tf-keras-nightly 2.18.0.dev2024091909__py3-none-any.whl → 2.19.0.dev2024092909__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- tf_keras/__init__.py +1 -1
- tf_keras/src/__init__.py +1 -1
- tf_keras/src/layers/activation/prelu.py +1 -1
- tf_keras/src/layers/attention/base_dense_attention.py +2 -1
- tf_keras/src/layers/convolutional/base_conv.py +1 -1
- tf_keras/src/layers/convolutional/base_depthwise_conv.py +3 -1
- tf_keras/src/layers/convolutional/base_separable_conv.py +3 -1
- tf_keras/src/layers/convolutional/conv1d_transpose.py +3 -1
- tf_keras/src/layers/convolutional/conv2d_transpose.py +3 -1
- tf_keras/src/layers/convolutional/conv3d_transpose.py +3 -1
- tf_keras/src/layers/core/dense.py +1 -1
- tf_keras/src/layers/core/embedding.py +1 -1
- tf_keras/src/layers/locally_connected/locally_connected1d.py +1 -1
- tf_keras/src/layers/locally_connected/locally_connected2d.py +1 -1
- tf_keras/src/layers/normalization/batch_normalization.py +1 -1
- tf_keras/src/layers/normalization/layer_normalization.py +1 -1
- tf_keras/src/layers/rnn/abstract_rnn_cell.py +1 -1
- tf_keras/src/layers/rnn/base_conv_lstm.py +0 -1
- tf_keras/src/layers/rnn/base_conv_rnn.py +3 -1
- tf_keras/src/layers/rnn/base_rnn.py +1 -1
- tf_keras/src/layers/rnn/base_wrapper.py +1 -1
- tf_keras/src/layers/rnn/bidirectional.py +2 -1
- tf_keras/src/layers/rnn/cell_wrappers.py +3 -3
- tf_keras/src/layers/rnn/cudnn_gru.py +0 -2
- tf_keras/src/layers/rnn/cudnn_lstm.py +0 -2
- tf_keras/src/layers/rnn/gru.py +0 -1
- tf_keras/src/layers/rnn/legacy_cell_wrappers.py +3 -3
- tf_keras/src/layers/rnn/legacy_cells.py +20 -25
- tf_keras/src/layers/rnn/lstm.py +0 -1
- tf_keras/src/layers/rnn/simple_rnn.py +0 -1
- tf_keras/src/layers/rnn/stacked_rnn_cells.py +1 -1
- tf_keras/src/layers/rnn/time_distributed.py +0 -1
- tf_keras/src/mixed_precision/test_util.py +5 -4
- tf_keras/src/premade_models/linear.py +2 -1
- {tf_keras_nightly-2.18.0.dev2024091909.dist-info → tf_keras_nightly-2.19.0.dev2024092909.dist-info}/METADATA +2 -2
- {tf_keras_nightly-2.18.0.dev2024091909.dist-info → tf_keras_nightly-2.19.0.dev2024092909.dist-info}/RECORD +38 -38
- {tf_keras_nightly-2.18.0.dev2024091909.dist-info → tf_keras_nightly-2.19.0.dev2024092909.dist-info}/WHEEL +0 -0
- {tf_keras_nightly-2.18.0.dev2024091909.dist-info → tf_keras_nightly-2.19.0.dev2024092909.dist-info}/top_level.txt +0 -0
tf_keras/__init__.py
CHANGED
tf_keras/src/__init__.py
CHANGED
@@ -35,7 +35,7 @@ from tf_keras.src.testing_infra import test_utils
|
|
35
35
|
from tensorflow.python import tf2
|
36
36
|
from tensorflow.python.util.tf_export import keras_export
|
37
37
|
|
38
|
-
__version__ = "2.
|
38
|
+
__version__ = "2.19.0"
|
39
39
|
|
40
40
|
keras_export("keras.__version__").export_constant(__name__, "__version__")
|
41
41
|
|
@@ -102,7 +102,7 @@ class PReLU(Layer):
|
|
102
102
|
if i not in self.shared_axes:
|
103
103
|
axes[i] = input_shape[i]
|
104
104
|
self.input_spec = InputSpec(ndim=len(input_shape), axes=axes)
|
105
|
-
|
105
|
+
super().build(input_shape)
|
106
106
|
|
107
107
|
def call(self, inputs):
|
108
108
|
pos = backend.relu(inputs)
|
@@ -86,7 +86,8 @@ class BaseDenseAttention(base_layer.BaseRandomLayer):
|
|
86
86
|
# be purely stateless, with no reference to any variable.
|
87
87
|
if self.dropout > 0:
|
88
88
|
super().build(input_shape)
|
89
|
-
|
89
|
+
else:
|
90
|
+
base_layer.Layer.build(self, input_shape)
|
90
91
|
|
91
92
|
def _calculate_scores(self, query, key):
|
92
93
|
"""Calculates attention scores.
|
@@ -248,7 +248,7 @@ class Conv(Layer):
|
|
248
248
|
self.input_spec = InputSpec(
|
249
249
|
min_ndim=self.rank + 2, axes={channel_axis: input_channel}
|
250
250
|
)
|
251
|
-
|
251
|
+
super().build(input_shape)
|
252
252
|
|
253
253
|
def convolution_op(self, inputs, kernel):
|
254
254
|
if self.padding == "causal":
|
@@ -20,6 +20,7 @@ import tensorflow.compat.v2 as tf
|
|
20
20
|
from tf_keras.src import constraints
|
21
21
|
from tf_keras.src import initializers
|
22
22
|
from tf_keras.src import regularizers
|
23
|
+
from tf_keras.src.engine.base_layer import Layer
|
23
24
|
from tf_keras.src.engine.input_spec import InputSpec
|
24
25
|
from tf_keras.src.layers.convolutional.base_conv import Conv
|
25
26
|
|
@@ -202,7 +203,8 @@ class DepthwiseConv(Conv):
|
|
202
203
|
self.input_spec = InputSpec(
|
203
204
|
min_ndim=self.rank + 2, axes={channel_axis: input_dim}
|
204
205
|
)
|
205
|
-
|
206
|
+
# Call Layer.build() to skip Conv.build() which we override here.
|
207
|
+
Layer.build(self, input_shape)
|
206
208
|
|
207
209
|
def call(self, inputs):
|
208
210
|
raise NotImplementedError
|
@@ -21,6 +21,7 @@ from tf_keras.src import activations
|
|
21
21
|
from tf_keras.src import constraints
|
22
22
|
from tf_keras.src import initializers
|
23
23
|
from tf_keras.src import regularizers
|
24
|
+
from tf_keras.src.engine.base_layer import Layer
|
24
25
|
from tf_keras.src.engine.input_spec import InputSpec
|
25
26
|
from tf_keras.src.layers.convolutional.base_conv import Conv
|
26
27
|
|
@@ -203,7 +204,8 @@ class SeparableConv(Conv):
|
|
203
204
|
)
|
204
205
|
else:
|
205
206
|
self.bias = None
|
206
|
-
|
207
|
+
# Call Layer.build() to skip Conv.build() which we override here.
|
208
|
+
Layer.build(self, input_shape)
|
207
209
|
|
208
210
|
def call(self, inputs):
|
209
211
|
raise NotImplementedError
|
@@ -22,6 +22,7 @@ from tf_keras.src import constraints
|
|
22
22
|
from tf_keras.src import initializers
|
23
23
|
from tf_keras.src import regularizers
|
24
24
|
from tf_keras.src.dtensor import utils
|
25
|
+
from tf_keras.src.engine.base_layer import Layer
|
25
26
|
from tf_keras.src.engine.input_spec import InputSpec
|
26
27
|
from tf_keras.src.layers.convolutional.conv1d import Conv1D
|
27
28
|
from tf_keras.src.utils import conv_utils
|
@@ -214,7 +215,8 @@ class Conv1DTranspose(Conv1D):
|
|
214
215
|
)
|
215
216
|
else:
|
216
217
|
self.bias = None
|
217
|
-
|
218
|
+
# Call Layer.build() to skip Conv.build() which we override here.
|
219
|
+
Layer.build(self, input_shape)
|
218
220
|
|
219
221
|
def call(self, inputs):
|
220
222
|
inputs_shape = tf.shape(inputs)
|
@@ -23,6 +23,7 @@ from tf_keras.src import constraints
|
|
23
23
|
from tf_keras.src import initializers
|
24
24
|
from tf_keras.src import regularizers
|
25
25
|
from tf_keras.src.dtensor import utils
|
26
|
+
from tf_keras.src.engine.base_layer import Layer
|
26
27
|
from tf_keras.src.engine.input_spec import InputSpec
|
27
28
|
from tf_keras.src.layers.convolutional.conv2d import Conv2D
|
28
29
|
from tf_keras.src.utils import conv_utils
|
@@ -240,7 +241,8 @@ class Conv2DTranspose(Conv2D):
|
|
240
241
|
)
|
241
242
|
else:
|
242
243
|
self.bias = None
|
243
|
-
|
244
|
+
# Call Layer.build() to skip Conv.build() which we override here.
|
245
|
+
Layer.build(self, input_shape)
|
244
246
|
|
245
247
|
def call(self, inputs):
|
246
248
|
inputs_shape = tf.shape(inputs)
|
@@ -22,6 +22,7 @@ from tf_keras.src import constraints
|
|
22
22
|
from tf_keras.src import initializers
|
23
23
|
from tf_keras.src import regularizers
|
24
24
|
from tf_keras.src.dtensor import utils
|
25
|
+
from tf_keras.src.engine.base_layer import Layer
|
25
26
|
from tf_keras.src.engine.input_spec import InputSpec
|
26
27
|
from tf_keras.src.layers.convolutional.conv3d import Conv3D
|
27
28
|
from tf_keras.src.utils import conv_utils
|
@@ -247,7 +248,8 @@ class Conv3DTranspose(Conv3D):
|
|
247
248
|
)
|
248
249
|
else:
|
249
250
|
self.bias = None
|
250
|
-
|
251
|
+
# Call Layer.build() to skip Conv.build() which we override here.
|
252
|
+
Layer.build(self, input_shape)
|
251
253
|
|
252
254
|
def call(self, inputs):
|
253
255
|
inputs_shape = tf.shape(inputs)
|
@@ -284,7 +284,7 @@ class LocallyConnected1D(Layer):
|
|
284
284
|
self.input_spec = InputSpec(ndim=3, axes={1: input_dim})
|
285
285
|
else:
|
286
286
|
self.input_spec = InputSpec(ndim=3, axes={-1: input_dim})
|
287
|
-
|
287
|
+
super().build(input_shape)
|
288
288
|
|
289
289
|
@tf_utils.shape_type_conversion
|
290
290
|
def compute_output_shape(self, input_shape):
|
@@ -308,7 +308,7 @@ class LocallyConnected2D(Layer):
|
|
308
308
|
self.input_spec = InputSpec(ndim=4, axes={1: input_filter})
|
309
309
|
else:
|
310
310
|
self.input_spec = InputSpec(ndim=4, axes={-1: input_filter})
|
311
|
-
|
311
|
+
super().build(input_shape)
|
312
312
|
|
313
313
|
@tf_utils.shape_type_conversion
|
314
314
|
def compute_output_shape(self, input_shape):
|
@@ -542,7 +542,7 @@ class BatchNormalizationBase(Layer):
|
|
542
542
|
finally:
|
543
543
|
if partitioner:
|
544
544
|
self._scope.set_partitioner(partitioner)
|
545
|
-
|
545
|
+
super().build(input_shape)
|
546
546
|
|
547
547
|
def call(self, inputs, training=None, mask=None):
|
548
548
|
inputs = tf.cast(inputs, self.compute_dtype)
|
@@ -20,6 +20,7 @@ import tensorflow.compat.v2 as tf
|
|
20
20
|
|
21
21
|
from tf_keras.src import backend
|
22
22
|
from tf_keras.src.engine import base_layer
|
23
|
+
from tf_keras.src.engine.base_layer import Layer
|
23
24
|
from tf_keras.src.engine.input_spec import InputSpec
|
24
25
|
from tf_keras.src.layers.rnn.base_rnn import RNN
|
25
26
|
from tf_keras.src.utils import conv_utils
|
@@ -207,6 +208,8 @@ class ConvRNN(RNN):
|
|
207
208
|
|
208
209
|
@tf_utils.shape_type_conversion
|
209
210
|
def build(self, input_shape):
|
211
|
+
# Call Layer.build() to skip RNN.build() which we override here.
|
212
|
+
Layer.build(self, input_shape)
|
210
213
|
# Note input_shape will be list of shapes of initial states and
|
211
214
|
# constants if these are passed in __call__.
|
212
215
|
if self._num_constants is not None:
|
@@ -263,7 +266,6 @@ class ConvRNN(RNN):
|
|
263
266
|
]
|
264
267
|
if self.stateful:
|
265
268
|
self.reset_states()
|
266
|
-
self.built = True
|
267
269
|
|
268
270
|
def get_initial_state(self, inputs):
|
269
271
|
# (samples, timesteps, img_dims..., filters)
|
@@ -470,7 +470,8 @@ class Bidirectional(Wrapper):
|
|
470
470
|
self.forward_layer.build(input_shape)
|
471
471
|
with backend.name_scope(self.backward_layer.name):
|
472
472
|
self.backward_layer.build(input_shape)
|
473
|
-
|
473
|
+
# Call Layer.build() to skip Wrapper.build() which we override here.
|
474
|
+
Layer.build(self, input_shape)
|
474
475
|
|
475
476
|
def compute_mask(self, inputs, mask):
|
476
477
|
if isinstance(mask, list):
|
@@ -102,10 +102,10 @@ class _RNNCellWrapper(AbstractRNNCell):
|
|
102
102
|
inputs, state, cell_call_fn=self.cell.call, **kwargs
|
103
103
|
)
|
104
104
|
|
105
|
-
def build(self,
|
105
|
+
def build(self, input_shape):
|
106
106
|
"""Builds the wrapped cell."""
|
107
|
-
self.cell.build(
|
108
|
-
|
107
|
+
self.cell.build(input_shape)
|
108
|
+
super().build(input_shape)
|
109
109
|
|
110
110
|
@property
|
111
111
|
def wrapped_cell(self):
|
tf_keras/src/layers/rnn/gru.py
CHANGED
@@ -368,9 +368,9 @@ class DropoutWrapper(_RNNCellWrapperV1):
|
|
368
368
|
def wrapped_cell(self):
|
369
369
|
return self.cell
|
370
370
|
|
371
|
-
def build(self,
|
372
|
-
self.cell.build(
|
373
|
-
|
371
|
+
def build(self, input_shape):
|
372
|
+
self.cell.build(input_shape)
|
373
|
+
super().build(input_shape)
|
374
374
|
|
375
375
|
def _variational_recurrent_dropout_value(
|
376
376
|
self, unused_index, value, noise, keep_prob
|
@@ -246,11 +246,6 @@ class RNNCell(base_layer.Layer):
|
|
246
246
|
"""Integer or TensorShape: size of outputs produced by this cell."""
|
247
247
|
raise NotImplementedError("Abstract method")
|
248
248
|
|
249
|
-
def build(self, _):
|
250
|
-
# This tells the parent Layer object that it's OK to call
|
251
|
-
# self.add_weight() inside the call() method.
|
252
|
-
pass
|
253
|
-
|
254
249
|
def get_initial_state(self, inputs=None, batch_size=None, dtype=None):
|
255
250
|
if inputs is not None:
|
256
251
|
# Validate the given batch_size and dtype against inputs if
|
@@ -445,15 +440,15 @@ class BasicRNNCell(LayerRNNCell):
|
|
445
440
|
return self._num_units
|
446
441
|
|
447
442
|
@tf_utils.shape_type_conversion
|
448
|
-
def build(self,
|
449
|
-
if
|
443
|
+
def build(self, input_shape):
|
444
|
+
if input_shape[-1] is None:
|
450
445
|
raise ValueError(
|
451
446
|
"Expected inputs.shape[-1] to be known, "
|
452
|
-
f"received shape: {
|
447
|
+
f"received shape: {input_shape}"
|
453
448
|
)
|
454
449
|
_check_supported_dtypes(self.dtype)
|
455
450
|
|
456
|
-
input_depth =
|
451
|
+
input_depth = input_shape[-1]
|
457
452
|
self._kernel = self.add_weight(
|
458
453
|
_WEIGHTS_VARIABLE_NAME,
|
459
454
|
shape=[input_depth + self._num_units, self._num_units],
|
@@ -464,7 +459,7 @@ class BasicRNNCell(LayerRNNCell):
|
|
464
459
|
initializer=tf.compat.v1.zeros_initializer(dtype=self.dtype),
|
465
460
|
)
|
466
461
|
|
467
|
-
|
462
|
+
super().build(input_shape)
|
468
463
|
|
469
464
|
def call(self, inputs, state):
|
470
465
|
"""Most basic RNN: output = new_state = act(W * input + U * state +
|
@@ -563,14 +558,14 @@ class GRUCell(LayerRNNCell):
|
|
563
558
|
return self._num_units
|
564
559
|
|
565
560
|
@tf_utils.shape_type_conversion
|
566
|
-
def build(self,
|
567
|
-
if
|
561
|
+
def build(self, input_shape):
|
562
|
+
if input_shape[-1] is None:
|
568
563
|
raise ValueError(
|
569
564
|
"Expected inputs.shape[-1] to be known, "
|
570
|
-
f"received shape: {
|
565
|
+
f"received shape: {input_shape}"
|
571
566
|
)
|
572
567
|
_check_supported_dtypes(self.dtype)
|
573
|
-
input_depth =
|
568
|
+
input_depth = input_shape[-1]
|
574
569
|
self._gate_kernel = self.add_weight(
|
575
570
|
f"gates/{_WEIGHTS_VARIABLE_NAME}",
|
576
571
|
shape=[input_depth + self._num_units, 2 * self._num_units],
|
@@ -600,7 +595,7 @@ class GRUCell(LayerRNNCell):
|
|
600
595
|
),
|
601
596
|
)
|
602
597
|
|
603
|
-
|
598
|
+
super().build(input_shape)
|
604
599
|
|
605
600
|
def call(self, inputs, state):
|
606
601
|
"""Gated recurrent unit (GRU) with nunits cells."""
|
@@ -774,14 +769,14 @@ class BasicLSTMCell(LayerRNNCell):
|
|
774
769
|
return self._num_units
|
775
770
|
|
776
771
|
@tf_utils.shape_type_conversion
|
777
|
-
def build(self,
|
778
|
-
if
|
772
|
+
def build(self, input_shape):
|
773
|
+
if input_shape[-1] is None:
|
779
774
|
raise ValueError(
|
780
775
|
"Expected inputs.shape[-1] to be known, "
|
781
|
-
f"received shape: {
|
776
|
+
f"received shape: {input_shape}"
|
782
777
|
)
|
783
778
|
_check_supported_dtypes(self.dtype)
|
784
|
-
input_depth =
|
779
|
+
input_depth = input_shape[-1]
|
785
780
|
h_depth = self._num_units
|
786
781
|
self._kernel = self.add_weight(
|
787
782
|
_WEIGHTS_VARIABLE_NAME,
|
@@ -793,7 +788,7 @@ class BasicLSTMCell(LayerRNNCell):
|
|
793
788
|
initializer=tf.compat.v1.zeros_initializer(dtype=self.dtype),
|
794
789
|
)
|
795
790
|
|
796
|
-
|
791
|
+
super().build(input_shape)
|
797
792
|
|
798
793
|
def call(self, inputs, state):
|
799
794
|
"""Long short-term memory cell (LSTM).
|
@@ -1017,14 +1012,14 @@ class LSTMCell(LayerRNNCell):
|
|
1017
1012
|
return self._output_size
|
1018
1013
|
|
1019
1014
|
@tf_utils.shape_type_conversion
|
1020
|
-
def build(self,
|
1021
|
-
if
|
1015
|
+
def build(self, input_shape):
|
1016
|
+
if input_shape[-1] is None:
|
1022
1017
|
raise ValueError(
|
1023
1018
|
"Expected inputs.shape[-1] to be known, "
|
1024
|
-
f"received shape: {
|
1019
|
+
f"received shape: {input_shape}"
|
1025
1020
|
)
|
1026
1021
|
_check_supported_dtypes(self.dtype)
|
1027
|
-
input_depth =
|
1022
|
+
input_depth = input_shape[-1]
|
1028
1023
|
h_depth = self._num_units if self._num_proj is None else self._num_proj
|
1029
1024
|
maybe_partitioner = (
|
1030
1025
|
tf.compat.v1.fixed_size_partitioner(self._num_unit_shards)
|
@@ -1076,7 +1071,7 @@ class LSTMCell(LayerRNNCell):
|
|
1076
1071
|
partitioner=maybe_proj_partitioner,
|
1077
1072
|
)
|
1078
1073
|
|
1079
|
-
|
1074
|
+
super().build(input_shape)
|
1080
1075
|
|
1081
1076
|
def call(self, inputs, state):
|
1082
1077
|
"""Run one step of LSTM.
|
tf_keras/src/layers/rnn/lstm.py
CHANGED
@@ -166,6 +166,7 @@ class StackedRNNCells(base_layer.Layer):
|
|
166
166
|
|
167
167
|
@tf_utils.shape_type_conversion
|
168
168
|
def build(self, input_shape):
|
169
|
+
super().build(input_shape)
|
169
170
|
if isinstance(input_shape, list):
|
170
171
|
input_shape = input_shape[0]
|
171
172
|
|
@@ -195,7 +196,6 @@ class StackedRNNCells(base_layer.Layer):
|
|
195
196
|
input_shape = tuple(
|
196
197
|
[batch_size] + tf.TensorShape(output_dim).as_list()
|
197
198
|
)
|
198
|
-
self.built = True
|
199
199
|
|
200
200
|
def get_config(self):
|
201
201
|
cells = []
|
@@ -135,7 +135,6 @@ class TimeDistributed(Wrapper):
|
|
135
135
|
)
|
136
136
|
child_input_shape = tf_utils.convert_shapes(child_input_shape)
|
137
137
|
super().build(tuple(child_input_shape))
|
138
|
-
self.built = True
|
139
138
|
|
140
139
|
def compute_output_shape(self, input_shape):
|
141
140
|
input_shape = tf_utils.convert_shapes(input_shape, to_tuples=False)
|
@@ -171,14 +171,14 @@ class MultiplyLayer(AssertTypeLayer):
|
|
171
171
|
activity_regularizer=self._activity_regularizer, **kwargs
|
172
172
|
)
|
173
173
|
|
174
|
-
def build(self,
|
174
|
+
def build(self, input_shape):
|
175
175
|
self.v = self.add_weight(
|
176
176
|
self._var_name,
|
177
177
|
(),
|
178
178
|
initializer="ones",
|
179
179
|
regularizer=self._regularizer,
|
180
180
|
)
|
181
|
-
|
181
|
+
super().build(input_shape)
|
182
182
|
|
183
183
|
def call(self, inputs):
|
184
184
|
self.assert_input_types(inputs)
|
@@ -205,7 +205,7 @@ class MultiplyLayer(AssertTypeLayer):
|
|
205
205
|
class MultiplyLayerWithoutAutoCast(MultiplyLayer):
|
206
206
|
"""Same as MultiplyLayer, but does not use AutoCastVariables."""
|
207
207
|
|
208
|
-
def build(self,
|
208
|
+
def build(self, input_shape):
|
209
209
|
dtype = self.dtype
|
210
210
|
if dtype in ("float16", "bfloat16"):
|
211
211
|
dtype = "float32"
|
@@ -217,7 +217,8 @@ class MultiplyLayerWithoutAutoCast(MultiplyLayer):
|
|
217
217
|
autocast=False,
|
218
218
|
regularizer=self._regularizer,
|
219
219
|
)
|
220
|
-
|
220
|
+
# Call Layer.build() to skip MultiplyLayer.build() which we override.
|
221
|
+
base_layer.Layer.build(self, input_shape)
|
221
222
|
|
222
223
|
def call(self, inputs):
|
223
224
|
self.assert_input_types(inputs)
|
@@ -156,7 +156,8 @@ class LinearModel(training.Model):
|
|
156
156
|
)
|
157
157
|
else:
|
158
158
|
self.bias = None
|
159
|
-
|
159
|
+
# Call Layer.build() to skip Model.build() which we override here.
|
160
|
+
base_layer.Layer.build(self, input_shape)
|
160
161
|
|
161
162
|
def call(self, inputs):
|
162
163
|
result = None
|
@@ -1,6 +1,6 @@
|
|
1
1
|
Metadata-Version: 2.1
|
2
2
|
Name: tf_keras-nightly
|
3
|
-
Version: 2.
|
3
|
+
Version: 2.19.0.dev2024092909
|
4
4
|
Summary: Deep learning for humans.
|
5
5
|
Home-page: https://keras.io/
|
6
6
|
Download-URL: https://github.com/keras-team/tf-keras/tags
|
@@ -26,7 +26,7 @@ Classifier: Topic :: Software Development
|
|
26
26
|
Classifier: Topic :: Software Development :: Libraries
|
27
27
|
Classifier: Topic :: Software Development :: Libraries :: Python Modules
|
28
28
|
Requires-Python: >=3.9
|
29
|
-
Requires-Dist: tf-nightly ~=2.
|
29
|
+
Requires-Dist: tf-nightly ~=2.19.0.dev
|
30
30
|
|
31
31
|
TF-Keras is a deep learning API written in Python,
|
32
32
|
running on top of the machine learning platform TensorFlow.
|
@@ -1,4 +1,4 @@
|
|
1
|
-
tf_keras/__init__.py,sha256=
|
1
|
+
tf_keras/__init__.py,sha256=cxz2yf-Zdc0vpOUm9GSl3FrqRmKShia5KupZzsGS-UI,911
|
2
2
|
tf_keras/__internal__/__init__.py,sha256=OHQbeIC0QtRBI7dgXaJaVbH8F00x8dCI-DvEcIfyMsE,671
|
3
3
|
tf_keras/__internal__/backend/__init__.py,sha256=LnMs2A6685gDG79fxqmdulIYlVE_3WmXlBTBo9ZWYcw,162
|
4
4
|
tf_keras/__internal__/layers/__init__.py,sha256=F5SGMhOTPzm-PR44VrfinURHcVeQPIEdwnZlAkSTB3A,176
|
@@ -206,7 +206,7 @@ tf_keras/protobuf/saved_metadata_pb2.py,sha256=K4ROX6DQeyFej5TBrUvfY7e_gzpQuCRui
|
|
206
206
|
tf_keras/protobuf/versions_pb2.py,sha256=HP6fzinb4-KIEZaINXIAe-BpxQnGROxrxECgGcpcvFE,1119
|
207
207
|
tf_keras/regularizers/__init__.py,sha256=D6TnroEDjnyP79TY_624g2DToxVWuKzuaiBAn_gUQaY,634
|
208
208
|
tf_keras/saving/__init__.py,sha256=Xo0imlDhiYV7Rowy8BjMwrFJuAB8h2DdIuVcxvaeEa0,681
|
209
|
-
tf_keras/src/__init__.py,sha256=
|
209
|
+
tf_keras/src/__init__.py,sha256=ktueaG_fEdT2BKApAf_y3NT4BQiz8Ux9qkOGhkiKcXY,1502
|
210
210
|
tf_keras/src/activations.py,sha256=QNTCdIuNGww5BPwkkjkaNZf4j09m27Nqi-r4aTBOxnk,22630
|
211
211
|
tf_keras/src/backend.py,sha256=025YEbBOWW2J_iqO3IpPx549tsJtcHqtlQadXq4ssWs,248504
|
212
212
|
tf_keras/src/backend_config.py,sha256=DaKkQg6jLmzR2GtgjNxwFoHuTXwVcAzx_Hx8XgAKPNs,4516
|
@@ -312,34 +312,34 @@ tf_keras/src/layers/serialization.py,sha256=wxkHcwBUz44K1JSIInpcyK4sHgW1eirFmbbV
|
|
312
312
|
tf_keras/src/layers/activation/__init__.py,sha256=Vas1813Mdk2viSDB7h_iwhCp7F8XqKYxzzVZUzpkN7k,1097
|
313
313
|
tf_keras/src/layers/activation/elu.py,sha256=n-WAE6NjC9mbqcV7Kxgpt8tTbvwCQIGsoCVaQXPr-8s,2174
|
314
314
|
tf_keras/src/layers/activation/leaky_relu.py,sha256=cJmpwgg4KEu--iK9gFuJT7uEGpDArB8q-XNBmJfC7_U,2618
|
315
|
-
tf_keras/src/layers/activation/prelu.py,sha256=
|
315
|
+
tf_keras/src/layers/activation/prelu.py,sha256=D2yhneQrYQP6aHSK8nvnMKa1hIeuPZO_XCB2Cu9Cl4Y,4440
|
316
316
|
tf_keras/src/layers/activation/relu.py,sha256=JklQuReRiR3huAGr3QRtuGL0URpdspDFzBNjZgv0HDw,4281
|
317
317
|
tf_keras/src/layers/activation/softmax.py,sha256=G6MfTCogGTKwyP7b6ByxeIHFNQtUKgrZXB8MP9hNstQ,4105
|
318
318
|
tf_keras/src/layers/activation/thresholded_relu.py,sha256=rQLn9cr-w6hVJET2mS7OIQ9diiUiqUrX4CysXKNYbmg,2503
|
319
319
|
tf_keras/src/layers/attention/__init__.py,sha256=6HjPSyLhs_bf4erT65KyhSCHQF7WeWZe9YTH7iW6Nek,945
|
320
320
|
tf_keras/src/layers/attention/additive_attention.py,sha256=jie0cAXJEjU4xXK_Ur1SrEL9RqDIIAPyaAkK8O71TEs,7485
|
321
321
|
tf_keras/src/layers/attention/attention.py,sha256=TCnoOWAfh6i275TvudxyjosczBmL_zz9ByEUi-xXkAU,8682
|
322
|
-
tf_keras/src/layers/attention/base_dense_attention.py,sha256=
|
322
|
+
tf_keras/src/layers/attention/base_dense_attention.py,sha256=cEzBldjwQfuJfNZRimW5s-NqyENU2-lmqaNNxAGxhKw,10856
|
323
323
|
tf_keras/src/layers/attention/multi_head_attention.py,sha256=05RC-2BSmCcBFtVY2loQPeiMYp8XArmbvovPl8kpiEA,30279
|
324
324
|
tf_keras/src/layers/convolutional/__init__.py,sha256=U-4tja5JhSUva2G9uMmsZyZty2N2N9jT6EJRu5HAo-Y,3355
|
325
|
-
tf_keras/src/layers/convolutional/base_conv.py,sha256=
|
326
|
-
tf_keras/src/layers/convolutional/base_depthwise_conv.py,sha256=
|
327
|
-
tf_keras/src/layers/convolutional/base_separable_conv.py,sha256=
|
325
|
+
tf_keras/src/layers/convolutional/base_conv.py,sha256=jvm4elEyIVSNfYZxh4inzQ1Q2CKS_f8VawvXMIJFSC4,17574
|
326
|
+
tf_keras/src/layers/convolutional/base_depthwise_conv.py,sha256=SVgR2Y8dpeX4eDEF1e0UY0Mxh4A47eGHhJCQ1peGwNQ,9661
|
327
|
+
tf_keras/src/layers/convolutional/base_separable_conv.py,sha256=wEvPXY1w_qLcvT5rNvBIRyly6oBetQ96mfeM4TKg7ZM,11059
|
328
328
|
tf_keras/src/layers/convolutional/conv1d.py,sha256=LfxKi1mxvMb4U1nec8CX6HnKlPdI7C7RA5y4lb0W7To,7623
|
329
|
-
tf_keras/src/layers/convolutional/conv1d_transpose.py,sha256=
|
329
|
+
tf_keras/src/layers/convolutional/conv1d_transpose.py,sha256=3pNpJqWB6CMkUTME2K-uK_HkbtmJy8aTmpiF00Xorx8,12021
|
330
330
|
tf_keras/src/layers/convolutional/conv2d.py,sha256=iVavNYrNPs0ODfeRAMfRCrgrYCGiW49bY4-iFGitPjQ,8613
|
331
|
-
tf_keras/src/layers/convolutional/conv2d_transpose.py,sha256=
|
331
|
+
tf_keras/src/layers/convolutional/conv2d_transpose.py,sha256=a1WN-bupT2L5iS_QkvWN3YY4B12i1xYyUVuaqKMoX_I,14632
|
332
332
|
tf_keras/src/layers/convolutional/conv3d.py,sha256=c5pZ3ItOMyBKifyRczIB0578pF2PWzMn4a_mPEeA37U,8270
|
333
|
-
tf_keras/src/layers/convolutional/conv3d_transpose.py,sha256=
|
333
|
+
tf_keras/src/layers/convolutional/conv3d_transpose.py,sha256=K4DXgWm1M_GmxiSM2A5pK0-uKzIh8vAT-885w1kNx7o,15138
|
334
334
|
tf_keras/src/layers/convolutional/depthwise_conv1d.py,sha256=j1nefCFtFW7p5bhE5_MDz-qwqBWevOoncHEqQPMZc10,8930
|
335
335
|
tf_keras/src/layers/convolutional/depthwise_conv2d.py,sha256=P31M5QbLp1eJ-63VyK6LZ26KGsAFqc8XZ5uUDUSF3X8,8759
|
336
336
|
tf_keras/src/layers/convolutional/separable_conv1d.py,sha256=mbaKkj-wwbG7W2vC6SeqLMDrmydReZLrGY7EzGfo33I,9393
|
337
337
|
tf_keras/src/layers/convolutional/separable_conv2d.py,sha256=yPP2HQJN0C_JGAfhqONdcSDRewZTZeA6fuv-1ZGGITQ,8928
|
338
338
|
tf_keras/src/layers/core/__init__.py,sha256=FQAeRQKlbh4-DTfIEVebaENXc2QLWeCBnSqaXMSnnsc,2426
|
339
339
|
tf_keras/src/layers/core/activation.py,sha256=ERwRaaov1hTr9e3NEx4MFKcFoCiK-4yiYnZUFokDOEA,2248
|
340
|
-
tf_keras/src/layers/core/dense.py,sha256=
|
340
|
+
tf_keras/src/layers/core/dense.py,sha256=j3VbRtzaVkS1dTkHWGnAu15Uy5qEUpOOkn1ljdvYhDg,12945
|
341
341
|
tf_keras/src/layers/core/einsum_dense.py,sha256=aeze2i8o6U8V9kuVGN10NWsdJdmZAVvUHUekw1Yh5E8,14007
|
342
|
-
tf_keras/src/layers/core/embedding.py,sha256=
|
342
|
+
tf_keras/src/layers/core/embedding.py,sha256=iOdkBiP1IzwOVPjsKWA54NXrlk5KgJ0DfQ82lt0UVZE,13534
|
343
343
|
tf_keras/src/layers/core/identity.py,sha256=yj5cWlUTlYq_J_ZQb1iLzM0bqaM4V6TXVwM4iuBFp9U,1301
|
344
344
|
tf_keras/src/layers/core/lambda_layer.py,sha256=QzetX-lV9ybonQKg_6QzSm8w9Vkq8CPAM4BcAke7CZk,16481
|
345
345
|
tf_keras/src/layers/core/masking.py,sha256=19p6HYGlKdUfQnelsAoee6wf87fWx67NSGinyjagNc4,3340
|
@@ -348,8 +348,8 @@ tf_keras/src/layers/experimental/__init__.py,sha256=AbpHGcgLb-kRsJGnwFEktk7uzpZO
|
|
348
348
|
tf_keras/src/layers/experimental/dynamic_embedding.py,sha256=KuVIawm3avPEa5c2IDOyBH14xiU5bYbPqcm_HugfWYA,10730
|
349
349
|
tf_keras/src/layers/experimental/dynamic_lookup.py,sha256=CMNOaxAIkB1ChPcusuymhLAYTvobEbCBli6YkuWw8RE,13720
|
350
350
|
tf_keras/src/layers/locally_connected/__init__.py,sha256=he5Wa4s_DiFkRbxcuoFmE_M_c6FlWl2379Un_EbQgcc,925
|
351
|
-
tf_keras/src/layers/locally_connected/locally_connected1d.py,sha256=
|
352
|
-
tf_keras/src/layers/locally_connected/locally_connected2d.py,sha256=
|
351
|
+
tf_keras/src/layers/locally_connected/locally_connected1d.py,sha256=OITBJiyfBzZn7D1FF5c3oUHREurmBFqbEkxIxE7-7b4,15048
|
352
|
+
tf_keras/src/layers/locally_connected/locally_connected2d.py,sha256=MZYFgHZQg8T6-td1JxCVO8ow5gP07D889pCaYqqIMOM,16669
|
353
353
|
tf_keras/src/layers/locally_connected/locally_connected_utils.py,sha256=24pnOc2RhbTAoJVKod14CK9aOFzgH82fJBPgpxjzCnA,8489
|
354
354
|
tf_keras/src/layers/merging/__init__.py,sha256=OlWxPrEij6ZKaIjscFCTaaUF_bKlQF6rx3blk3zGsOU,1647
|
355
355
|
tf_keras/src/layers/merging/add.py,sha256=TbNc6MgEvcdn3H8u7b-Y4JDT6oSOrgIe2SP18XZlrr8,3006
|
@@ -362,10 +362,10 @@ tf_keras/src/layers/merging/minimum.py,sha256=xVe8fGShRp-uDb9fLiSl_CPlb4CXe6FI9D
|
|
362
362
|
tf_keras/src/layers/merging/multiply.py,sha256=u0cLt7eCWP7N2IhvgwTv6t58zDS4x9NcE5h5KEjnddk,2868
|
363
363
|
tf_keras/src/layers/merging/subtract.py,sha256=mphudM-LLhPfITqr-y-75paXKvsQP8BagV-s_FQ_HCo,3125
|
364
364
|
tf_keras/src/layers/normalization/__init__.py,sha256=AbpHGcgLb-kRsJGnwFEktk7uzpZOCcBY74-YBdrKVGs,1
|
365
|
-
tf_keras/src/layers/normalization/batch_normalization.py,sha256
|
365
|
+
tf_keras/src/layers/normalization/batch_normalization.py,sha256=RdFwlFhXj4i612oyEyJIJg1eVic4nUJ8sXwoYzetZkU,68524
|
366
366
|
tf_keras/src/layers/normalization/batch_normalization_v1.py,sha256=7I8SioqbqZzLvCXGRiiSbbiUeeQsNMfrlils1CEm61Y,1191
|
367
367
|
tf_keras/src/layers/normalization/group_normalization.py,sha256=nqAW5vM96uqBcgF0jea-DkPcHixfbbzC3B2lyFHqNEg,10028
|
368
|
-
tf_keras/src/layers/normalization/layer_normalization.py,sha256=
|
368
|
+
tf_keras/src/layers/normalization/layer_normalization.py,sha256=YvZsvSwZsBxP9O7K-f4orTSz69ADiPRIygqLq4kUI7k,14022
|
369
369
|
tf_keras/src/layers/normalization/spectral_normalization.py,sha256=XyxoPHUTJvfFVJagGcaOySeixV6hb53oGx_Fx_fsrhk,4984
|
370
370
|
tf_keras/src/layers/normalization/unit_normalization.py,sha256=dVNUrLlAyner-xk9-wvxHmiZap_0B6AJ4R4QbB7hUus,2611
|
371
371
|
tf_keras/src/layers/pooling/__init__.py,sha256=6WvDC0BWmYKwJlurf_1QFRNAHW-kqEy4NI63K4XWzVc,2590
|
@@ -447,31 +447,31 @@ tf_keras/src/layers/reshaping/zero_padding1d.py,sha256=ZEEfNTZldK-EqXsfAZfSql2-v
|
|
447
447
|
tf_keras/src/layers/reshaping/zero_padding2d.py,sha256=k4YWMW5zfSZXn9r5oCX7c890cMFCliFitTiWp5EsKCs,5949
|
448
448
|
tf_keras/src/layers/reshaping/zero_padding3d.py,sha256=UB_oVHNvDpQpPTLkrjpUGVkcfdoIDQsrOINk8ElPdN8,6669
|
449
449
|
tf_keras/src/layers/rnn/__init__.py,sha256=mo3SpxcLPfv1JU2uJ4EQrRZCofDM9Y13g11rYPNk59w,3007
|
450
|
-
tf_keras/src/layers/rnn/abstract_rnn_cell.py,sha256=
|
451
|
-
tf_keras/src/layers/rnn/base_conv_lstm.py,sha256=
|
452
|
-
tf_keras/src/layers/rnn/base_conv_rnn.py,sha256=
|
450
|
+
tf_keras/src/layers/rnn/abstract_rnn_cell.py,sha256=Tg0Avi5JcXjFxUT5-KnvvXWh__CL6q6LMiI2B9qi4Fs,4490
|
451
|
+
tf_keras/src/layers/rnn/base_conv_lstm.py,sha256=emCfrA_agbnfaTIuUtPWSZqyHE72w7_ciz8BsXYHggg,24982
|
452
|
+
tf_keras/src/layers/rnn/base_conv_rnn.py,sha256=bHd3DTLvAzEQzfhwutQIHoQ23r_deKgfRd4wmmIPKho,18674
|
453
453
|
tf_keras/src/layers/rnn/base_cudnn_rnn.py,sha256=cuPVg6r4L1pVWYTp3WFbJhikuIR2VmgbkcPOg_VaPgc,5412
|
454
|
-
tf_keras/src/layers/rnn/base_rnn.py,sha256=
|
455
|
-
tf_keras/src/layers/rnn/base_wrapper.py,sha256=
|
456
|
-
tf_keras/src/layers/rnn/bidirectional.py,sha256=
|
457
|
-
tf_keras/src/layers/rnn/cell_wrappers.py,sha256=
|
454
|
+
tf_keras/src/layers/rnn/base_rnn.py,sha256=I7mWl4KQC26gILDt9pZ9moZ81yM57lvci6hzJ9ROrxo,41968
|
455
|
+
tf_keras/src/layers/rnn/base_wrapper.py,sha256=x4GANiXtmh9ztAFh7QtfbnQE76UVCGpaHp_XhrSs0Os,3159
|
456
|
+
tf_keras/src/layers/rnn/bidirectional.py,sha256=JyZuBU0q2lt4augThwm8vyTvYwEJxyawsHmgNIul5vU,22670
|
457
|
+
tf_keras/src/layers/rnn/cell_wrappers.py,sha256=T3FIiY9vIr0Or1N_SWNVnHR3LH6xnJ5DgNNYLk-sV6c,26874
|
458
458
|
tf_keras/src/layers/rnn/conv_lstm1d.py,sha256=suShze6ipNXabGlKJTxkOia17ZP4SeEei3Mi4F8lFOQ,8761
|
459
459
|
tf_keras/src/layers/rnn/conv_lstm2d.py,sha256=myxOioB3yNn0L_-gMh0R41sb-MwTXO993lAT05_N0Zw,8874
|
460
460
|
tf_keras/src/layers/rnn/conv_lstm3d.py,sha256=GT4OoPFtCr5xgaaqy3ezt5DyDu8Ut-wQEihCOHFk0D4,8969
|
461
|
-
tf_keras/src/layers/rnn/cudnn_gru.py,sha256=
|
462
|
-
tf_keras/src/layers/rnn/cudnn_lstm.py,sha256=
|
461
|
+
tf_keras/src/layers/rnn/cudnn_gru.py,sha256=5byB6wz0svxT6RoOW9UsRAcgNjsna1HVtZahCi6VTR0,8808
|
462
|
+
tf_keras/src/layers/rnn/cudnn_lstm.py,sha256=LOtcPnL6ahgcQFB4jJ8LTspFxoWJqtSK1bgJbkk2dbU,10297
|
463
463
|
tf_keras/src/layers/rnn/dropout_rnn_cell_mixin.py,sha256=8K10_2IhX8x7edq0_aBfKEpA3O991dJXvr3dKs7EZfw,7610
|
464
|
-
tf_keras/src/layers/rnn/gru.py,sha256=
|
464
|
+
tf_keras/src/layers/rnn/gru.py,sha256=RxcFA_7tK97Xnwn335waub8eWUs3jsEgW0PikctZCo0,50233
|
465
465
|
tf_keras/src/layers/rnn/gru_lstm_utils.py,sha256=mEs-0Tk2iphhC7FClhLTk0QBfxSNYpbrVHpXxQ2ebL4,9922
|
466
466
|
tf_keras/src/layers/rnn/gru_v1.py,sha256=9fuHFObkrvH5euyefVaupxJ15ctRgaHLFuZIbKBbgWY,15761
|
467
|
-
tf_keras/src/layers/rnn/legacy_cell_wrappers.py,sha256=
|
468
|
-
tf_keras/src/layers/rnn/legacy_cells.py,sha256=
|
469
|
-
tf_keras/src/layers/rnn/lstm.py,sha256=
|
467
|
+
tf_keras/src/layers/rnn/legacy_cell_wrappers.py,sha256=nb9sG7nQFx7vToZP65uCqJ7Nmi8iTnD-H2gABarnBW0,25389
|
468
|
+
tf_keras/src/layers/rnn/legacy_cells.py,sha256=V1eGpqy20kNt_sI-5HmOaqpaqKHbh1KfvoVmDpNeo-M,52707
|
469
|
+
tf_keras/src/layers/rnn/lstm.py,sha256=Z2UGApmNjfm0haoVXjcNOLjUBniugG9Xag0YhRepLeM,52744
|
470
470
|
tf_keras/src/layers/rnn/lstm_v1.py,sha256=6Ot8lHDlKeZsTxuvob4pSlnEljB2vAg1HoerYYQJtmo,15790
|
471
471
|
tf_keras/src/layers/rnn/rnn_utils.py,sha256=0LiMi0efBFIi4RNPxpjTV6TjIn69WxbUSGpm1JVMJQM,8180
|
472
|
-
tf_keras/src/layers/rnn/simple_rnn.py,sha256=
|
473
|
-
tf_keras/src/layers/rnn/stacked_rnn_cells.py,sha256=
|
474
|
-
tf_keras/src/layers/rnn/time_distributed.py,sha256=
|
472
|
+
tf_keras/src/layers/rnn/simple_rnn.py,sha256=6oV89N_jAWrwgP8F4F1YivVa1f91R1mES7ORKU-_9uQ,19911
|
473
|
+
tf_keras/src/layers/rnn/stacked_rnn_cells.py,sha256=v7Uyb_W6InbkJt7RNqroVqtSwFe_u-hmqhGXSb7v64c,8317
|
474
|
+
tf_keras/src/layers/rnn/time_distributed.py,sha256=U8xGI8jtACmglATbhXA1Jh97XzHWINfUQO70_SfA6iM,15547
|
475
475
|
tf_keras/src/legacy_tf_layers/__init__.py,sha256=LwGrh8anFJ6JC8RA8GCFOg5P534QIyuyanyP5L-iNNQ,77
|
476
476
|
tf_keras/src/legacy_tf_layers/base.py,sha256=H-TscGGp_ebejtIkSmI_bgNHqt-ID86ArLeI54G_LdY,26544
|
477
477
|
tf_keras/src/legacy_tf_layers/convolutional.py,sha256=ksz8_FDaDoyhVbefnFX30mZE37Ipn4_2LmyWRL5u7-Q,83036
|
@@ -495,7 +495,7 @@ tf_keras/src/mixed_precision/autocast_variable.py,sha256=1Rz_cG1qtInnbCtKRJtP59Y
|
|
495
495
|
tf_keras/src/mixed_precision/device_compatibility_check.py,sha256=oSVZwizUlPMTnhJxr7zgWxX2v8jHOHhyZCwDCo8aYK0,6252
|
496
496
|
tf_keras/src/mixed_precision/loss_scale_optimizer.py,sha256=A_WXEJc0XCAWFsy55f6EWmDORRSX4LoeGcHrC-upHvo,64122
|
497
497
|
tf_keras/src/mixed_precision/policy.py,sha256=1GWHp99dU0f6D0h_jIrSQkoLyIf0ClRJ0BbwHqIYiCg,22734
|
498
|
-
tf_keras/src/mixed_precision/test_util.py,sha256=
|
498
|
+
tf_keras/src/mixed_precision/test_util.py,sha256=S4dDVLvFmv3OXvo-7kswO8MStwvTjP_caE3DrUhy9Po,8641
|
499
499
|
tf_keras/src/models/__init__.py,sha256=VQ3cZve-CsmM_4CEi9q-V7m2qFO9HbdiO38mAR4dKdM,1823
|
500
500
|
tf_keras/src/models/cloning.py,sha256=PHLTG0gSjvoKl8jxGaLCUq3ejK_o0PNA7gxSqxyoLBI,36839
|
501
501
|
tf_keras/src/models/sharpness_aware_minimization.py,sha256=4nofg5_fbrRuGa5RAIQwJ-OL8eeiWg7jlNkMuJSCB_g,7301
|
@@ -528,7 +528,7 @@ tf_keras/src/optimizers/legacy/rmsprop.py,sha256=jGoPiNA4xfnE4SOuZNTBj2-Do0l81xS
|
|
528
528
|
tf_keras/src/optimizers/schedules/__init__.py,sha256=otlrYjzO1uYlfR2PE124yoEANdnUhsrgtX1ILp2Ahbc,1101
|
529
529
|
tf_keras/src/optimizers/schedules/learning_rate_schedule.py,sha256=7KKPbqIZpJPQeiLduuFoDcGSYAFKB-xH2lL9iHLOY9I,48113
|
530
530
|
tf_keras/src/premade_models/__init__.py,sha256=XVMLK-CVHQZn3b1Rhl8MjtaHIimvJfeyKRvfdJKO5zg,813
|
531
|
-
tf_keras/src/premade_models/linear.py,sha256=
|
531
|
+
tf_keras/src/premade_models/linear.py,sha256=K2OIV9L4YrGtFWgqZt6V41SwJzQjrqlZiYUtgPfiTP4,8134
|
532
532
|
tf_keras/src/premade_models/wide_deep.py,sha256=u8ZDAGKDHtyRe7OOhLzUSx7h4OhGDcB4yd19Hh7Rw2I,9921
|
533
533
|
tf_keras/src/preprocessing/__init__.py,sha256=J_83ElwazNeTGSpg7oA1_bCCUXS6yiuWvZYUb8kogOI,1711
|
534
534
|
tf_keras/src/preprocessing/image.py,sha256=wRDaJrl8J3SWi3ppOcI2XhQCz14LOrgsailNSxDuDzo,104419
|
@@ -606,7 +606,7 @@ tf_keras/src/utils/legacy/__init__.py,sha256=EfMmeHYDzwvxNaktPhQbkTdcPSIGCqMhBND
|
|
606
606
|
tf_keras/utils/__init__.py,sha256=b7_d-USe_EmLo02_P99Q1rUCzKBYayPCfiYFStP-0nw,2735
|
607
607
|
tf_keras/utils/experimental/__init__.py,sha256=DzGogE2AosjxOVILQBT8PDDcqbWTc0wWnZRobCdpcec,97
|
608
608
|
tf_keras/utils/legacy/__init__.py,sha256=7ujlDa5HeSRcth2NdqA0S1P2-VZF1kB3n68jye6Dj-8,189
|
609
|
-
tf_keras_nightly-2.
|
610
|
-
tf_keras_nightly-2.
|
611
|
-
tf_keras_nightly-2.
|
612
|
-
tf_keras_nightly-2.
|
609
|
+
tf_keras_nightly-2.19.0.dev2024092909.dist-info/METADATA,sha256=ozuaXfx1nNIvUYoEiuq1JU2gZjVI_2CftOeIPy81fSI,1638
|
610
|
+
tf_keras_nightly-2.19.0.dev2024092909.dist-info/WHEEL,sha256=GV9aMThwP_4oNCtvEC2ec3qUYutgWeAzklro_0m4WJQ,91
|
611
|
+
tf_keras_nightly-2.19.0.dev2024092909.dist-info/top_level.txt,sha256=LC8FK7zHDNKxB17C6lGKvrZ_fZZGJsRiBK23SfiDegY,9
|
612
|
+
tf_keras_nightly-2.19.0.dev2024092909.dist-info/RECORD,,
|
File without changes
|
File without changes
|