tf-keras-nightly 2.19.0.dev2024121210__py3-none-any.whl → 2.21.0.dev2025123010__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- tf_keras/__init__.py +1 -1
- tf_keras/protobuf/projector_config_pb2.py +23 -12
- tf_keras/protobuf/saved_metadata_pb2.py +21 -10
- tf_keras/protobuf/versions_pb2.py +19 -8
- tf_keras/src/__init__.py +1 -1
- tf_keras/src/backend.py +1 -1
- tf_keras/src/datasets/boston_housing.py +14 -5
- tf_keras/src/datasets/cifar10.py +9 -1
- tf_keras/src/datasets/cifar100.py +7 -1
- tf_keras/src/datasets/fashion_mnist.py +16 -4
- tf_keras/src/datasets/imdb.py +8 -0
- tf_keras/src/datasets/mnist.py +9 -3
- tf_keras/src/datasets/reuters.py +8 -0
- tf_keras/src/engine/base_layer.py +235 -97
- tf_keras/src/engine/base_layer_utils.py +17 -5
- tf_keras/src/engine/base_layer_v1.py +12 -3
- tf_keras/src/engine/data_adapter.py +35 -19
- tf_keras/src/engine/functional.py +36 -15
- tf_keras/src/engine/input_layer.py +9 -0
- tf_keras/src/engine/input_spec.py +11 -1
- tf_keras/src/engine/sequential.py +29 -12
- tf_keras/src/layers/activation/softmax.py +26 -11
- tf_keras/src/layers/attention/multi_head_attention.py +8 -1
- tf_keras/src/layers/core/tf_op_layer.py +4 -0
- tf_keras/src/layers/normalization/spectral_normalization.py +29 -22
- tf_keras/src/layers/rnn/cell_wrappers.py +13 -1
- tf_keras/src/metrics/confusion_metrics.py +51 -4
- tf_keras/src/models/sharpness_aware_minimization.py +17 -7
- tf_keras/src/preprocessing/sequence.py +2 -2
- tf_keras/src/saving/legacy/saved_model/save_impl.py +28 -12
- tf_keras/src/saving/legacy/saving_utils.py +14 -2
- tf_keras/src/saving/saving_api.py +18 -5
- tf_keras/src/saving/saving_lib.py +1 -1
- tf_keras/src/utils/layer_utils.py +45 -3
- tf_keras/src/utils/metrics_utils.py +4 -1
- tf_keras/src/utils/tf_utils.py +2 -2
- {tf_keras_nightly-2.19.0.dev2024121210.dist-info → tf_keras_nightly-2.21.0.dev2025123010.dist-info}/METADATA +14 -3
- {tf_keras_nightly-2.19.0.dev2024121210.dist-info → tf_keras_nightly-2.21.0.dev2025123010.dist-info}/RECORD +40 -62
- {tf_keras_nightly-2.19.0.dev2024121210.dist-info → tf_keras_nightly-2.21.0.dev2025123010.dist-info}/WHEEL +1 -1
- tf_keras/src/layers/preprocessing/benchmarks/bucketized_column_dense_benchmark.py +0 -85
- tf_keras/src/layers/preprocessing/benchmarks/category_encoding_benchmark.py +0 -84
- tf_keras/src/layers/preprocessing/benchmarks/category_hash_dense_benchmark.py +0 -89
- tf_keras/src/layers/preprocessing/benchmarks/category_hash_varlen_benchmark.py +0 -89
- tf_keras/src/layers/preprocessing/benchmarks/category_vocab_file_dense_benchmark.py +0 -110
- tf_keras/src/layers/preprocessing/benchmarks/category_vocab_file_varlen_benchmark.py +0 -103
- tf_keras/src/layers/preprocessing/benchmarks/category_vocab_list_dense_benchmark.py +0 -87
- tf_keras/src/layers/preprocessing/benchmarks/category_vocab_list_indicator_dense_benchmark.py +0 -96
- tf_keras/src/layers/preprocessing/benchmarks/category_vocab_list_indicator_varlen_benchmark.py +0 -96
- tf_keras/src/layers/preprocessing/benchmarks/category_vocab_list_varlen_benchmark.py +0 -87
- tf_keras/src/layers/preprocessing/benchmarks/discretization_adapt_benchmark.py +0 -109
- tf_keras/src/layers/preprocessing/benchmarks/embedding_dense_benchmark.py +0 -86
- tf_keras/src/layers/preprocessing/benchmarks/embedding_varlen_benchmark.py +0 -89
- tf_keras/src/layers/preprocessing/benchmarks/hashed_crossing_benchmark.py +0 -90
- tf_keras/src/layers/preprocessing/benchmarks/hashing_benchmark.py +0 -105
- tf_keras/src/layers/preprocessing/benchmarks/image_preproc_benchmark.py +0 -159
- tf_keras/src/layers/preprocessing/benchmarks/index_lookup_adapt_benchmark.py +0 -135
- tf_keras/src/layers/preprocessing/benchmarks/index_lookup_forward_benchmark.py +0 -144
- tf_keras/src/layers/preprocessing/benchmarks/normalization_adapt_benchmark.py +0 -124
- tf_keras/src/layers/preprocessing/benchmarks/weighted_embedding_varlen_benchmark.py +0 -99
- tf_keras/src/saving/legacy/saved_model/create_test_saved_model.py +0 -37
- tf_keras/src/tests/keras_doctest.py +0 -159
- {tf_keras_nightly-2.19.0.dev2024121210.dist-info → tf_keras_nightly-2.21.0.dev2025123010.dist-info}/top_level.txt +0 -0
|
@@ -1,4 +1,4 @@
|
|
|
1
|
-
tf_keras/__init__.py,sha256=
|
|
1
|
+
tf_keras/__init__.py,sha256=o1qbOe_ffzZ4LRxDpb9Ga8DP1A89Fhr9103F88EajA4,911
|
|
2
2
|
tf_keras/__internal__/__init__.py,sha256=OHQbeIC0QtRBI7dgXaJaVbH8F00x8dCI-DvEcIfyMsE,671
|
|
3
3
|
tf_keras/__internal__/backend/__init__.py,sha256=LnMs2A6685gDG79fxqmdulIYlVE_3WmXlBTBo9ZWYcw,162
|
|
4
4
|
tf_keras/__internal__/layers/__init__.py,sha256=F5SGMhOTPzm-PR44VrfinURHcVeQPIEdwnZlAkSTB3A,176
|
|
@@ -201,14 +201,14 @@ tf_keras/preprocessing/image/__init__.py,sha256=H6rbMLtlGIy_jBLCSDklVTMXUjEUe8KQ
|
|
|
201
201
|
tf_keras/preprocessing/sequence/__init__.py,sha256=Zg9mw0TIRIc-BmVtdXvW3jdIQo05VHZX_xmqZDMuaik,285
|
|
202
202
|
tf_keras/preprocessing/text/__init__.py,sha256=1yQd-VZD6SjnEpPyBFLucYMxu9A5DnAnIec2tba9zQk,329
|
|
203
203
|
tf_keras/protobuf/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
204
|
-
tf_keras/protobuf/projector_config_pb2.py,sha256=
|
|
205
|
-
tf_keras/protobuf/saved_metadata_pb2.py,sha256=
|
|
206
|
-
tf_keras/protobuf/versions_pb2.py,sha256=
|
|
204
|
+
tf_keras/protobuf/projector_config_pb2.py,sha256=Qn_IXcjH7GYRpehPH4hznWxGDPn_No8kLTJHWkkCAu4,2208
|
|
205
|
+
tf_keras/protobuf/saved_metadata_pb2.py,sha256=nI5xD26EgxUpHE2JyJsyDEHi6O8Tunue9j_JN9BUX08,1946
|
|
206
|
+
tf_keras/protobuf/versions_pb2.py,sha256=0XsJrhgwioUlNc4hdeJ8tee3tWSTvZnLEwJd--wAVr4,1450
|
|
207
207
|
tf_keras/regularizers/__init__.py,sha256=D6TnroEDjnyP79TY_624g2DToxVWuKzuaiBAn_gUQaY,634
|
|
208
208
|
tf_keras/saving/__init__.py,sha256=Xo0imlDhiYV7Rowy8BjMwrFJuAB8h2DdIuVcxvaeEa0,681
|
|
209
|
-
tf_keras/src/__init__.py,sha256=
|
|
209
|
+
tf_keras/src/__init__.py,sha256=p7hwxQsHJzS7Qq-OTj-gcJgsGn9bw5FN9IQ03yQO_Ls,1502
|
|
210
210
|
tf_keras/src/activations.py,sha256=QNTCdIuNGww5BPwkkjkaNZf4j09m27Nqi-r4aTBOxnk,22630
|
|
211
|
-
tf_keras/src/backend.py,sha256
|
|
211
|
+
tf_keras/src/backend.py,sha256=-_L2aB0n9ZkFsRoivRX-BjGxBpJG27PunUm9DzN0fvU,248509
|
|
212
212
|
tf_keras/src/backend_config.py,sha256=DaKkQg6jLmzR2GtgjNxwFoHuTXwVcAzx_Hx8XgAKPNs,4516
|
|
213
213
|
tf_keras/src/callbacks.py,sha256=NTfP_-gtstxjrT8LduyXWm6_ThW9vCBjoK7YHYllCqU,134312
|
|
214
214
|
tf_keras/src/callbacks_v1.py,sha256=iT1NSRgN0Yw3joDTB3uKy4bEzb6Az6E5CTNH77wElUs,22154
|
|
@@ -239,14 +239,14 @@ tf_keras/src/benchmarks/benchmark_util.py,sha256=Hxepqy7JPolebZo5xxWE4UXZ7WmyAYg
|
|
|
239
239
|
tf_keras/src/benchmarks/distribution_util.py,sha256=mbnbRlgDGzJTqhdQw4fRIPhT2JztDviJgXT86MfQEEc,6567
|
|
240
240
|
tf_keras/src/benchmarks/model_memory_profile.py,sha256=9CMMHvW02qWFPN9lFNXY3w-rQfdLT5IQeWZ34K1v6fE,2248
|
|
241
241
|
tf_keras/src/datasets/__init__.py,sha256=YSVzC5NDV0KgkQwLZqJgWHuVZRkXkAdEVKlRs73RFXo,51
|
|
242
|
-
tf_keras/src/datasets/boston_housing.py,sha256=
|
|
242
|
+
tf_keras/src/datasets/boston_housing.py,sha256=7mK_B-HjLdHBiQ-uGX6deQUpnYF3zPPTEBSWuxjIymc,3670
|
|
243
243
|
tf_keras/src/datasets/cifar.py,sha256=mMMwDOf7IYGeVlLemhiA_RSXzSF3CuwFllGpokh-pKs,1394
|
|
244
|
-
tf_keras/src/datasets/cifar10.py,sha256=
|
|
245
|
-
tf_keras/src/datasets/cifar100.py,sha256=
|
|
246
|
-
tf_keras/src/datasets/fashion_mnist.py,sha256=
|
|
247
|
-
tf_keras/src/datasets/imdb.py,sha256=
|
|
248
|
-
tf_keras/src/datasets/mnist.py,sha256=
|
|
249
|
-
tf_keras/src/datasets/reuters.py,sha256=
|
|
244
|
+
tf_keras/src/datasets/cifar10.py,sha256=geRUHLtpFX8anDORscmrktlmfD_WVT6hW2SDVhzgx8U,4050
|
|
245
|
+
tf_keras/src/datasets/cifar100.py,sha256=fa7hntiBxIny7qwhrm6pXl8dlh0SN1891s_QghAko1o,3833
|
|
246
|
+
tf_keras/src/datasets/fashion_mnist.py,sha256=65VWDipkXL9QQCOpjdzyrFo3TLJL62iFjpxYsuL_jmw,4009
|
|
247
|
+
tf_keras/src/datasets/imdb.py,sha256=sx35dNz7cBfvI8ZZetYvaE7zRg23j1gWWEFCBNzOzUA,8580
|
|
248
|
+
tf_keras/src/datasets/mnist.py,sha256=sJe_BNuWNFS03hH5GWOYE6M258NXpxEcjKnhufEh7R0,3352
|
|
249
|
+
tf_keras/src/datasets/reuters.py,sha256=_5TNTUzK3roIr1K3GLjR16QtJ4ch_FRYeEIJzM7hcB0,8599
|
|
250
250
|
tf_keras/src/distribute/__init__.py,sha256=DbbsbJOIWEtjQiv6Stq1KEVvnoAK-E5-Zdkd2FhBZiI,734
|
|
251
251
|
tf_keras/src/distribute/dataset_creator_model_fit_test_base.py,sha256=e2RnS8nnCKWZDReVKNWvxjIjVZhdPLMe0xh_ydHPqaM,8547
|
|
252
252
|
tf_keras/src/distribute/distribute_coordinator_utils.py,sha256=WzJM0rkbxvs-ES2DvJhhf0bKpdG4fNqJBcxU-BrY6Es,29244
|
|
@@ -271,21 +271,21 @@ tf_keras/src/dtensor/lazy_variable.py,sha256=c3yylbga0se3Geflutss3fz5RzBYuY2vkU3
|
|
|
271
271
|
tf_keras/src/dtensor/test_util.py,sha256=9QAbt44mlirdqwG2ertTsoXNKG2V4Z0bqJFxGdxy5BY,4572
|
|
272
272
|
tf_keras/src/dtensor/utils.py,sha256=2TTSCEOA61Ia1FAPfQWJ2CRfiocBGUZreXH9UBFzFbk,6441
|
|
273
273
|
tf_keras/src/engine/__init__.py,sha256=AbpHGcgLb-kRsJGnwFEktk7uzpZOCcBY74-YBdrKVGs,1
|
|
274
|
-
tf_keras/src/engine/base_layer.py,sha256=
|
|
275
|
-
tf_keras/src/engine/base_layer_utils.py,sha256=
|
|
276
|
-
tf_keras/src/engine/base_layer_v1.py,sha256=
|
|
274
|
+
tf_keras/src/engine/base_layer.py,sha256=r_0g7rX2WA7-fThh3sjFqNZgSTEuR1CTsW4FrZMMI6s,162338
|
|
275
|
+
tf_keras/src/engine/base_layer_utils.py,sha256=AFjqwXM-WShf0dfsyIotlXYIRJlqYyjQhAf50xZgyos,36166
|
|
276
|
+
tf_keras/src/engine/base_layer_v1.py,sha256=MMfdUKB8tjbjjX9Pj5b6E5XgrM-BnVx0ilSndcR_3QA,102875
|
|
277
277
|
tf_keras/src/engine/base_preprocessing_layer.py,sha256=xne5VVtj9_IE1_cjh-kaPk-utoMY7mYwTOcgybFfY34,12650
|
|
278
278
|
tf_keras/src/engine/compile_utils.py,sha256=F6KxbaXnppns5XCOJl8wzsiQ1riEp43s0G0SWsWAUE0,31757
|
|
279
|
-
tf_keras/src/engine/data_adapter.py,sha256=
|
|
280
|
-
tf_keras/src/engine/functional.py,sha256=
|
|
279
|
+
tf_keras/src/engine/data_adapter.py,sha256=N5UV4KYF-F7YJdB5kHR8pACSrFlSqQte_DsmA8Ksa6Y,72257
|
|
280
|
+
tf_keras/src/engine/functional.py,sha256=ojvj0DkGrnqd16dEIqj2AgFlmxB2s6e-3qjs78fN85E,71006
|
|
281
281
|
tf_keras/src/engine/functional_utils.py,sha256=5creFfo9UoG5OLJgkcw9gsfT-qch-RamT5IsU8675rU,11048
|
|
282
|
-
tf_keras/src/engine/input_layer.py,sha256=
|
|
283
|
-
tf_keras/src/engine/input_spec.py,sha256=
|
|
282
|
+
tf_keras/src/engine/input_layer.py,sha256=SRoRYG_PElMRMAypjeQRZ_0Ub4tu5jdRc6ASL59BAsY,18650
|
|
283
|
+
tf_keras/src/engine/input_spec.py,sha256=H2U8yNz7eabUozm4QAcL3XcQoxj6iAwvK6ecU7w8O5g,12455
|
|
284
284
|
tf_keras/src/engine/keras_tensor.py,sha256=rmIyf-sMKzGAMXzob0hCTZ3qA4JBYyIM85XUdmOPmqQ,28858
|
|
285
285
|
tf_keras/src/engine/node.py,sha256=mevKNFEtzeVbwLRuwB7sMzQGKt6ppIxLmMcfQMzu8N8,14254
|
|
286
286
|
tf_keras/src/engine/partial_batch_padding_handler.py,sha256=TNZvGXL-fvmZLLHIMPX_hy0w9LT8W52DHW7ZtnEvBvI,4325
|
|
287
287
|
tf_keras/src/engine/saving.py,sha256=So_T5PRjCOLzpOPGHNBiTCOrNvqvvGNK8AwZBwFQCbs,853
|
|
288
|
-
tf_keras/src/engine/sequential.py,sha256=
|
|
288
|
+
tf_keras/src/engine/sequential.py,sha256=YZaO53uU2XWmAa4wMjZ6XLiO2O5lPnYZ4IEeDCQAxqA,23675
|
|
289
289
|
tf_keras/src/engine/training.py,sha256=eaEAV4OaV_0NmwIi_Upm-bZQKBzyCl_ilSFZ3Cinvqg,193232
|
|
290
290
|
tf_keras/src/engine/training_arrays_v1.py,sha256=Fn_PY4_7miHhmkhXoNJS42LEpQDZ0VWOyNGv5m2DKNE,30903
|
|
291
291
|
tf_keras/src/engine/training_distributed_v1.py,sha256=niN6TZ1DpXkWGUA7CWH6--VxFRLlX48RnqkGpHym4fE,32084
|
|
@@ -314,13 +314,13 @@ tf_keras/src/layers/activation/elu.py,sha256=n-WAE6NjC9mbqcV7Kxgpt8tTbvwCQIGsoCV
|
|
|
314
314
|
tf_keras/src/layers/activation/leaky_relu.py,sha256=cJmpwgg4KEu--iK9gFuJT7uEGpDArB8q-XNBmJfC7_U,2618
|
|
315
315
|
tf_keras/src/layers/activation/prelu.py,sha256=D2yhneQrYQP6aHSK8nvnMKa1hIeuPZO_XCB2Cu9Cl4Y,4440
|
|
316
316
|
tf_keras/src/layers/activation/relu.py,sha256=JklQuReRiR3huAGr3QRtuGL0URpdspDFzBNjZgv0HDw,4281
|
|
317
|
-
tf_keras/src/layers/activation/softmax.py,sha256=
|
|
317
|
+
tf_keras/src/layers/activation/softmax.py,sha256=0g8uN5N8QDW8lj6nGabR-EBk58njbiNdhDzglv9rxXU,4861
|
|
318
318
|
tf_keras/src/layers/activation/thresholded_relu.py,sha256=rQLn9cr-w6hVJET2mS7OIQ9diiUiqUrX4CysXKNYbmg,2503
|
|
319
319
|
tf_keras/src/layers/attention/__init__.py,sha256=6HjPSyLhs_bf4erT65KyhSCHQF7WeWZe9YTH7iW6Nek,945
|
|
320
320
|
tf_keras/src/layers/attention/additive_attention.py,sha256=jie0cAXJEjU4xXK_Ur1SrEL9RqDIIAPyaAkK8O71TEs,7485
|
|
321
321
|
tf_keras/src/layers/attention/attention.py,sha256=TCnoOWAfh6i275TvudxyjosczBmL_zz9ByEUi-xXkAU,8682
|
|
322
322
|
tf_keras/src/layers/attention/base_dense_attention.py,sha256=cEzBldjwQfuJfNZRimW5s-NqyENU2-lmqaNNxAGxhKw,10856
|
|
323
|
-
tf_keras/src/layers/attention/multi_head_attention.py,sha256=
|
|
323
|
+
tf_keras/src/layers/attention/multi_head_attention.py,sha256=FQX0YtXRy5kg8OlShA7cp2kfczzeWb9Oj3tbzkukLRw,30618
|
|
324
324
|
tf_keras/src/layers/convolutional/__init__.py,sha256=U-4tja5JhSUva2G9uMmsZyZty2N2N9jT6EJRu5HAo-Y,3355
|
|
325
325
|
tf_keras/src/layers/convolutional/base_conv.py,sha256=jvm4elEyIVSNfYZxh4inzQ1Q2CKS_f8VawvXMIJFSC4,17574
|
|
326
326
|
tf_keras/src/layers/convolutional/base_depthwise_conv.py,sha256=SVgR2Y8dpeX4eDEF1e0UY0Mxh4A47eGHhJCQ1peGwNQ,9661
|
|
@@ -343,7 +343,7 @@ tf_keras/src/layers/core/embedding.py,sha256=iOdkBiP1IzwOVPjsKWA54NXrlk5KgJ0DfQ8
|
|
|
343
343
|
tf_keras/src/layers/core/identity.py,sha256=yj5cWlUTlYq_J_ZQb1iLzM0bqaM4V6TXVwM4iuBFp9U,1301
|
|
344
344
|
tf_keras/src/layers/core/lambda_layer.py,sha256=QzetX-lV9ybonQKg_6QzSm8w9Vkq8CPAM4BcAke7CZk,16481
|
|
345
345
|
tf_keras/src/layers/core/masking.py,sha256=19p6HYGlKdUfQnelsAoee6wf87fWx67NSGinyjagNc4,3340
|
|
346
|
-
tf_keras/src/layers/core/tf_op_layer.py,sha256=
|
|
346
|
+
tf_keras/src/layers/core/tf_op_layer.py,sha256=R6dFECVkPbmKi1nQVcxJy5lNxSVwiMlaWXB7j0PjI7Q,21320
|
|
347
347
|
tf_keras/src/layers/experimental/__init__.py,sha256=AbpHGcgLb-kRsJGnwFEktk7uzpZOCcBY74-YBdrKVGs,1
|
|
348
348
|
tf_keras/src/layers/experimental/dynamic_embedding.py,sha256=KuVIawm3avPEa5c2IDOyBH14xiU5bYbPqcm_HugfWYA,10730
|
|
349
349
|
tf_keras/src/layers/experimental/dynamic_lookup.py,sha256=CMNOaxAIkB1ChPcusuymhLAYTvobEbCBli6YkuWw8RE,13720
|
|
@@ -366,7 +366,7 @@ tf_keras/src/layers/normalization/batch_normalization.py,sha256=RdFwlFhXj4i612oy
|
|
|
366
366
|
tf_keras/src/layers/normalization/batch_normalization_v1.py,sha256=7I8SioqbqZzLvCXGRiiSbbiUeeQsNMfrlils1CEm61Y,1191
|
|
367
367
|
tf_keras/src/layers/normalization/group_normalization.py,sha256=nqAW5vM96uqBcgF0jea-DkPcHixfbbzC3B2lyFHqNEg,10028
|
|
368
368
|
tf_keras/src/layers/normalization/layer_normalization.py,sha256=YvZsvSwZsBxP9O7K-f4orTSz69ADiPRIygqLq4kUI7k,14022
|
|
369
|
-
tf_keras/src/layers/normalization/spectral_normalization.py,sha256=
|
|
369
|
+
tf_keras/src/layers/normalization/spectral_normalization.py,sha256=38hAYFl_OrntMrbmvqDSFv4gE-T2LcnaipcJ5pHeUpI,5192
|
|
370
370
|
tf_keras/src/layers/normalization/unit_normalization.py,sha256=zFHpHet8htHl7sLXQJ_nFecyZLU3fMrspq5V8STYgQs,2634
|
|
371
371
|
tf_keras/src/layers/pooling/__init__.py,sha256=6WvDC0BWmYKwJlurf_1QFRNAHW-kqEy4NI63K4XWzVc,2590
|
|
372
372
|
tf_keras/src/layers/pooling/average_pooling1d.py,sha256=dIHOp6wvO9JfQ9SzndiElI-oc_TEh4rCNMVBh_zBRB8,4998
|
|
@@ -402,27 +402,7 @@ tf_keras/src/layers/preprocessing/preprocessing_utils.py,sha256=OR8NDGv8foDT2Ngv
|
|
|
402
402
|
tf_keras/src/layers/preprocessing/string_lookup.py,sha256=2yqsgps42qMd6MB6vwBevionU7dh77OQdLburmn90b0,19179
|
|
403
403
|
tf_keras/src/layers/preprocessing/text_vectorization.py,sha256=mL6sHm3TPXKg8q51vEWyo7LYKyiEoQFzm7GUkrSS-6E,30467
|
|
404
404
|
tf_keras/src/layers/preprocessing/benchmarks/__init__.py,sha256=AbpHGcgLb-kRsJGnwFEktk7uzpZOCcBY74-YBdrKVGs,1
|
|
405
|
-
tf_keras/src/layers/preprocessing/benchmarks/bucketized_column_dense_benchmark.py,sha256=ZKFxRPRDx9VYUzu3k42DO2hrN9Ve9UNLPYEraN3BU94,2845
|
|
406
|
-
tf_keras/src/layers/preprocessing/benchmarks/category_encoding_benchmark.py,sha256=IEdxK6eQa1YdxgmOQ13YBeJ94afFWfGazAO6NvfxJ5w,2949
|
|
407
|
-
tf_keras/src/layers/preprocessing/benchmarks/category_hash_dense_benchmark.py,sha256=yoGE5ofB7fspimQ1ImShs5KguNGUQ_JpsGYPLZS1gpQ,2809
|
|
408
|
-
tf_keras/src/layers/preprocessing/benchmarks/category_hash_varlen_benchmark.py,sha256=5b80c35WGpWEXgv2lutqVVuS52mWiD6Cyw1ZA6KkseU,2723
|
|
409
|
-
tf_keras/src/layers/preprocessing/benchmarks/category_vocab_file_dense_benchmark.py,sha256=SPmA9yXH3dr6uHfs1IsAkrjNo02YgyfmWrt24pl6ROs,3588
|
|
410
|
-
tf_keras/src/layers/preprocessing/benchmarks/category_vocab_file_varlen_benchmark.py,sha256=JAM0X1lBkZd7KYtBFaBP2HfxxB3Uj7Ik7WeFhajbwNo,3437
|
|
411
|
-
tf_keras/src/layers/preprocessing/benchmarks/category_vocab_list_dense_benchmark.py,sha256=y0RR1TMq5PUv4Jlh7jMmQrJWsjDtgDivsqTeEMi6ovI,2863
|
|
412
|
-
tf_keras/src/layers/preprocessing/benchmarks/category_vocab_list_indicator_dense_benchmark.py,sha256=lyfRE8NP3gLfTDnIzucPqjMiLAOCEUS-pSwa1f7EXLM,3169
|
|
413
|
-
tf_keras/src/layers/preprocessing/benchmarks/category_vocab_list_indicator_varlen_benchmark.py,sha256=Ebx54Qo5ec-Sys5bPhp1KaVtmWsQxpNotzxxpxtfBPg,3101
|
|
414
|
-
tf_keras/src/layers/preprocessing/benchmarks/category_vocab_list_varlen_benchmark.py,sha256=WkDOo5borQYk78xKbnsh7tcEZyjrDEGb7NnTkYzoM18,2795
|
|
415
|
-
tf_keras/src/layers/preprocessing/benchmarks/discretization_adapt_benchmark.py,sha256=UD48alO_v-Vb8naluZtPozU7U4Oy-1WPSV1oqhzl-Yk,3776
|
|
416
|
-
tf_keras/src/layers/preprocessing/benchmarks/embedding_dense_benchmark.py,sha256=PB7D3pFmVxlxZ4tKO7N-NB-wfJ0KY8B4RpAy_BZG01A,2836
|
|
417
|
-
tf_keras/src/layers/preprocessing/benchmarks/embedding_varlen_benchmark.py,sha256=-fif0N3JPQT9fIwmpj-XE2eJif21sK2TsC6fri7ZuWI,2831
|
|
418
405
|
tf_keras/src/layers/preprocessing/benchmarks/feature_column_benchmark.py,sha256=cSSHeEGH1dhxR3UJiCFZUgFeRZHd25eDUMRmKE140is,4814
|
|
419
|
-
tf_keras/src/layers/preprocessing/benchmarks/hashed_crossing_benchmark.py,sha256=QV4n0f2j5b1Us-D2NHMA7WMRuUeMyiZpg-FAEopK0qs,2835
|
|
420
|
-
tf_keras/src/layers/preprocessing/benchmarks/hashing_benchmark.py,sha256=wV16NUaNLfYZVwZCuMiX7JN9YDmbqyxaWHERo_uFJoE,3624
|
|
421
|
-
tf_keras/src/layers/preprocessing/benchmarks/image_preproc_benchmark.py,sha256=x-XDwI75oIW3clnGOOmRG0Tb3hsQTx40bwxT7sj6CaE,5467
|
|
422
|
-
tf_keras/src/layers/preprocessing/benchmarks/index_lookup_adapt_benchmark.py,sha256=LLv8vcdsphIBy5-owcABZdVSGSGMmQ7W-LmFTezO9Wc,4475
|
|
423
|
-
tf_keras/src/layers/preprocessing/benchmarks/index_lookup_forward_benchmark.py,sha256=O4e0X-yLYWpfN2pX_WshN92ygw7XqlXZfgQjeO1WjuY,4941
|
|
424
|
-
tf_keras/src/layers/preprocessing/benchmarks/normalization_adapt_benchmark.py,sha256=sB-Tcem8UdFGXnKx4HI4fLjTsIjaGJ2WAaphrxuItVc,4420
|
|
425
|
-
tf_keras/src/layers/preprocessing/benchmarks/weighted_embedding_varlen_benchmark.py,sha256=Z5k0UaPM0-VfUw9tMv4_dEhsQNDODWlfNtsZ1RHFrFI,3324
|
|
426
406
|
tf_keras/src/layers/regularization/__init__.py,sha256=9fIrtV8SwP1PG8BXfNrSP8rSyCdh4pPnV7hNvDbRysg,1369
|
|
427
407
|
tf_keras/src/layers/regularization/activity_regularization.py,sha256=QxnBlnkHi2HZ2Pt-mX5WGiJWzljNQmh-X4La9f7XDGo,1942
|
|
428
408
|
tf_keras/src/layers/regularization/alpha_dropout.py,sha256=JmMO6OHzpVtRS2Tl1fTslktQPM4MuN0ivNlCOUhH0VM,3800
|
|
@@ -454,7 +434,7 @@ tf_keras/src/layers/rnn/base_cudnn_rnn.py,sha256=cuPVg6r4L1pVWYTp3WFbJhikuIR2Vmg
|
|
|
454
434
|
tf_keras/src/layers/rnn/base_rnn.py,sha256=I7mWl4KQC26gILDt9pZ9moZ81yM57lvci6hzJ9ROrxo,41968
|
|
455
435
|
tf_keras/src/layers/rnn/base_wrapper.py,sha256=x4GANiXtmh9ztAFh7QtfbnQE76UVCGpaHp_XhrSs0Os,3159
|
|
456
436
|
tf_keras/src/layers/rnn/bidirectional.py,sha256=JyZuBU0q2lt4augThwm8vyTvYwEJxyawsHmgNIul5vU,22670
|
|
457
|
-
tf_keras/src/layers/rnn/cell_wrappers.py,sha256=
|
|
437
|
+
tf_keras/src/layers/rnn/cell_wrappers.py,sha256=fMGpdFFoRWRIuKz88NcnMvAtevv8OYHzxkF86Ltmwfk,27384
|
|
458
438
|
tf_keras/src/layers/rnn/conv_lstm1d.py,sha256=suShze6ipNXabGlKJTxkOia17ZP4SeEei3Mi4F8lFOQ,8761
|
|
459
439
|
tf_keras/src/layers/rnn/conv_lstm2d.py,sha256=myxOioB3yNn0L_-gMh0R41sb-MwTXO993lAT05_N0Zw,8874
|
|
460
440
|
tf_keras/src/layers/rnn/conv_lstm3d.py,sha256=GT4OoPFtCr5xgaaqy3ezt5DyDu8Ut-wQEihCOHFk0D4,8969
|
|
@@ -483,7 +463,7 @@ tf_keras/src/legacy_tf_layers/variable_scope_shim.py,sha256=kGAFW03pVWSB1DhHvQ1W
|
|
|
483
463
|
tf_keras/src/metrics/__init__.py,sha256=dM8S0ZhfiyPaXkdYuOSKvoytmYOkh8aYuJnpgUoT6vg,9699
|
|
484
464
|
tf_keras/src/metrics/accuracy_metrics.py,sha256=RRQqyYZcVrEY2Pfc-OV6k3rYhv9ejSLJ9JbJzs_D5vk,17514
|
|
485
465
|
tf_keras/src/metrics/base_metric.py,sha256=MCaI7Bx-kgs5udTRLvKMJ3SO90-GFs_9QMigrhkX9HQ,36498
|
|
486
|
-
tf_keras/src/metrics/confusion_metrics.py,sha256=
|
|
466
|
+
tf_keras/src/metrics/confusion_metrics.py,sha256=V1uNFUc1zyjxd-m-D83QhJ9bkbtPCfsXf3CROOPWmzs,68068
|
|
487
467
|
tf_keras/src/metrics/f_score_metrics.py,sha256=3uxqH9NNqoKaGPz-R6eERA23bK1TabCXrsJUz2sbetU,12000
|
|
488
468
|
tf_keras/src/metrics/hinge_metrics.py,sha256=QXtNdxE-IgZmdVQXIew_pN6X3aF9i7r7xirmb6oiOKA,4132
|
|
489
469
|
tf_keras/src/metrics/iou_metrics.py,sha256=dUqZpOppIPj3aCtS25Hs6bvJoPHNnrtAChujoA-6bLQ,28530
|
|
@@ -498,7 +478,7 @@ tf_keras/src/mixed_precision/policy.py,sha256=1GWHp99dU0f6D0h_jIrSQkoLyIf0ClRJ0B
|
|
|
498
478
|
tf_keras/src/mixed_precision/test_util.py,sha256=S4dDVLvFmv3OXvo-7kswO8MStwvTjP_caE3DrUhy9Po,8641
|
|
499
479
|
tf_keras/src/models/__init__.py,sha256=VQ3cZve-CsmM_4CEi9q-V7m2qFO9HbdiO38mAR4dKdM,1823
|
|
500
480
|
tf_keras/src/models/cloning.py,sha256=PHLTG0gSjvoKl8jxGaLCUq3ejK_o0PNA7gxSqxyoLBI,36839
|
|
501
|
-
tf_keras/src/models/sharpness_aware_minimization.py,sha256=
|
|
481
|
+
tf_keras/src/models/sharpness_aware_minimization.py,sha256=MArrweVZA85F1tPHZd06AVKpAdacaPplTz6eOS2XcRk,7795
|
|
502
482
|
tf_keras/src/optimizers/__init__.py,sha256=lkPBfjJhWx_0nV8MrEmjWvJTGKutM1a9nIrB0ua0O-k,13044
|
|
503
483
|
tf_keras/src/optimizers/adadelta.py,sha256=47HgdG0v-76B5htebkwl1OoryFPLO2kgk_CsYqgq7hU,6174
|
|
504
484
|
tf_keras/src/optimizers/adafactor.py,sha256=_IYi6WMyXl4nPimr15nAPWvj6ZKcP7cESFsdpeabNKQ,8651
|
|
@@ -532,24 +512,23 @@ tf_keras/src/premade_models/linear.py,sha256=K2OIV9L4YrGtFWgqZt6V41SwJzQjrqlZiYU
|
|
|
532
512
|
tf_keras/src/premade_models/wide_deep.py,sha256=u8ZDAGKDHtyRe7OOhLzUSx7h4OhGDcB4yd19Hh7Rw2I,9921
|
|
533
513
|
tf_keras/src/preprocessing/__init__.py,sha256=J_83ElwazNeTGSpg7oA1_bCCUXS6yiuWvZYUb8kogOI,1711
|
|
534
514
|
tf_keras/src/preprocessing/image.py,sha256=wRDaJrl8J3SWi3ppOcI2XhQCz14LOrgsailNSxDuDzo,104419
|
|
535
|
-
tf_keras/src/preprocessing/sequence.py,sha256=
|
|
515
|
+
tf_keras/src/preprocessing/sequence.py,sha256=gNtN_XTW3MIH5ux8bdzFvjJ161Sd_XWOVmczpmP2mnQ,13901
|
|
536
516
|
tf_keras/src/preprocessing/text.py,sha256=aomzwE3G2ErwzgL_Dj3ERA_2k7TZclaPMTBTrWd7wtI,22771
|
|
537
517
|
tf_keras/src/saving/__init__.py,sha256=AbpHGcgLb-kRsJGnwFEktk7uzpZOCcBY74-YBdrKVGs,1
|
|
538
518
|
tf_keras/src/saving/object_registration.py,sha256=N8aV6eqREYjW2ueQpL3guYHyh5KXuun3DZAlmjfYrTA,7830
|
|
539
519
|
tf_keras/src/saving/pickle_utils.py,sha256=5GtHzwNWVaYfZ-0zn69-zn2yv3R6JUwzHOOamnjP7r0,2605
|
|
540
|
-
tf_keras/src/saving/saving_api.py,sha256=
|
|
541
|
-
tf_keras/src/saving/saving_lib.py,sha256=
|
|
520
|
+
tf_keras/src/saving/saving_api.py,sha256=7uIWY4uwQMtETP5yRjZYPii-E-sWzSuK0ljVMfnZe_k,15119
|
|
521
|
+
tf_keras/src/saving/saving_lib.py,sha256=Ik1m_D1G7_Z3KMipmy5Mi8jhyWtOnJ6QbFY-VV5A2R0,24273
|
|
542
522
|
tf_keras/src/saving/serialization_lib.py,sha256=kX4qf_fRp4LySkH9FU37DMd0AXxiUrXKT-VLR3JPl7w,30152
|
|
543
523
|
tf_keras/src/saving/legacy/__init__.py,sha256=AbpHGcgLb-kRsJGnwFEktk7uzpZOCcBY74-YBdrKVGs,1
|
|
544
524
|
tf_keras/src/saving/legacy/hdf5_format.py,sha256=IqFXHN96fuqKwu_akaqTyf9ISRPavP3Ahjydat948O4,42438
|
|
545
525
|
tf_keras/src/saving/legacy/model_config.py,sha256=ZE6H_dKdmo2dlBWkr2nYO8SXcMEhshgza3sHPCpeu-k,4140
|
|
546
526
|
tf_keras/src/saving/legacy/save.py,sha256=TdjiEamZ8MAsPAWsYMEtrdCRppbHcBIwJh9eVfdUS3k,23612
|
|
547
|
-
tf_keras/src/saving/legacy/saving_utils.py,sha256=
|
|
527
|
+
tf_keras/src/saving/legacy/saving_utils.py,sha256=0iXchqZQNw9s5kB9_7SIj2p3Qd_21jdfHJQ3b3YVWQs,14042
|
|
548
528
|
tf_keras/src/saving/legacy/serialization.py,sha256=OrmHQPolQFsR-UCMxNTxkIFTKY4DKcAgMm1jdhF7TqU,22285
|
|
549
529
|
tf_keras/src/saving/legacy/saved_model/__init__.py,sha256=AbpHGcgLb-kRsJGnwFEktk7uzpZOCcBY74-YBdrKVGs,1
|
|
550
530
|
tf_keras/src/saving/legacy/saved_model/base_serialization.py,sha256=dALR19_zt4c80zVw3yjCj9wfRoJufDjCrvkJyS82Dnk,5104
|
|
551
531
|
tf_keras/src/saving/legacy/saved_model/constants.py,sha256=96ymvysCZ2Ru888YT_DEPMDgizHdDoBFGEOXsf-9AwE,1779
|
|
552
|
-
tf_keras/src/saving/legacy/saved_model/create_test_saved_model.py,sha256=mS5jmCsDwUFUKr08G0tphPSA5ZAd7illNyj3QXKejOA,1040
|
|
553
532
|
tf_keras/src/saving/legacy/saved_model/json_utils.py,sha256=WOyJaamx15lJ_V4XZSYM3RtuATa73uRNRM13o2s7yQ4,8071
|
|
554
533
|
tf_keras/src/saving/legacy/saved_model/layer_serialization.py,sha256=FQwNk2XJq8dzgoSAWrmcabglZTA-6oDPtfeLiGrZO6A,8418
|
|
555
534
|
tf_keras/src/saving/legacy/saved_model/load.py,sha256=wJUL0T4ZlUgxk3pZa_7E4NXEE3LXfjSKuGvTlrQchHc,57007
|
|
@@ -558,7 +537,7 @@ tf_keras/src/saving/legacy/saved_model/model_serialization.py,sha256=IxQ1TfBGagV
|
|
|
558
537
|
tf_keras/src/saving/legacy/saved_model/network_serialization.py,sha256=ofbKN9V3syw0AQebgy2PlvaiAHi3SnBFTg-PUgclTng,1180
|
|
559
538
|
tf_keras/src/saving/legacy/saved_model/order_preserving_set.py,sha256=zvNFzss8wSc0vngv74dNnQO_hxpxmEWWBBv1TTLsbPY,3250
|
|
560
539
|
tf_keras/src/saving/legacy/saved_model/save.py,sha256=2-AaGFhFxzfZLkIW1qx9-rTcaZvYMFkQYP7ijfwA-ZI,6395
|
|
561
|
-
tf_keras/src/saving/legacy/saved_model/save_impl.py,sha256=
|
|
540
|
+
tf_keras/src/saving/legacy/saved_model/save_impl.py,sha256=mcdNPwJYwzOsdSisgwkBEbnoSABEZdshN7BRmTttK2c,30420
|
|
562
541
|
tf_keras/src/saving/legacy/saved_model/serialized_attributes.py,sha256=nlmtIzLUBGSQU6gDKcg4-ypSRX3RbS4vPmLIhG3HSbk,15009
|
|
563
542
|
tf_keras/src/saving/legacy/saved_model/utils.py,sha256=2OCwun0U8nsZvxUbv7Toq2EeC1HU32LxnLDan8cw4Dc,9953
|
|
564
543
|
tf_keras/src/testing_infra/__init__.py,sha256=yrmnTOUMQ09fOgD3PD4NjpaeKz2OXCUmmoExRWhg9AY,690
|
|
@@ -567,7 +546,6 @@ tf_keras/src/testing_infra/test_combinations.py,sha256=ETwFTN8eBAusQpqU7dg_Qckb1
|
|
|
567
546
|
tf_keras/src/testing_infra/test_utils.py,sha256=SMEYejGPfYnZT2tVgzHL3gBHNGk6qcTu1qcZetHv870,40307
|
|
568
547
|
tf_keras/src/tests/__init__.py,sha256=AbpHGcgLb-kRsJGnwFEktk7uzpZOCcBY74-YBdrKVGs,1
|
|
569
548
|
tf_keras/src/tests/get_config_samples.py,sha256=qz2SZb_JIW2NoTak9NphLJkDTgYmlQ5RNm64T9wQ6L8,15307
|
|
570
|
-
tf_keras/src/tests/keras_doctest.py,sha256=qFPhxdstCjwGZw0JIKPMZ_PF-oBzEgP6EqZ9n_0mtio,4638
|
|
571
549
|
tf_keras/src/tests/model_architectures.py,sha256=83-y4n0LtvpcpXPgawvPGIcvaqaPZ_XgOVEDRgycLmw,10830
|
|
572
550
|
tf_keras/src/tests/model_subclassing_test_util.py,sha256=tMRAx38exGbDKEUd5kNDRn7Q-epiMPCAxdbAEGSCP6Y,5515
|
|
573
551
|
tf_keras/src/utils/__init__.py,sha256=HDp6YtwWY9al-pSjokrgj_IzsFi36TWQVGJp3ibTlws,3129
|
|
@@ -585,9 +563,9 @@ tf_keras/src/utils/io_utils.py,sha256=XhCTkjwtfBc2hWSenjVdt0-2PsIc2bjJVWEP1880NU
|
|
|
585
563
|
tf_keras/src/utils/keras_logging.py,sha256=Fv4eOMemx3Jg1hEdHIxx9GblG5YTnW1q1D1zLF3JxUE,882
|
|
586
564
|
tf_keras/src/utils/kernelized_utils.py,sha256=s475SAos2zHQ1NT9AHZmbWUSahHKOhdctP6uIou0nRo,4517
|
|
587
565
|
tf_keras/src/utils/kpl_test_utils.py,sha256=vnaJkySSTVhXsFEdDxNJArwXaah0yPNTK8o_3rYZvOE,7365
|
|
588
|
-
tf_keras/src/utils/layer_utils.py,sha256=
|
|
566
|
+
tf_keras/src/utils/layer_utils.py,sha256=cLKqiqJ2em16zZyXaXFErsL6yja28qE6kgPs2TTcdcY,43427
|
|
589
567
|
tf_keras/src/utils/losses_utils.py,sha256=oPHJSNLY8U57ieQD59vnGHNavZpMpeTZtL7VIlDwwfM,16919
|
|
590
|
-
tf_keras/src/utils/metrics_utils.py,sha256=
|
|
568
|
+
tf_keras/src/utils/metrics_utils.py,sha256=h4F4MGcHrpjthypj-nZ1n2szBrBZj4X0R9cEzMcx75w,39938
|
|
591
569
|
tf_keras/src/utils/mode_keys.py,sha256=_QYq58qr_b-RhvMYBYnL47NkC0G1ng8NYcVnS_IYi-A,856
|
|
592
570
|
tf_keras/src/utils/np_utils.py,sha256=4EZ58G1zThQfQEmMNBPnUYRszXRJoY4foxYhOGfS89s,4805
|
|
593
571
|
tf_keras/src/utils/object_identity.py,sha256=HZEETVcCoBrnIFjnxmBhZaCKP9xQMv9rMr_ihlMveVs,6879
|
|
@@ -596,7 +574,7 @@ tf_keras/src/utils/steps_per_execution_tuning.py,sha256=jBDh5Xi1X17kJ8Uz0bK_qU_Z
|
|
|
596
574
|
tf_keras/src/utils/text_dataset.py,sha256=HcGKN607b4L4fdNmPOHkN8wbEF6BQ3Uq8CPF6Zz26uI,11084
|
|
597
575
|
tf_keras/src/utils/tf_contextlib.py,sha256=ysTHicWjRBEVGNC6cKSCO7GTX1DxGNX9Z0vi4j9Q6Z8,1300
|
|
598
576
|
tf_keras/src/utils/tf_inspect.py,sha256=hRMwGwU15gqC8JPhFJemU6Aa5J99Z1gerHT9u93AkKI,14237
|
|
599
|
-
tf_keras/src/utils/tf_utils.py,sha256=
|
|
577
|
+
tf_keras/src/utils/tf_utils.py,sha256=Fg4fS2k3Oi6NgIKavkoZRTRoQ_duUgie0rA_mndBOpo,24092
|
|
600
578
|
tf_keras/src/utils/timed_threads.py,sha256=lbWobYK2kVKSVkxpv9ccozUIYbOezp_SJV8-ViXpyw0,5380
|
|
601
579
|
tf_keras/src/utils/timeseries_dataset.py,sha256=YNmyTEwP1VGfSaHWGFGb7AE4YJUudmE5YM6Sj5Cjj5g,10875
|
|
602
580
|
tf_keras/src/utils/traceback_utils.py,sha256=Th_zzH4qS3anxQQ-O4z3VNGw4MlQIu4IoZHMQ49kSj4,6335
|
|
@@ -606,7 +584,7 @@ tf_keras/src/utils/legacy/__init__.py,sha256=EfMmeHYDzwvxNaktPhQbkTdcPSIGCqMhBND
|
|
|
606
584
|
tf_keras/utils/__init__.py,sha256=b7_d-USe_EmLo02_P99Q1rUCzKBYayPCfiYFStP-0nw,2735
|
|
607
585
|
tf_keras/utils/experimental/__init__.py,sha256=DzGogE2AosjxOVILQBT8PDDcqbWTc0wWnZRobCdpcec,97
|
|
608
586
|
tf_keras/utils/legacy/__init__.py,sha256=7ujlDa5HeSRcth2NdqA0S1P2-VZF1kB3n68jye6Dj-8,189
|
|
609
|
-
tf_keras_nightly-2.
|
|
610
|
-
tf_keras_nightly-2.
|
|
611
|
-
tf_keras_nightly-2.
|
|
612
|
-
tf_keras_nightly-2.
|
|
587
|
+
tf_keras_nightly-2.21.0.dev2025123010.dist-info/METADATA,sha256=mMuSxuENfVse58L4xsGvhuHeJ_PYmN4HQTSCzIDhrQE,1857
|
|
588
|
+
tf_keras_nightly-2.21.0.dev2025123010.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
|
|
589
|
+
tf_keras_nightly-2.21.0.dev2025123010.dist-info/top_level.txt,sha256=LC8FK7zHDNKxB17C6lGKvrZ_fZZGJsRiBK23SfiDegY,9
|
|
590
|
+
tf_keras_nightly-2.21.0.dev2025123010.dist-info/RECORD,,
|
|
@@ -1,85 +0,0 @@
|
|
|
1
|
-
# Copyright 2020 The TensorFlow Authors. All Rights Reserved.
|
|
2
|
-
#
|
|
3
|
-
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
4
|
-
# you may not use this file except in compliance with the License.
|
|
5
|
-
# You may obtain a copy of the License at
|
|
6
|
-
#
|
|
7
|
-
# http://www.apache.org/licenses/LICENSE-2.0
|
|
8
|
-
#
|
|
9
|
-
# Unless required by applicable law or agreed to in writing, software
|
|
10
|
-
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
11
|
-
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
12
|
-
# See the License for the specific language governing permissions and
|
|
13
|
-
# limitations under the License.
|
|
14
|
-
# ==============================================================================
|
|
15
|
-
"""Benchmark for KPL implementation of bucketized columns with dense inputs."""
|
|
16
|
-
|
|
17
|
-
import numpy as np
|
|
18
|
-
import tensorflow.compat.v2 as tf
|
|
19
|
-
|
|
20
|
-
import tf_keras.src as keras
|
|
21
|
-
from tf_keras.src.layers.preprocessing import discretization
|
|
22
|
-
from tf_keras.src.layers.preprocessing.benchmarks import (
|
|
23
|
-
feature_column_benchmark as fc_bm,
|
|
24
|
-
)
|
|
25
|
-
|
|
26
|
-
# isort: off
|
|
27
|
-
from tensorflow.python.eager.def_function import (
|
|
28
|
-
function as tf_function,
|
|
29
|
-
)
|
|
30
|
-
|
|
31
|
-
NUM_REPEATS = 10 # The number of times to run each benchmark.
|
|
32
|
-
BATCH_SIZES = [32, 256]
|
|
33
|
-
|
|
34
|
-
|
|
35
|
-
### KPL AND FC IMPLEMENTATION BENCHMARKS ###
|
|
36
|
-
def embedding_varlen(batch_size, max_length):
|
|
37
|
-
"""Benchmark a variable-length embedding."""
|
|
38
|
-
# Data and constants.
|
|
39
|
-
max_value = 25.0
|
|
40
|
-
bins = np.arange(1.0, max_value)
|
|
41
|
-
data = fc_bm.create_data(
|
|
42
|
-
max_length, batch_size * NUM_REPEATS, 100000, dtype=float
|
|
43
|
-
)
|
|
44
|
-
|
|
45
|
-
# TF-Keras implementation
|
|
46
|
-
model = keras.Sequential()
|
|
47
|
-
model.add(keras.Input(shape=(max_length,), name="data", dtype=tf.float32))
|
|
48
|
-
model.add(discretization.Discretization(bins))
|
|
49
|
-
|
|
50
|
-
# FC implementation
|
|
51
|
-
fc = tf.feature_column.bucketized_column(
|
|
52
|
-
tf.feature_column.numeric_column("data"), boundaries=list(bins)
|
|
53
|
-
)
|
|
54
|
-
|
|
55
|
-
# Wrap the FC implementation in a tf.function for a fair comparison
|
|
56
|
-
@tf_function()
|
|
57
|
-
def fc_fn(tensors):
|
|
58
|
-
fc.transform_feature(
|
|
59
|
-
tf.__internal__.feature_column.FeatureTransformationCache(tensors),
|
|
60
|
-
None,
|
|
61
|
-
)
|
|
62
|
-
|
|
63
|
-
# Benchmark runs
|
|
64
|
-
keras_data = {"data": data.to_tensor(default_value=0.0)}
|
|
65
|
-
k_avg_time = fc_bm.run_keras(keras_data, model, batch_size, NUM_REPEATS)
|
|
66
|
-
|
|
67
|
-
fc_data = {"data": data.to_tensor(default_value=0.0)}
|
|
68
|
-
fc_avg_time = fc_bm.run_fc(fc_data, fc_fn, batch_size, NUM_REPEATS)
|
|
69
|
-
|
|
70
|
-
return k_avg_time, fc_avg_time
|
|
71
|
-
|
|
72
|
-
|
|
73
|
-
class BenchmarkLayer(fc_bm.LayerBenchmark):
|
|
74
|
-
"""Benchmark the layer forward pass."""
|
|
75
|
-
|
|
76
|
-
def benchmark_layer(self):
|
|
77
|
-
for batch in BATCH_SIZES:
|
|
78
|
-
name = f"bucketized|dense|batch_{batch}"
|
|
79
|
-
k_time, f_time = embedding_varlen(batch_size=batch, max_length=256)
|
|
80
|
-
self.report(name, k_time, f_time, NUM_REPEATS)
|
|
81
|
-
|
|
82
|
-
|
|
83
|
-
if __name__ == "__main__":
|
|
84
|
-
tf.test.main()
|
|
85
|
-
|
|
@@ -1,84 +0,0 @@
|
|
|
1
|
-
# Copyright 2020 The TensorFlow Authors. All Rights Reserved.
|
|
2
|
-
#
|
|
3
|
-
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
4
|
-
# you may not use this file except in compliance with the License.
|
|
5
|
-
# You may obtain a copy of the License at
|
|
6
|
-
#
|
|
7
|
-
# http://www.apache.org/licenses/LICENSE-2.0
|
|
8
|
-
#
|
|
9
|
-
# Unless required by applicable law or agreed to in writing, software
|
|
10
|
-
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
11
|
-
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
12
|
-
# See the License for the specific language governing permissions and
|
|
13
|
-
# limitations under the License.
|
|
14
|
-
# ==============================================================================
|
|
15
|
-
"""Benchmark for TF-Keras category_encoding preprocessing layer."""
|
|
16
|
-
|
|
17
|
-
import time
|
|
18
|
-
|
|
19
|
-
import numpy as np
|
|
20
|
-
import tensorflow.compat.v2 as tf
|
|
21
|
-
|
|
22
|
-
import tf_keras.src as keras
|
|
23
|
-
from tf_keras.src.layers.preprocessing import category_encoding
|
|
24
|
-
|
|
25
|
-
|
|
26
|
-
class BenchmarkLayer(tf.test.Benchmark):
|
|
27
|
-
"""Benchmark the layer forward pass."""
|
|
28
|
-
|
|
29
|
-
def run_dataset_implementation(
|
|
30
|
-
self, output_mode, batch_size, sequence_length, max_tokens
|
|
31
|
-
):
|
|
32
|
-
input_t = keras.Input(shape=(sequence_length,), dtype=tf.int32)
|
|
33
|
-
layer = category_encoding.CategoryEncoding(
|
|
34
|
-
max_tokens=max_tokens, output_mode=output_mode
|
|
35
|
-
)
|
|
36
|
-
_ = layer(input_t)
|
|
37
|
-
|
|
38
|
-
num_repeats = 5
|
|
39
|
-
starts = []
|
|
40
|
-
ends = []
|
|
41
|
-
for _ in range(num_repeats):
|
|
42
|
-
ds = tf.data.Dataset.from_tensor_slices(
|
|
43
|
-
tf.random.uniform(
|
|
44
|
-
[batch_size * 10, sequence_length],
|
|
45
|
-
minval=0,
|
|
46
|
-
maxval=max_tokens - 1,
|
|
47
|
-
dtype=tf.int32,
|
|
48
|
-
)
|
|
49
|
-
)
|
|
50
|
-
ds = ds.shuffle(batch_size * 100)
|
|
51
|
-
ds = ds.batch(batch_size)
|
|
52
|
-
num_batches = 5
|
|
53
|
-
ds = ds.take(num_batches)
|
|
54
|
-
ds = ds.prefetch(num_batches)
|
|
55
|
-
starts.append(time.time())
|
|
56
|
-
# Benchmarked code begins here.
|
|
57
|
-
for i in ds:
|
|
58
|
-
_ = layer(i)
|
|
59
|
-
# Benchmarked code ends here.
|
|
60
|
-
ends.append(time.time())
|
|
61
|
-
|
|
62
|
-
avg_time = np.mean(np.array(ends) - np.array(starts)) / num_batches
|
|
63
|
-
name = "category_encoding|batch_%s|seq_length_%s|%s_max_tokens" % (
|
|
64
|
-
batch_size,
|
|
65
|
-
sequence_length,
|
|
66
|
-
max_tokens,
|
|
67
|
-
)
|
|
68
|
-
self.report_benchmark(iters=num_repeats, wall_time=avg_time, name=name)
|
|
69
|
-
|
|
70
|
-
def benchmark_vocab_size_by_batch(self):
|
|
71
|
-
for batch in [32, 256, 2048]:
|
|
72
|
-
for sequence_length in [10, 1000]:
|
|
73
|
-
for num_tokens in [100, 1000, 20000]:
|
|
74
|
-
self.run_dataset_implementation(
|
|
75
|
-
output_mode="count",
|
|
76
|
-
batch_size=batch,
|
|
77
|
-
sequence_length=sequence_length,
|
|
78
|
-
max_tokens=num_tokens,
|
|
79
|
-
)
|
|
80
|
-
|
|
81
|
-
|
|
82
|
-
if __name__ == "__main__":
|
|
83
|
-
tf.test.main()
|
|
84
|
-
|
|
@@ -1,89 +0,0 @@
|
|
|
1
|
-
# Copyright 2020 The TensorFlow Authors. All Rights Reserved.
|
|
2
|
-
#
|
|
3
|
-
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
4
|
-
# you may not use this file except in compliance with the License.
|
|
5
|
-
# You may obtain a copy of the License at
|
|
6
|
-
#
|
|
7
|
-
# http://www.apache.org/licenses/LICENSE-2.0
|
|
8
|
-
#
|
|
9
|
-
# Unless required by applicable law or agreed to in writing, software
|
|
10
|
-
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
11
|
-
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
12
|
-
# See the License for the specific language governing permissions and
|
|
13
|
-
# limitations under the License.
|
|
14
|
-
# ==============================================================================
|
|
15
|
-
"""Benchmark for KPL implementation of categorical hash columns with dense
|
|
16
|
-
inputs."""
|
|
17
|
-
|
|
18
|
-
import tensorflow.compat.v2 as tf
|
|
19
|
-
|
|
20
|
-
import tf_keras.src as keras
|
|
21
|
-
from tf_keras.src.layers.preprocessing import hashing
|
|
22
|
-
from tf_keras.src.layers.preprocessing.benchmarks import (
|
|
23
|
-
feature_column_benchmark as fc_bm,
|
|
24
|
-
)
|
|
25
|
-
|
|
26
|
-
# isort: off
|
|
27
|
-
from tensorflow.python.eager.def_function import (
|
|
28
|
-
function as tf_function,
|
|
29
|
-
)
|
|
30
|
-
|
|
31
|
-
NUM_REPEATS = 10
|
|
32
|
-
BATCH_SIZES = [32, 256]
|
|
33
|
-
|
|
34
|
-
|
|
35
|
-
def embedding_varlen(batch_size, max_length):
|
|
36
|
-
"""Benchmark a variable-length embedding."""
|
|
37
|
-
# Data and constants.
|
|
38
|
-
|
|
39
|
-
num_buckets = 10000
|
|
40
|
-
vocab = fc_bm.create_vocabulary(32768)
|
|
41
|
-
data = fc_bm.create_string_data(
|
|
42
|
-
max_length, batch_size * NUM_REPEATS, vocab, pct_oov=0.0
|
|
43
|
-
)
|
|
44
|
-
|
|
45
|
-
# TF-Keras implementation
|
|
46
|
-
model = keras.Sequential()
|
|
47
|
-
model.add(keras.Input(shape=(max_length,), name="data", dtype=tf.string))
|
|
48
|
-
model.add(hashing.Hashing(num_buckets))
|
|
49
|
-
|
|
50
|
-
# FC implementation
|
|
51
|
-
fc = tf.feature_column.sequence_categorical_column_with_hash_bucket(
|
|
52
|
-
"data", num_buckets
|
|
53
|
-
)
|
|
54
|
-
|
|
55
|
-
# Wrap the FC implementation in a tf.function for a fair comparison
|
|
56
|
-
@tf_function()
|
|
57
|
-
def fc_fn(tensors):
|
|
58
|
-
fc.transform_feature(
|
|
59
|
-
tf.__internal__.feature_column.FeatureTransformationCache(tensors),
|
|
60
|
-
None,
|
|
61
|
-
)
|
|
62
|
-
|
|
63
|
-
# Benchmark runs
|
|
64
|
-
keras_data = {
|
|
65
|
-
"data": data.to_tensor(default_value="", shape=(batch_size, max_length))
|
|
66
|
-
}
|
|
67
|
-
k_avg_time = fc_bm.run_keras(keras_data, model, batch_size, NUM_REPEATS)
|
|
68
|
-
|
|
69
|
-
fc_data = {
|
|
70
|
-
"data": data.to_tensor(default_value="", shape=(batch_size, max_length))
|
|
71
|
-
}
|
|
72
|
-
fc_avg_time = fc_bm.run_fc(fc_data, fc_fn, batch_size, NUM_REPEATS)
|
|
73
|
-
|
|
74
|
-
return k_avg_time, fc_avg_time
|
|
75
|
-
|
|
76
|
-
|
|
77
|
-
class BenchmarkLayer(fc_bm.LayerBenchmark):
|
|
78
|
-
"""Benchmark the layer forward pass."""
|
|
79
|
-
|
|
80
|
-
def benchmark_layer(self):
|
|
81
|
-
for batch in BATCH_SIZES:
|
|
82
|
-
name = f"hash|dense|batch_{batch}"
|
|
83
|
-
k_time, f_time = embedding_varlen(batch_size=batch, max_length=256)
|
|
84
|
-
self.report(name, k_time, f_time, NUM_REPEATS)
|
|
85
|
-
|
|
86
|
-
|
|
87
|
-
if __name__ == "__main__":
|
|
88
|
-
tf.test.main()
|
|
89
|
-
|
|
@@ -1,89 +0,0 @@
|
|
|
1
|
-
# Copyright 2020 The TensorFlow Authors. All Rights Reserved.
|
|
2
|
-
#
|
|
3
|
-
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
4
|
-
# you may not use this file except in compliance with the License.
|
|
5
|
-
# You may obtain a copy of the License at
|
|
6
|
-
#
|
|
7
|
-
# http://www.apache.org/licenses/LICENSE-2.0
|
|
8
|
-
#
|
|
9
|
-
# Unless required by applicable law or agreed to in writing, software
|
|
10
|
-
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
11
|
-
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
12
|
-
# See the License for the specific language governing permissions and
|
|
13
|
-
# limitations under the License.
|
|
14
|
-
# ==============================================================================
|
|
15
|
-
"""Benchmark for KPL implementation of categorical hash columns with
|
|
16
|
-
varying-length inputs."""
|
|
17
|
-
|
|
18
|
-
import tensorflow.compat.v2 as tf
|
|
19
|
-
|
|
20
|
-
import tf_keras.src as keras
|
|
21
|
-
from tf_keras.src.layers.preprocessing import hashing
|
|
22
|
-
from tf_keras.src.layers.preprocessing.benchmarks import (
|
|
23
|
-
feature_column_benchmark as fc_bm,
|
|
24
|
-
)
|
|
25
|
-
|
|
26
|
-
# isort: off
|
|
27
|
-
from tensorflow.python.eager.def_function import (
|
|
28
|
-
function as tf_function,
|
|
29
|
-
)
|
|
30
|
-
|
|
31
|
-
NUM_REPEATS = 10
|
|
32
|
-
BATCH_SIZES = [32, 256]
|
|
33
|
-
|
|
34
|
-
|
|
35
|
-
def embedding_varlen(batch_size, max_length):
|
|
36
|
-
"""Benchmark a variable-length embedding."""
|
|
37
|
-
# Data and constants.
|
|
38
|
-
|
|
39
|
-
num_buckets = 10000
|
|
40
|
-
vocab = fc_bm.create_vocabulary(32768)
|
|
41
|
-
data = fc_bm.create_string_data(
|
|
42
|
-
max_length, batch_size * NUM_REPEATS, vocab, pct_oov=0.0
|
|
43
|
-
)
|
|
44
|
-
|
|
45
|
-
# TF-Keras implementation
|
|
46
|
-
model = keras.Sequential()
|
|
47
|
-
model.add(
|
|
48
|
-
keras.Input(
|
|
49
|
-
shape=(max_length,), name="data", ragged=True, dtype=tf.string
|
|
50
|
-
)
|
|
51
|
-
)
|
|
52
|
-
model.add(hashing.Hashing(num_buckets))
|
|
53
|
-
|
|
54
|
-
# FC implementation
|
|
55
|
-
fc = tf.feature_column.categorical_column_with_hash_bucket(
|
|
56
|
-
"data", num_buckets
|
|
57
|
-
)
|
|
58
|
-
|
|
59
|
-
# Wrap the FC implementation in a tf.function for a fair comparison
|
|
60
|
-
@tf_function()
|
|
61
|
-
def fc_fn(tensors):
|
|
62
|
-
fc.transform_feature(
|
|
63
|
-
tf.__internal__.feature_column.FeatureTransformationCache(tensors),
|
|
64
|
-
None,
|
|
65
|
-
)
|
|
66
|
-
|
|
67
|
-
# Benchmark runs
|
|
68
|
-
keras_data = {"data": data}
|
|
69
|
-
k_avg_time = fc_bm.run_keras(keras_data, model, batch_size, NUM_REPEATS)
|
|
70
|
-
|
|
71
|
-
fc_data = {"data": data.to_sparse()}
|
|
72
|
-
fc_avg_time = fc_bm.run_fc(fc_data, fc_fn, batch_size, NUM_REPEATS)
|
|
73
|
-
|
|
74
|
-
return k_avg_time, fc_avg_time
|
|
75
|
-
|
|
76
|
-
|
|
77
|
-
class BenchmarkLayer(fc_bm.LayerBenchmark):
|
|
78
|
-
"""Benchmark the layer forward pass."""
|
|
79
|
-
|
|
80
|
-
def benchmark_layer(self):
|
|
81
|
-
for batch in BATCH_SIZES:
|
|
82
|
-
name = f"hash|varlen|batch_{batch}"
|
|
83
|
-
k_time, f_time = embedding_varlen(batch_size=batch, max_length=256)
|
|
84
|
-
self.report(name, k_time, f_time, NUM_REPEATS)
|
|
85
|
-
|
|
86
|
-
|
|
87
|
-
if __name__ == "__main__":
|
|
88
|
-
tf.test.main()
|
|
89
|
-
|