ4Yw10ebIkXI5H3V05DgiwWbvdMRGIP06NPLdr4,3767
245
- tf_keras/src/datasets/cifar100.py,sha256=CqrNuFCiN-AvTKKJoPUbiPWPZEXfpv79p-Ejg2HyMr4,3559
246
- tf_keras/src/datasets/fashion_mnist.py,sha256=w1pbePakOPc4wi5x4UOtD8s2zJ7SA6Lg13FNgc4im7Q,3635
247
- tf_keras/src/datasets/imdb.py,sha256=kHzblPv15KtmCaErMzvATfvoB5QOLfLhIqH8ZDtrlO8,8290
248
- tf_keras/src/datasets/mnist.py,sha256=TMPrS8AE6_qvEM_tmWhNwHZmnxwiiAOetxwFF1KNK-Q,3085
249
- tf_keras/src/datasets/reuters.py,sha256=iadpEM1tmfVwRtE9mdj1F8JVnFUATZAzPU8iDbdyfpw,8309
244
+ tf_keras/src/datasets/cifar10.py,sha256=geRUHLtpFX8anDORscmrktlmfD_WVT6hW2SDVhzgx8U,4050
245
+ tf_keras/src/datasets/cifar100.py,sha256=fa7hntiBxIny7qwhrm6pXl8dlh0SN1891s_QghAko1o,3833
246
+ tf_keras/src/datasets/fashion_mnist.py,sha256=65VWDipkXL9QQCOpjdzyrFo3TLJL62iFjpxYsuL_jmw,4009
247
+ tf_keras/src/datasets/imdb.py,sha256=sx35dNz7cBfvI8ZZetYvaE7zRg23j1gWWEFCBNzOzUA,8580
248
+ tf_keras/src/datasets/mnist.py,sha256=sJe_BNuWNFS03hH5GWOYE6M258NXpxEcjKnhufEh7R0,3352
249
+ tf_keras/src/datasets/reuters.py,sha256=_5TNTUzK3roIr1K3GLjR16QtJ4ch_FRYeEIJzM7hcB0,8599
250
250
  tf_keras/src/distribute/__init__.py,sha256=DbbsbJOIWEtjQiv6Stq1KEVvnoAK-E5-Zdkd2FhBZiI,734
251
251
  tf_keras/src/distribute/dataset_creator_model_fit_test_base.py,sha256=e2RnS8nnCKWZDReVKNWvxjIjVZhdPLMe0xh_ydHPqaM,8547
252
252
  tf_keras/src/distribute/distribute_coordinator_utils.py,sha256=WzJM0rkbxvs-ES2DvJhhf0bKpdG4fNqJBcxU-BrY6Es,29244
@@ -271,21 +271,21 @@ tf_keras/src/dtensor/lazy_variable.py,sha256=c3yylbga0se3Geflutss3fz5RzBYuY2vkU3
271
271
  tf_keras/src/dtensor/test_util.py,sha256=9QAbt44mlirdqwG2ertTsoXNKG2V4Z0bqJFxGdxy5BY,4572
272
272
  tf_keras/src/dtensor/utils.py,sha256=2TTSCEOA61Ia1FAPfQWJ2CRfiocBGUZreXH9UBFzFbk,6441
273
273
  tf_keras/src/engine/__init__.py,sha256=AbpHGcgLb-kRsJGnwFEktk7uzpZOCcBY74-YBdrKVGs,1
274
- tf_keras/src/engine/base_layer.py,sha256=PaypExNUkGaWuIn9tiLN41AxSIhEXAals7b99Md0Yx8,156511
275
- tf_keras/src/engine/base_layer_utils.py,sha256=YMJF5sZJhFF_yzfqOtqi4YTsyUE2ZQ_cJJOIdXnuS2w,35795
276
- tf_keras/src/engine/base_layer_v1.py,sha256=cX-OCSNio3Tr2M6twr_PUgKulePLZDNW_4xLXjgYbN4,102700
274
+ tf_keras/src/engine/base_layer.py,sha256=r_0g7rX2WA7-fThh3sjFqNZgSTEuR1CTsW4FrZMMI6s,162338
275
+ tf_keras/src/engine/base_layer_utils.py,sha256=AFjqwXM-WShf0dfsyIotlXYIRJlqYyjQhAf50xZgyos,36166
276
+ tf_keras/src/engine/base_layer_v1.py,sha256=MMfdUKB8tjbjjX9Pj5b6E5XgrM-BnVx0ilSndcR_3QA,102875
277
277
  tf_keras/src/engine/base_preprocessing_layer.py,sha256=xne5VVtj9_IE1_cjh-kaPk-utoMY7mYwTOcgybFfY34,12650
278
278
  tf_keras/src/engine/compile_utils.py,sha256=F6KxbaXnppns5XCOJl8wzsiQ1riEp43s0G0SWsWAUE0,31757
279
- tf_keras/src/engine/data_adapter.py,sha256=Zb5Pyb88Zg5GuM3zjGVK65O3PlV_HIRBuQ6v-tzVL7w,71752
280
- tf_keras/src/engine/functional.py,sha256=igoSYLFSVYvZ8EUjwbowrDyYywI-V3h9ypeybIN_Jr4,70182
279
+ tf_keras/src/engine/data_adapter.py,sha256=N5UV4KYF-F7YJdB5kHR8pACSrFlSqQte_DsmA8Ksa6Y,72257
280
+ tf_keras/src/engine/functional.py,sha256=ojvj0DkGrnqd16dEIqj2AgFlmxB2s6e-3qjs78fN85E,71006
281
281
  tf_keras/src/engine/functional_utils.py,sha256=5creFfo9UoG5OLJgkcw9gsfT-qch-RamT5IsU8675rU,11048
282
- tf_keras/src/engine/input_layer.py,sha256=QVAA9ZrhfUlcx0Tj_UuNF3t1nxYrhyks6vDJJeb18W8,18258
283
- tf_keras/src/engine/input_spec.py,sha256=W3mojApaM_lN8Vr2MCvddE8RhHckxwObzpySPm16oEM,12076
282
+ tf_keras/src/engine/input_layer.py,sha256=SRoRYG_PElMRMAypjeQRZ_0Ub4tu5jdRc6ASL59BAsY,18650
283
+ tf_keras/src/engine/input_spec.py,sha256=H2U8yNz7eabUozm4QAcL3XcQoxj6iAwvK6ecU7w8O5g,12455
284
284
  tf_keras/src/engine/keras_tensor.py,sha256=rmIyf-sMKzGAMXzob0hCTZ3qA4JBYyIM85XUdmOPmqQ,28858
285
285
  tf_keras/src/engine/node.py,sha256=mevKNFEtzeVbwLRuwB7sMzQGKt6ppIxLmMcfQMzu8N8,14254
286
286
  tf_keras/src/engine/partial_batch_padding_handler.py,sha256=TNZvGXL-fvmZLLHIMPX_hy0w9LT8W52DHW7ZtnEvBvI,4325
287
287
  tf_keras/src/engine/saving.py,sha256=So_T5PRjCOLzpOPGHNBiTCOrNvqvvGNK8AwZBwFQCbs,853
288
- tf_keras/src/engine/sequential.py,sha256=UeW__ZHBL_lBgQfdyZZAOGW8KTjXy2dKsCu0IS3dR4Y,22974
288
+ tf_keras/src/engine/sequential.py,sha256=YZaO53uU2XWmAa4wMjZ6XLiO2O5lPnYZ4IEeDCQAxqA,23675
289
289
  tf_keras/src/engine/training.py,sha256=eaEAV4OaV_0NmwIi_Upm-bZQKBzyCl_ilSFZ3Cinvqg,193232
290
290
  tf_keras/src/engine/training_arrays_v1.py,sha256=Fn_PY4_7miHhmkhXoNJS42LEpQDZ0VWOyNGv5m2DKNE,30903
291
291
  tf_keras/src/engine/training_distributed_v1.py,sha256=niN6TZ1DpXkWGUA7CWH6--VxFRLlX48RnqkGpHym4fE,32084
@@ -314,13 +314,13 @@ tf_keras/src/layers/activation/elu.py,sha256=n-WAE6NjC9mbqcV7Kxgpt8tTbvwCQIGsoCV
314
314
  tf_keras/src/layers/activation/leaky_relu.py,sha256=cJmpwgg4KEu--iK9gFuJT7uEGpDArB8q-XNBmJfC7_U,2618
315
315
  tf_keras/src/layers/activation/prelu.py,sha256=D2yhneQrYQP6aHSK8nvnMKa1hIeuPZO_XCB2Cu9Cl4Y,4440
316
316
  tf_keras/src/layers/activation/relu.py,sha256=JklQuReRiR3huAGr3QRtuGL0URpdspDFzBNjZgv0HDw,4281
317
- tf_keras/src/layers/activation/softmax.py,sha256=G6MfTCogGTKwyP7b6ByxeIHFNQtUKgrZXB8MP9hNstQ,4105
317
+ tf_keras/src/layers/activation/softmax.py,sha256=0g8uN5N8QDW8lj6nGabR-EBk58njbiNdhDzglv9rxXU,4861
318
318
  tf_keras/src/layers/activation/thresholded_relu.py,sha256=rQLn9cr-w6hVJET2mS7OIQ9diiUiqUrX4CysXKNYbmg,2503
319
319
  tf_keras/src/layers/attention/__init__.py,sha256=6HjPSyLhs_bf4erT65KyhSCHQF7WeWZe9YTH7iW6Nek,945
320
320
  tf_keras/src/layers/attention/additive_attention.py,sha256=jie0cAXJEjU4xXK_Ur1SrEL9RqDIIAPyaAkK8O71TEs,7485
321
321
  tf_keras/src/layers/attention/attention.py,sha256=TCnoOWAfh6i275TvudxyjosczBmL_zz9ByEUi-xXkAU,8682
322
322
  tf_keras/src/layers/attention/base_dense_attention.py,sha256=cEzBldjwQfuJfNZRimW5s-NqyENU2-lmqaNNxAGxhKw,10856
323
- tf_keras/src/layers/attention/multi_head_attention.py,sha256=05RC-2BSmCcBFtVY2loQPeiMYp8XArmbvovPl8kpiEA,30279
323
+ tf_keras/src/layers/attention/multi_head_attention.py,sha256=FQX0YtXRy5kg8OlShA7cp2kfczzeWb9Oj3tbzkukLRw,30618
324
324
  tf_keras/src/layers/convolutional/__init__.py,sha256=U-4tja5JhSUva2G9uMmsZyZty2N2N9jT6EJRu5HAo-Y,3355
325
325
  tf_keras/src/layers/convolutional/base_conv.py,sha256=jvm4elEyIVSNfYZxh4inzQ1Q2CKS_f8VawvXMIJFSC4,17574
326
326
  tf_keras/src/layers/convolutional/base_depthwise_conv.py,sha256=SVgR2Y8dpeX4eDEF1e0UY0Mxh4A47eGHhJCQ1peGwNQ,9661
@@ -343,7 +343,7 @@ tf_keras/src/layers/core/embedding.py,sha256=iOdkBiP1IzwOVPjsKWA54NXrlk5KgJ0DfQ8
343
343
  tf_keras/src/layers/core/identity.py,sha256=yj5cWlUTlYq_J_ZQb1iLzM0bqaM4V6TXVwM4iuBFp9U,1301
344
344
  tf_keras/src/layers/core/lambda_layer.py,sha256=QzetX-lV9ybonQKg_6QzSm8w9Vkq8CPAM4BcAke7CZk,16481
345
345
  tf_keras/src/layers/core/masking.py,sha256=19p6HYGlKdUfQnelsAoee6wf87fWx67NSGinyjagNc4,3340
346
- tf_keras/src/layers/core/tf_op_layer.py,sha256=4WDRrT8dVwnD7avcWvMCk9mnGwfHcaN3Dmhf7CBeqzQ,21066
346
+ tf_keras/src/layers/core/tf_op_layer.py,sha256=R6dFECVkPbmKi1nQVcxJy5lNxSVwiMlaWXB7j0PjI7Q,21320
347
347
  tf_keras/src/layers/experimental/__init__.py,sha256=AbpHGcgLb-kRsJGnwFEktk7uzpZOCcBY74-YBdrKVGs,1
348
348
  tf_keras/src/layers/experimental/dynamic_embedding.py,sha256=KuVIawm3avPEa5c2IDOyBH14xiU5bYbPqcm_HugfWYA,10730
349
349
  tf_keras/src/layers/experimental/dynamic_lookup.py,sha256=CMNOaxAIkB1ChPcusuymhLAYTvobEbCBli6YkuWw8RE,13720
@@ -366,7 +366,7 @@ tf_keras/src/layers/normalization/batch_normalization.py,sha256=RdFwlFhXj4i612oy
366
366
  tf_keras/src/layers/normalization/batch_normalization_v1.py,sha256=7I8SioqbqZzLvCXGRiiSbbiUeeQsNMfrlils1CEm61Y,1191
367
367
  tf_keras/src/layers/normalization/group_normalization.py,sha256=nqAW5vM96uqBcgF0jea-DkPcHixfbbzC3B2lyFHqNEg,10028
368
368
  tf_keras/src/layers/normalization/layer_normalization.py,sha256=YvZsvSwZsBxP9O7K-f4orTSz69ADiPRIygqLq4kUI7k,14022
369
- tf_keras/src/layers/normalization/spectral_normalization.py,sha256=XyxoPHUTJvfFVJagGcaOySeixV6hb53oGx_Fx_fsrhk,4984
369
+ tf_keras/src/layers/normalization/spectral_normalization.py,sha256=38hAYFl_OrntMrbmvqDSFv4gE-T2LcnaipcJ5pHeUpI,5192
370
370
  tf_keras/src/layers/normalization/unit_normalization.py,sha256=zFHpHet8htHl7sLXQJ_nFecyZLU3fMrspq5V8STYgQs,2634
371
371
  tf_keras/src/layers/pooling/__init__.py,sha256=6WvDC0BWmYKwJlurf_1QFRNAHW-kqEy4NI63K4XWzVc,2590
372
372
  tf_keras/src/layers/pooling/average_pooling1d.py,sha256=dIHOp6wvO9JfQ9SzndiElI-oc_TEh4rCNMVBh_zBRB8,4998
@@ -402,27 +402,7 @@ tf_keras/src/layers/preprocessing/preprocessing_utils.py,sha256=OR8NDGv8foDT2Ngv
402
402
  tf_keras/src/layers/preprocessing/string_lookup.py,sha256=2yqsgps42qMd6MB6vwBevionU7dh77OQdLburmn90b0,19179
403
403
  tf_keras/src/layers/preprocessing/text_vectorization.py,sha256=mL6sHm3TPXKg8q51vEWyo7LYKyiEoQFzm7GUkrSS-6E,30467
404
404
  tf_keras/src/layers/preprocessing/benchmarks/__init__.py,sha256=AbpHGcgLb-kRsJGnwFEktk7uzpZOCcBY74-YBdrKVGs,1
405
- tf_keras/src/layers/preprocessing/benchmarks/bucketized_column_dense_benchmark.py,sha256=ZKFxRPRDx9VYUzu3k42DO2hrN9Ve9UNLPYEraN3BU94,2845
406
- tf_keras/src/layers/preprocessing/benchmarks/category_encoding_benchmark.py,sha256=IEdxK6eQa1YdxgmOQ13YBeJ94afFWfGazAO6NvfxJ5w,2949
407
- tf_keras/src/layers/preprocessing/benchmarks/category_hash_dense_benchmark.py,sha256=yoGE5ofB7fspimQ1ImShs5KguNGUQ_JpsGYPLZS1gpQ,2809
408
- tf_keras/src/layers/preprocessing/benchmarks/category_hash_varlen_benchmark.py,sha256=5b80c35WGpWEXgv2lutqVVuS52mWiD6Cyw1ZA6KkseU,2723
409
- tf_keras/src/layers/preprocessing/benchmarks/category_vocab_file_dense_benchmark.py,sha256=SPmA9yXH3dr6uHfs1IsAkrjNo02YgyfmWrt24pl6ROs,3588
410
- tf_keras/src/layers/preprocessing/benchmarks/category_vocab_file_varlen_benchmark.py,sha256=JAM0X1lBkZd7KYtBFaBP2HfxxB3Uj7Ik7WeFhajbwNo,3437
411
- tf_keras/src/layers/preprocessing/benchmarks/category_vocab_list_dense_benchmark.py,sha256=y0RR1TMq5PUv4Jlh7jMmQrJWsjDtgDivsqTeEMi6ovI,2863
412
- tf_keras/src/layers/preprocessing/benchmarks/category_vocab_list_indicator_dense_benchmark.py,sha256=lyfRE8NP3gLfTDnIzucPqjMiLAOCEUS-pSwa1f7EXLM,3169
413
- tf_keras/src/layers/preprocessing/benchmarks/category_vocab_list_indicator_varlen_benchmark.py,sha256=Ebx54Qo5ec-Sys5bPhp1KaVtmWsQxpNotzxxpxtfBPg,3101
414
- tf_keras/src/layers/preprocessing/benchmarks/category_vocab_list_varlen_benchmark.py,sha256=WkDOo5borQYk78xKbnsh7tcEZyjrDEGb7NnTkYzoM18,2795
415
- tf_keras/src/layers/preprocessing/benchmarks/discretization_adapt_benchmark.py,sha256=UD48alO_v-Vb8naluZtPozU7U4Oy-1WPSV1oqhzl-Yk,3776
416
- tf_keras/src/layers/preprocessing/benchmarks/embedding_dense_benchmark.py,sha256=PB7D3pFmVxlxZ4tKO7N-NB-wfJ0KY8B4RpAy_BZG01A,2836
417
- tf_keras/src/layers/preprocessing/benchmarks/embedding_varlen_benchmark.py,sha256=-fif0N3JPQT9fIwmpj-XE2eJif21sK2TsC6fri7ZuWI,2831
418
405
  tf_keras/src/layers/preprocessing/benchmarks/feature_column_benchmark.py,sha256=cSSHeEGH1dhxR3UJiCFZUgFeRZHd25eDUMRmKE140is,4814
419
- tf_keras/src/layers/preprocessing/benchmarks/hashed_crossing_benchmark.py,sha256=QV4n0f2j5b1Us-D2NHMA7WMRuUeMyiZpg-FAEopK0qs,2835
420
- tf_keras/src/layers/preprocessing/benchmarks/hashing_benchmark.py,sha256=wV16NUaNLfYZVwZCuMiX7JN9YDmbqyxaWHERo_uFJoE,3624
421
- tf_keras/src/layers/preprocessing/benchmarks/image_preproc_benchmark.py,sha256=x-XDwI75oIW3clnGOOmRG0Tb3hsQTx40bwxT7sj6CaE,5467
422
- tf_keras/src/layers/preprocessing/benchmarks/index_lookup_adapt_benchmark.py,sha256=LLv8vcdsphIBy5-owcABZdVSGSGMmQ7W-LmFTezO9Wc,4475
423
- tf_keras/src/layers/preprocessing/benchmarks/index_lookup_forward_benchmark.py,sha256=O4e0X-yLYWpfN2pX_WshN92ygw7XqlXZfgQjeO1WjuY,4941
424
- tf_keras/src/layers/preprocessing/benchmarks/normalization_adapt_benchmark.py,sha256=sB-Tcem8UdFGXnKx4HI4fLjTsIjaGJ2WAaphrxuItVc,4420
425
- tf_keras/src/layers/preprocessing/benchmarks/weighted_embedding_varlen_benchmark.py,sha256=Z5k0UaPM0-VfUw9tMv4_dEhsQNDODWlfNtsZ1RHFrFI,3324
426
406
  tf_keras/src/layers/regularization/__init__.py,sha256=9fIrtV8SwP1PG8BXfNrSP8rSyCdh4pPnV7hNvDbRysg,1369
427
407
  tf_keras/src/layers/regularization/activity_regularization.py,sha256=QxnBlnkHi2HZ2Pt-mX5WGiJWzljNQmh-X4La9f7XDGo,1942
428
408
  tf_keras/src/layers/regularization/alpha_dropout.py,sha256=JmMO6OHzpVtRS2Tl1fTslktQPM4MuN0ivNlCOUhH0VM,3800
@@ -454,7 +434,7 @@ tf_keras/src/layers/rnn/base_cudnn_rnn.py,sha256=cuPVg6r4L1pVWYTp3WFbJhikuIR2Vmg
454
434
  tf_keras/src/layers/rnn/base_rnn.py,sha256=I7mWl4KQC26gILDt9pZ9moZ81yM57lvci6hzJ9ROrxo,41968
455
435
  tf_keras/src/layers/rnn/base_wrapper.py,sha256=x4GANiXtmh9ztAFh7QtfbnQE76UVCGpaHp_XhrSs0Os,3159
456
436
  tf_keras/src/layers/rnn/bidirectional.py,sha256=JyZuBU0q2lt4augThwm8vyTvYwEJxyawsHmgNIul5vU,22670
457
- tf_keras/src/layers/rnn/cell_wrappers.py,sha256=T3FIiY9vIr0Or1N_SWNVnHR3LH6xnJ5DgNNYLk-sV6c,26874
437
+ tf_keras/src/layers/rnn/cell_wrappers.py,sha256=fMGpdFFoRWRIuKz88NcnMvAtevv8OYHzxkF86Ltmwfk,27384
458
438
  tf_keras/src/layers/rnn/conv_lstm1d.py,sha256=suShze6ipNXabGlKJTxkOia17ZP4SeEei3Mi4F8lFOQ,8761
459
439
  tf_keras/src/layers/rnn/conv_lstm2d.py,sha256=myxOioB3yNn0L_-gMh0R41sb-MwTXO993lAT05_N0Zw,8874
460
440
  tf_keras/src/layers/rnn/conv_lstm3d.py,sha256=GT4OoPFtCr5xgaaqy3ezt5DyDu8Ut-wQEihCOHFk0D4,8969
@@ -483,7 +463,7 @@ tf_keras/src/legacy_tf_layers/variable_scope_shim.py,sha256=kGAFW03pVWSB1DhHvQ1W
483
463
  tf_keras/src/metrics/__init__.py,sha256=dM8S0ZhfiyPaXkdYuOSKvoytmYOkh8aYuJnpgUoT6vg,9699
484
464
  tf_keras/src/metrics/accuracy_metrics.py,sha256=RRQqyYZcVrEY2Pfc-OV6k3rYhv9ejSLJ9JbJzs_D5vk,17514
485
465
  tf_keras/src/metrics/base_metric.py,sha256=MCaI7Bx-kgs5udTRLvKMJ3SO90-GFs_9QMigrhkX9HQ,36498
486
- tf_keras/src/metrics/confusion_metrics.py,sha256=k548s2aYSeNfo3ROlK_Br6BDwKbE-Bqu4Hq0_HbLf7g,65973
466
+ tf_keras/src/metrics/confusion_metrics.py,sha256=V1uNFUc1zyjxd-m-D83QhJ9bkbtPCfsXf3CROOPWmzs,68068
487
467
  tf_keras/src/metrics/f_score_metrics.py,sha256=3uxqH9NNqoKaGPz-R6eERA23bK1TabCXrsJUz2sbetU,12000
488
468
  tf_keras/src/metrics/hinge_metrics.py,sha256=QXtNdxE-IgZmdVQXIew_pN6X3aF9i7r7xirmb6oiOKA,4132
489
469
  tf_keras/src/metrics/iou_metrics.py,sha256=dUqZpOppIPj3aCtS25Hs6bvJoPHNnrtAChujoA-6bLQ,28530
@@ -498,7 +478,7 @@ tf_keras/src/mixed_precision/policy.py,sha256=1GWHp99dU0f6D0h_jIrSQkoLyIf0ClRJ0B
498
478
  tf_keras/src/mixed_precision/test_util.py,sha256=S4dDVLvFmv3OXvo-7kswO8MStwvTjP_caE3DrUhy9Po,8641
499
479
  tf_keras/src/models/__init__.py,sha256=VQ3cZve-CsmM_4CEi9q-V7m2qFO9HbdiO38mAR4dKdM,1823
500
480
  tf_keras/src/models/cloning.py,sha256=PHLTG0gSjvoKl8jxGaLCUq3ejK_o0PNA7gxSqxyoLBI,36839
501
- tf_keras/src/models/sharpness_aware_minimization.py,sha256=4nofg5_fbrRuGa5RAIQwJ-OL8eeiWg7jlNkMuJSCB_g,7301
481
+ tf_keras/src/models/sharpness_aware_minimization.py,sha256=MArrweVZA85F1tPHZd06AVKpAdacaPplTz6eOS2XcRk,7795
502
482
  tf_keras/src/optimizers/__init__.py,sha256=lkPBfjJhWx_0nV8MrEmjWvJTGKutM1a9nIrB0ua0O-k,13044
503
483
  tf_keras/src/optimizers/adadelta.py,sha256=47HgdG0v-76B5htebkwl1OoryFPLO2kgk_CsYqgq7hU,6174
504
484
  tf_keras/src/optimizers/adafactor.py,sha256=_IYi6WMyXl4nPimr15nAPWvj6ZKcP7cESFsdpeabNKQ,8651
@@ -532,24 +512,23 @@ tf_keras/src/premade_models/linear.py,sha256=K2OIV9L4YrGtFWgqZt6V41SwJzQjrqlZiYU
532
512
  tf_keras/src/premade_models/wide_deep.py,sha256=u8ZDAGKDHtyRe7OOhLzUSx7h4OhGDcB4yd19Hh7Rw2I,9921
533
513
  tf_keras/src/preprocessing/__init__.py,sha256=J_83ElwazNeTGSpg7oA1_bCCUXS6yiuWvZYUb8kogOI,1711
534
514
  tf_keras/src/preprocessing/image.py,sha256=wRDaJrl8J3SWi3ppOcI2XhQCz14LOrgsailNSxDuDzo,104419
535
- tf_keras/src/preprocessing/sequence.py,sha256=vM_tjUF6SYRaZwJ9NH21qn1gNDd4N68RPTeNea_cUrE,13891
515
+ tf_keras/src/preprocessing/sequence.py,sha256=gNtN_XTW3MIH5ux8bdzFvjJ161Sd_XWOVmczpmP2mnQ,13901
536
516
  tf_keras/src/preprocessing/text.py,sha256=aomzwE3G2ErwzgL_Dj3ERA_2k7TZclaPMTBTrWd7wtI,22771
537
517
  tf_keras/src/saving/__init__.py,sha256=AbpHGcgLb-kRsJGnwFEktk7uzpZOCcBY74-YBdrKVGs,1
538
518
  tf_keras/src/saving/object_registration.py,sha256=N8aV6eqREYjW2ueQpL3guYHyh5KXuun3DZAlmjfYrTA,7830
539
519
  tf_keras/src/saving/pickle_utils.py,sha256=5GtHzwNWVaYfZ-0zn69-zn2yv3R6JUwzHOOamnjP7r0,2605
540
- tf_keras/src/saving/saving_api.py,sha256=q2_-CsVg81HeHnXDkRqpoBwI3Mpp_gQXjBidr5V_RLo,14838
541
- tf_keras/src/saving/saving_lib.py,sha256=Rk5rOvxEmCvwUlG3bS0QpOgtURayYmIAZbh2GeTuUOc,24272
520
+ tf_keras/src/saving/saving_api.py,sha256=7uIWY4uwQMtETP5yRjZYPii-E-sWzSuK0ljVMfnZe_k,15119
521
+ tf_keras/src/saving/saving_lib.py,sha256=Ik1m_D1G7_Z3KMipmy5Mi8jhyWtOnJ6QbFY-VV5A2R0,24273
542
522
  tf_keras/src/saving/serialization_lib.py,sha256=kX4qf_fRp4LySkH9FU37DMd0AXxiUrXKT-VLR3JPl7w,30152
543
523
  tf_keras/src/saving/legacy/__init__.py,sha256=AbpHGcgLb-kRsJGnwFEktk7uzpZOCcBY74-YBdrKVGs,1
544
524
  tf_keras/src/saving/legacy/hdf5_format.py,sha256=IqFXHN96fuqKwu_akaqTyf9ISRPavP3Ahjydat948O4,42438
545
525
  tf_keras/src/saving/legacy/model_config.py,sha256=ZE6H_dKdmo2dlBWkr2nYO8SXcMEhshgza3sHPCpeu-k,4140
546
526
  tf_keras/src/saving/legacy/save.py,sha256=TdjiEamZ8MAsPAWsYMEtrdCRppbHcBIwJh9eVfdUS3k,23612
547
- tf_keras/src/saving/legacy/saving_utils.py,sha256=VTxnYFSWZ7m_40deANuWbtyhyXq0o0c5vLuBeCbgwi8,13745
527
+ tf_keras/src/saving/legacy/saving_utils.py,sha256=0iXchqZQNw9s5kB9_7SIj2p3Qd_21jdfHJQ3b3YVWQs,14042
548
528
  tf_keras/src/saving/legacy/serialization.py,sha256=OrmHQPolQFsR-UCMxNTxkIFTKY4DKcAgMm1jdhF7TqU,22285
549
529
  tf_keras/src/saving/legacy/saved_model/__init__.py,sha256=AbpHGcgLb-kRsJGnwFEktk7uzpZOCcBY74-YBdrKVGs,1
550
530
  tf_keras/src/saving/legacy/saved_model/base_serialization.py,sha256=dALR19_zt4c80zVw3yjCj9wfRoJufDjCrvkJyS82Dnk,5104
551
531
  tf_keras/src/saving/legacy/saved_model/constants.py,sha256=96ymvysCZ2Ru888YT_DEPMDgizHdDoBFGEOXsf-9AwE,1779
552
- tf_keras/src/saving/legacy/saved_model/create_test_saved_model.py,sha256=mS5jmCsDwUFUKr08G0tphPSA5ZAd7illNyj3QXKejOA,1040
553
532
  tf_keras/src/saving/legacy/saved_model/json_utils.py,sha256=WOyJaamx15lJ_V4XZSYM3RtuATa73uRNRM13o2s7yQ4,8071
554
533
  tf_keras/src/saving/legacy/saved_model/layer_serialization.py,sha256=FQwNk2XJq8dzgoSAWrmcabglZTA-6oDPtfeLiGrZO6A,8418
555
534
  tf_keras/src/saving/legacy/saved_model/load.py,sha256=wJUL0T4ZlUgxk3pZa_7E4NXEE3LXfjSKuGvTlrQchHc,57007
@@ -558,7 +537,7 @@ tf_keras/src/saving/legacy/saved_model/model_serialization.py,sha256=IxQ1TfBGagV
558
537
  tf_keras/src/saving/legacy/saved_model/network_serialization.py,sha256=ofbKN9V3syw0AQebgy2PlvaiAHi3SnBFTg-PUgclTng,1180
559
538
  tf_keras/src/saving/legacy/saved_model/order_preserving_set.py,sha256=zvNFzss8wSc0vngv74dNnQO_hxpxmEWWBBv1TTLsbPY,3250
560
539
  tf_keras/src/saving/legacy/saved_model/save.py,sha256=2-AaGFhFxzfZLkIW1qx9-rTcaZvYMFkQYP7ijfwA-ZI,6395
561
- tf_keras/src/saving/legacy/saved_model/save_impl.py,sha256=cWDBJ0uYfV1dNB5pdKFqDwYLQaaxWNeG8GSLiABAmec,29751
540
+ tf_keras/src/saving/legacy/saved_model/save_impl.py,sha256=mcdNPwJYwzOsdSisgwkBEbnoSABEZdshN7BRmTttK2c,30420
562
541
  tf_keras/src/saving/legacy/saved_model/serialized_attributes.py,sha256=nlmtIzLUBGSQU6gDKcg4-ypSRX3RbS4vPmLIhG3HSbk,15009
563
542
  tf_keras/src/saving/legacy/saved_model/utils.py,sha256=2OCwun0U8nsZvxUbv7Toq2EeC1HU32LxnLDan8cw4Dc,9953
564
543
  tf_keras/src/testing_infra/__init__.py,sha256=yrmnTOUMQ09fOgD3PD4NjpaeKz2OXCUmmoExRWhg9AY,690
@@ -567,7 +546,6 @@ tf_keras/src/testing_infra/test_combinations.py,sha256=ETwFTN8eBAusQpqU7dg_Qckb1
567
546
  tf_keras/src/testing_infra/test_utils.py,sha256=SMEYejGPfYnZT2tVgzHL3gBHNGk6qcTu1qcZetHv870,40307
568
547
  tf_keras/src/tests/__init__.py,sha256=AbpHGcgLb-kRsJGnwFEktk7uzpZOCcBY74-YBdrKVGs,1
569
548
  tf_keras/src/tests/get_config_samples.py,sha256=qz2SZb_JIW2NoTak9NphLJkDTgYmlQ5RNm64T9wQ6L8,15307
570
- tf_keras/src/tests/keras_doctest.py,sha256=qFPhxdstCjwGZw0JIKPMZ_PF-oBzEgP6EqZ9n_0mtio,4638
571
549
  tf_keras/src/tests/model_architectures.py,sha256=83-y4n0LtvpcpXPgawvPGIcvaqaPZ_XgOVEDRgycLmw,10830
572
550
  tf_keras/src/tests/model_subclassing_test_util.py,sha256=tMRAx38exGbDKEUd5kNDRn7Q-epiMPCAxdbAEGSCP6Y,5515
573
551
  tf_keras/src/utils/__init__.py,sha256=HDp6YtwWY9al-pSjokrgj_IzsFi36TWQVGJp3ibTlws,3129
@@ -585,9 +563,9 @@ tf_keras/src/utils/io_utils.py,sha256=XhCTkjwtfBc2hWSenjVdt0-2PsIc2bjJVWEP1880NU
585
563
  tf_keras/src/utils/keras_logging.py,sha256=Fv4eOMemx3Jg1hEdHIxx9GblG5YTnW1q1D1zLF3JxUE,882
586
564
  tf_keras/src/utils/kernelized_utils.py,sha256=s475SAos2zHQ1NT9AHZmbWUSahHKOhdctP6uIou0nRo,4517
587
565
  tf_keras/src/utils/kpl_test_utils.py,sha256=vnaJkySSTVhXsFEdDxNJArwXaah0yPNTK8o_3rYZvOE,7365
588
- tf_keras/src/utils/layer_utils.py,sha256=5SGCXE5Tc8QmCt7JHTbpVjYBkEMtdI7TQ5jC-9VLnCY,41764
566
+ tf_keras/src/utils/layer_utils.py,sha256=cLKqiqJ2em16zZyXaXFErsL6yja28qE6kgPs2TTcdcY,43427
589
567
  tf_keras/src/utils/losses_utils.py,sha256=oPHJSNLY8U57ieQD59vnGHNavZpMpeTZtL7VIlDwwfM,16919
590
- tf_keras/src/utils/metrics_utils.py,sha256=feW5GoiznbQKkxmE3Url2nlXfWgvHMpJPXdGKCdiV_U,39803
568
+ tf_keras/src/utils/metrics_utils.py,sha256=h4F4MGcHrpjthypj-nZ1n2szBrBZj4X0R9cEzMcx75w,39938
591
569
  tf_keras/src/utils/mode_keys.py,sha256=_QYq58qr_b-RhvMYBYnL47NkC0G1ng8NYcVnS_IYi-A,856
592
570
  tf_keras/src/utils/np_utils.py,sha256=4EZ58G1zThQfQEmMNBPnUYRszXRJoY4foxYhOGfS89s,4805
593
571
  tf_keras/src/utils/object_identity.py,sha256=HZEETVcCoBrnIFjnxmBhZaCKP9xQMv9rMr_ihlMveVs,6879
@@ -596,7 +574,7 @@ tf_keras/src/utils/steps_per_execution_tuning.py,sha256=jBDh5Xi1X17kJ8Uz0bK_qU_Z
596
574
  tf_keras/src/utils/text_dataset.py,sha256=HcGKN607b4L4fdNmPOHkN8wbEF6BQ3Uq8CPF6Zz26uI,11084
597
575
  tf_keras/src/utils/tf_contextlib.py,sha256=ysTHicWjRBEVGNC6cKSCO7GTX1DxGNX9Z0vi4j9Q6Z8,1300
598
576
  tf_keras/src/utils/tf_inspect.py,sha256=hRMwGwU15gqC8JPhFJemU6Aa5J99Z1gerHT9u93AkKI,14237
599
- tf_keras/src/utils/tf_utils.py,sha256=aclTIbTOx3jvrsEiYJSrBP1eDTN3cL8seajOfi9XIfI,24082
577
+ tf_keras/src/utils/tf_utils.py,sha256=Fg4fS2k3Oi6NgIKavkoZRTRoQ_duUgie0rA_mndBOpo,24092
600
578
  tf_keras/src/utils/timed_threads.py,sha256=lbWobYK2kVKSVkxpv9ccozUIYbOezp_SJV8-ViXpyw0,5380
601
579
  tf_keras/src/utils/timeseries_dataset.py,sha256=YNmyTEwP1VGfSaHWGFGb7AE4YJUudmE5YM6Sj5Cjj5g,10875
602
580
  tf_keras/src/utils/traceback_utils.py,sha256=Th_zzH4qS3anxQQ-O4z3VNGw4MlQIu4IoZHMQ49kSj4,6335
@@ -606,7 +584,7 @@ tf_keras/src/utils/legacy/__init__.py,sha256=EfMmeHYDzwvxNaktPhQbkTdcPSIGCqMhBND
606
584
  tf_keras/utils/__init__.py,sha256=b7_d-USe_EmLo02_P99Q1rUCzKBYayPCfiYFStP-0nw,2735
607
585
  tf_keras/utils/experimental/__init__.py,sha256=DzGogE2AosjxOVILQBT8PDDcqbWTc0wWnZRobCdpcec,97
608
586
  tf_keras/utils/legacy/__init__.py,sha256=7ujlDa5HeSRcth2NdqA0S1P2-VZF1kB3n68jye6Dj-8,189
609
- tf_keras_nightly-2.19.0.dev2024121210.dist-info/METADATA,sha256=GBGK0xNYR8AxZeY4j2v9SGLW5lFzXxmf1C8lGIjfwZk,1637
610
- tf_keras_nightly-2.19.0.dev2024121210.dist-info/WHEEL,sha256=PZUExdf71Ui_so67QXpySuHtCi3-J3wvF4ORK6k_S8U,91
611
- tf_keras_nightly-2.19.0.dev2024121210.dist-info/top_level.txt,sha256=LC8FK7zHDNKxB17C6lGKvrZ_fZZGJsRiBK23SfiDegY,9
612
- tf_keras_nightly-2.19.0.dev2024121210.dist-info/RECORD,,
587
+ tf_keras_nightly-2.21.0.dev2025123010.dist-info/METADATA,sha256=mMuSxuENfVse58L4xsGvhuHeJ_PYmN4HQTSCzIDhrQE,1857
588
+ tf_keras_nightly-2.21.0.dev2025123010.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
589
+ tf_keras_nightly-2.21.0.dev2025123010.dist-info/top_level.txt,sha256=LC8FK7zHDNKxB17C6lGKvrZ_fZZGJsRiBK23SfiDegY,9
590
+ tf_keras_nightly-2.21.0.dev2025123010.dist-info/RECORD,,
@@ -1,5 +1,5 @@
1
1
  Wheel-Version: 1.0
2
- Generator: setuptools (75.6.0)
2
+ Generator: setuptools (80.9.0)
3
3
  Root-Is-Purelib: true
4
4
  Tag: py3-none-any
5
5
 
@@ -1,85 +0,0 @@
1
- # Copyright 2020 The TensorFlow Authors. All Rights Reserved.
2
- #
3
- # Licensed under the Apache License, Version 2.0 (the "License");
4
- # you may not use this file except in compliance with the License.
5
- # You may obtain a copy of the License at
6
- #
7
- # http://www.apache.org/licenses/LICENSE-2.0
8
- #
9
- # Unless required by applicable law or agreed to in writing, software
10
- # distributed under the License is distributed on an "AS IS" BASIS,
11
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
- # See the License for the specific language governing permissions and
13
- # limitations under the License.
14
- # ==============================================================================
15
- """Benchmark for KPL implementation of bucketized columns with dense inputs."""
16
-
17
- import numpy as np
18
- import tensorflow.compat.v2 as tf
19
-
20
- import tf_keras.src as keras
21
- from tf_keras.src.layers.preprocessing import discretization
22
- from tf_keras.src.layers.preprocessing.benchmarks import (
23
- feature_column_benchmark as fc_bm,
24
- )
25
-
26
- # isort: off
27
- from tensorflow.python.eager.def_function import (
28
- function as tf_function,
29
- )
30
-
31
- NUM_REPEATS = 10 # The number of times to run each benchmark.
32
- BATCH_SIZES = [32, 256]
33
-
34
-
35
- ### KPL AND FC IMPLEMENTATION BENCHMARKS ###
36
- def embedding_varlen(batch_size, max_length):
37
- """Benchmark a variable-length embedding."""
38
- # Data and constants.
39
- max_value = 25.0
40
- bins = np.arange(1.0, max_value)
41
- data = fc_bm.create_data(
42
- max_length, batch_size * NUM_REPEATS, 100000, dtype=float
43
- )
44
-
45
- # TF-Keras implementation
46
- model = keras.Sequential()
47
- model.add(keras.Input(shape=(max_length,), name="data", dtype=tf.float32))
48
- model.add(discretization.Discretization(bins))
49
-
50
- # FC implementation
51
- fc = tf.feature_column.bucketized_column(
52
- tf.feature_column.numeric_column("data"), boundaries=list(bins)
53
- )
54
-
55
- # Wrap the FC implementation in a tf.function for a fair comparison
56
- @tf_function()
57
- def fc_fn(tensors):
58
- fc.transform_feature(
59
- tf.__internal__.feature_column.FeatureTransformationCache(tensors),
60
- None,
61
- )
62
-
63
- # Benchmark runs
64
- keras_data = {"data": data.to_tensor(default_value=0.0)}
65
- k_avg_time = fc_bm.run_keras(keras_data, model, batch_size, NUM_REPEATS)
66
-
67
- fc_data = {"data": data.to_tensor(default_value=0.0)}
68
- fc_avg_time = fc_bm.run_fc(fc_data, fc_fn, batch_size, NUM_REPEATS)
69
-
70
- return k_avg_time, fc_avg_time
71
-
72
-
73
- class BenchmarkLayer(fc_bm.LayerBenchmark):
74
- """Benchmark the layer forward pass."""
75
-
76
- def benchmark_layer(self):
77
- for batch in BATCH_SIZES:
78
- name = f"bucketized|dense|batch_{batch}"
79
- k_time, f_time = embedding_varlen(batch_size=batch, max_length=256)
80
- self.report(name, k_time, f_time, NUM_REPEATS)
81
-
82
-
83
- if __name__ == "__main__":
84
- tf.test.main()
85
-
@@ -1,84 +0,0 @@
1
- # Copyright 2020 The TensorFlow Authors. All Rights Reserved.
2
- #
3
- # Licensed under the Apache License, Version 2.0 (the "License");
4
- # you may not use this file except in compliance with the License.
5
- # You may obtain a copy of the License at
6
- #
7
- # http://www.apache.org/licenses/LICENSE-2.0
8
- #
9
- # Unless required by applicable law or agreed to in writing, software
10
- # distributed under the License is distributed on an "AS IS" BASIS,
11
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
- # See the License for the specific language governing permissions and
13
- # limitations under the License.
14
- # ==============================================================================
15
- """Benchmark for TF-Keras category_encoding preprocessing layer."""
16
-
17
- import time
18
-
19
- import numpy as np
20
- import tensorflow.compat.v2 as tf
21
-
22
- import tf_keras.src as keras
23
- from tf_keras.src.layers.preprocessing import category_encoding
24
-
25
-
26
- class BenchmarkLayer(tf.test.Benchmark):
27
- """Benchmark the layer forward pass."""
28
-
29
- def run_dataset_implementation(
30
- self, output_mode, batch_size, sequence_length, max_tokens
31
- ):
32
- input_t = keras.Input(shape=(sequence_length,), dtype=tf.int32)
33
- layer = category_encoding.CategoryEncoding(
34
- max_tokens=max_tokens, output_mode=output_mode
35
- )
36
- _ = layer(input_t)
37
-
38
- num_repeats = 5
39
- starts = []
40
- ends = []
41
- for _ in range(num_repeats):
42
- ds = tf.data.Dataset.from_tensor_slices(
43
- tf.random.uniform(
44
- [batch_size * 10, sequence_length],
45
- minval=0,
46
- maxval=max_tokens - 1,
47
- dtype=tf.int32,
48
- )
49
- )
50
- ds = ds.shuffle(batch_size * 100)
51
- ds = ds.batch(batch_size)
52
- num_batches = 5
53
- ds = ds.take(num_batches)
54
- ds = ds.prefetch(num_batches)
55
- starts.append(time.time())
56
- # Benchmarked code begins here.
57
- for i in ds:
58
- _ = layer(i)
59
- # Benchmarked code ends here.
60
- ends.append(time.time())
61
-
62
- avg_time = np.mean(np.array(ends) - np.array(starts)) / num_batches
63
- name = "category_encoding|batch_%s|seq_length_%s|%s_max_tokens" % (
64
- batch_size,
65
- sequence_length,
66
- max_tokens,
67
- )
68
- self.report_benchmark(iters=num_repeats, wall_time=avg_time, name=name)
69
-
70
- def benchmark_vocab_size_by_batch(self):
71
- for batch in [32, 256, 2048]:
72
- for sequence_length in [10, 1000]:
73
- for num_tokens in [100, 1000, 20000]:
74
- self.run_dataset_implementation(
75
- output_mode="count",
76
- batch_size=batch,
77
- sequence_length=sequence_length,
78
- max_tokens=num_tokens,
79
- )
80
-
81
-
82
- if __name__ == "__main__":
83
- tf.test.main()
84
-
@@ -1,89 +0,0 @@
1
- # Copyright 2020 The TensorFlow Authors. All Rights Reserved.
2
- #
3
- # Licensed under the Apache License, Version 2.0 (the "License");
4
- # you may not use this file except in compliance with the License.
5
- # You may obtain a copy of the License at
6
- #
7
- # http://www.apache.org/licenses/LICENSE-2.0
8
- #
9
- # Unless required by applicable law or agreed to in writing, software
10
- # distributed under the License is distributed on an "AS IS" BASIS,
11
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
- # See the License for the specific language governing permissions and
13
- # limitations under the License.
14
- # ==============================================================================
15
- """Benchmark for KPL implementation of categorical hash columns with dense
16
- inputs."""
17
-
18
- import tensorflow.compat.v2 as tf
19
-
20
- import tf_keras.src as keras
21
- from tf_keras.src.layers.preprocessing import hashing
22
- from tf_keras.src.layers.preprocessing.benchmarks import (
23
- feature_column_benchmark as fc_bm,
24
- )
25
-
26
- # isort: off
27
- from tensorflow.python.eager.def_function import (
28
- function as tf_function,
29
- )
30
-
31
- NUM_REPEATS = 10
32
- BATCH_SIZES = [32, 256]
33
-
34
-
35
- def embedding_varlen(batch_size, max_length):
36
- """Benchmark a variable-length embedding."""
37
- # Data and constants.
38
-
39
- num_buckets = 10000
40
- vocab = fc_bm.create_vocabulary(32768)
41
- data = fc_bm.create_string_data(
42
- max_length, batch_size * NUM_REPEATS, vocab, pct_oov=0.0
43
- )
44
-
45
- # TF-Keras implementation
46
- model = keras.Sequential()
47
- model.add(keras.Input(shape=(max_length,), name="data", dtype=tf.string))
48
- model.add(hashing.Hashing(num_buckets))
49
-
50
- # FC implementation
51
- fc = tf.feature_column.sequence_categorical_column_with_hash_bucket(
52
- "data", num_buckets
53
- )
54
-
55
- # Wrap the FC implementation in a tf.function for a fair comparison
56
- @tf_function()
57
- def fc_fn(tensors):
58
- fc.transform_feature(
59
- tf.__internal__.feature_column.FeatureTransformationCache(tensors),
60
- None,
61
- )
62
-
63
- # Benchmark runs
64
- keras_data = {
65
- "data": data.to_tensor(default_value="", shape=(batch_size, max_length))
66
- }
67
- k_avg_time = fc_bm.run_keras(keras_data, model, batch_size, NUM_REPEATS)
68
-
69
- fc_data = {
70
- "data": data.to_tensor(default_value="", shape=(batch_size, max_length))
71
- }
72
- fc_avg_time = fc_bm.run_fc(fc_data, fc_fn, batch_size, NUM_REPEATS)
73
-
74
- return k_avg_time, fc_avg_time
75
-
76
-
77
- class BenchmarkLayer(fc_bm.LayerBenchmark):
78
- """Benchmark the layer forward pass."""
79
-
80
- def benchmark_layer(self):
81
- for batch in BATCH_SIZES:
82
- name = f"hash|dense|batch_{batch}"
83
- k_time, f_time = embedding_varlen(batch_size=batch, max_length=256)
84
- self.report(name, k_time, f_time, NUM_REPEATS)
85
-
86
-
87
- if __name__ == "__main__":
88
- tf.test.main()
89
-
@@ -1,89 +0,0 @@
1
- # Copyright 2020 The TensorFlow Authors. All Rights Reserved.
2
- #
3
- # Licensed under the Apache License, Version 2.0 (the "License");
4
- # you may not use this file except in compliance with the License.
5
- # You may obtain a copy of the License at
6
- #
7
- # http://www.apache.org/licenses/LICENSE-2.0
8
- #
9
- # Unless required by applicable law or agreed to in writing, software
10
- # distributed under the License is distributed on an "AS IS" BASIS,
11
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
- # See the License for the specific language governing permissions and
13
- # limitations under the License.
14
- # ==============================================================================
15
- """Benchmark for KPL implementation of categorical hash columns with
16
- varying-length inputs."""
17
-
18
- import tensorflow.compat.v2 as tf
19
-
20
- import tf_keras.src as keras
21
- from tf_keras.src.layers.preprocessing import hashing
22
- from tf_keras.src.layers.preprocessing.benchmarks import (
23
- feature_column_benchmark as fc_bm,
24
- )
25
-
26
- # isort: off
27
- from tensorflow.python.eager.def_function import (
28
- function as tf_function,
29
- )
30
-
31
- NUM_REPEATS = 10
32
- BATCH_SIZES = [32, 256]
33
-
34
-
35
- def embedding_varlen(batch_size, max_length):
36
- """Benchmark a variable-length embedding."""
37
- # Data and constants.
38
-
39
- num_buckets = 10000
40
- vocab = fc_bm.create_vocabulary(32768)
41
- data = fc_bm.create_string_data(
42
- max_length, batch_size * NUM_REPEATS, vocab, pct_oov=0.0
43
- )
44
-
45
- # TF-Keras implementation
46
- model = keras.Sequential()
47
- model.add(
48
- keras.Input(
49
- shape=(max_length,), name="data", ragged=True, dtype=tf.string
50
- )
51
- )
52
- model.add(hashing.Hashing(num_buckets))
53
-
54
- # FC implementation
55
- fc = tf.feature_column.categorical_column_with_hash_bucket(
56
- "data", num_buckets
57
- )
58
-
59
- # Wrap the FC implementation in a tf.function for a fair comparison
60
- @tf_function()
61
- def fc_fn(tensors):
62
- fc.transform_feature(
63
- tf.__internal__.feature_column.FeatureTransformationCache(tensors),
64
- None,
65
- )
66
-
67
- # Benchmark runs
68
- keras_data = {"data": data}
69
- k_avg_time = fc_bm.run_keras(keras_data, model, batch_size, NUM_REPEATS)
70
-
71
- fc_data = {"data": data.to_sparse()}
72
- fc_avg_time = fc_bm.run_fc(fc_data, fc_fn, batch_size, NUM_REPEATS)
73
-
74
- return k_avg_time, fc_avg_time
75
-
76
-
77
- class BenchmarkLayer(fc_bm.LayerBenchmark):
78
- """Benchmark the layer forward pass."""
79
-
80
- def benchmark_layer(self):
81
- for batch in BATCH_SIZES:
82
- name = f"hash|varlen|batch_{batch}"
83
- k_time, f_time = embedding_varlen(batch_size=batch, max_length=256)
84
- self.report(name, k_time, f_time, NUM_REPEATS)
85
-
86
-
87
- if __name__ == "__main__":
88
- tf.test.main()
89
-