tf-keras-nightly 2.18.0.dev2024091909__py3-none-any.whl → 2.19.0.dev2024092709__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (38) hide show
  1. tf_keras/__init__.py +1 -1
  2. tf_keras/src/__init__.py +1 -1
  3. tf_keras/src/layers/activation/prelu.py +1 -1
  4. tf_keras/src/layers/attention/base_dense_attention.py +2 -1
  5. tf_keras/src/layers/convolutional/base_conv.py +1 -1
  6. tf_keras/src/layers/convolutional/base_depthwise_conv.py +3 -1
  7. tf_keras/src/layers/convolutional/base_separable_conv.py +3 -1
  8. tf_keras/src/layers/convolutional/conv1d_transpose.py +3 -1
  9. tf_keras/src/layers/convolutional/conv2d_transpose.py +3 -1
  10. tf_keras/src/layers/convolutional/conv3d_transpose.py +3 -1
  11. tf_keras/src/layers/core/dense.py +1 -1
  12. tf_keras/src/layers/core/embedding.py +1 -1
  13. tf_keras/src/layers/locally_connected/locally_connected1d.py +1 -1
  14. tf_keras/src/layers/locally_connected/locally_connected2d.py +1 -1
  15. tf_keras/src/layers/normalization/batch_normalization.py +1 -1
  16. tf_keras/src/layers/normalization/layer_normalization.py +1 -1
  17. tf_keras/src/layers/rnn/abstract_rnn_cell.py +1 -1
  18. tf_keras/src/layers/rnn/base_conv_lstm.py +0 -1
  19. tf_keras/src/layers/rnn/base_conv_rnn.py +3 -1
  20. tf_keras/src/layers/rnn/base_rnn.py +1 -1
  21. tf_keras/src/layers/rnn/base_wrapper.py +1 -1
  22. tf_keras/src/layers/rnn/bidirectional.py +2 -1
  23. tf_keras/src/layers/rnn/cell_wrappers.py +3 -3
  24. tf_keras/src/layers/rnn/cudnn_gru.py +0 -2
  25. tf_keras/src/layers/rnn/cudnn_lstm.py +0 -2
  26. tf_keras/src/layers/rnn/gru.py +0 -1
  27. tf_keras/src/layers/rnn/legacy_cell_wrappers.py +3 -3
  28. tf_keras/src/layers/rnn/legacy_cells.py +20 -25
  29. tf_keras/src/layers/rnn/lstm.py +0 -1
  30. tf_keras/src/layers/rnn/simple_rnn.py +0 -1
  31. tf_keras/src/layers/rnn/stacked_rnn_cells.py +1 -1
  32. tf_keras/src/layers/rnn/time_distributed.py +0 -1
  33. tf_keras/src/mixed_precision/test_util.py +5 -4
  34. tf_keras/src/premade_models/linear.py +2 -1
  35. {tf_keras_nightly-2.18.0.dev2024091909.dist-info → tf_keras_nightly-2.19.0.dev2024092709.dist-info}/METADATA +2 -2
  36. {tf_keras_nightly-2.18.0.dev2024091909.dist-info → tf_keras_nightly-2.19.0.dev2024092709.dist-info}/RECORD +38 -38
  37. {tf_keras_nightly-2.18.0.dev2024091909.dist-info → tf_keras_nightly-2.19.0.dev2024092709.dist-info}/WHEEL +0 -0
  38. {tf_keras_nightly-2.18.0.dev2024091909.dist-info → tf_keras_nightly-2.19.0.dev2024092709.dist-info}/top_level.txt +0 -0
tf_keras/__init__.py CHANGED
@@ -27,4 +27,4 @@ from tf_keras.src.engine.sequential import Sequential
27
27
  from tf_keras.src.engine.training import Model
28
28
 
29
29
 
30
- __version__ = "2.18.0.dev2024091909"
30
+ __version__ = "2.19.0.dev2024092709"
tf_keras/src/__init__.py CHANGED
@@ -35,7 +35,7 @@ from tf_keras.src.testing_infra import test_utils
35
35
  from tensorflow.python import tf2
36
36
  from tensorflow.python.util.tf_export import keras_export
37
37
 
38
- __version__ = "2.18.0"
38
+ __version__ = "2.19.0"
39
39
 
40
40
  keras_export("keras.__version__").export_constant(__name__, "__version__")
41
41
 
@@ -102,7 +102,7 @@ class PReLU(Layer):
102
102
  if i not in self.shared_axes:
103
103
  axes[i] = input_shape[i]
104
104
  self.input_spec = InputSpec(ndim=len(input_shape), axes=axes)
105
- self.built = True
105
+ super().build(input_shape)
106
106
 
107
107
  def call(self, inputs):
108
108
  pos = backend.relu(inputs)
@@ -86,7 +86,8 @@ class BaseDenseAttention(base_layer.BaseRandomLayer):
86
86
  # be purely stateless, with no reference to any variable.
87
87
  if self.dropout > 0:
88
88
  super().build(input_shape)
89
- self.built = True
89
+ else:
90
+ base_layer.Layer.build(self, input_shape)
90
91
 
91
92
  def _calculate_scores(self, query, key):
92
93
  """Calculates attention scores.
@@ -248,7 +248,7 @@ class Conv(Layer):
248
248
  self.input_spec = InputSpec(
249
249
  min_ndim=self.rank + 2, axes={channel_axis: input_channel}
250
250
  )
251
- self.built = True
251
+ super().build(input_shape)
252
252
 
253
253
  def convolution_op(self, inputs, kernel):
254
254
  if self.padding == "causal":
@@ -20,6 +20,7 @@ import tensorflow.compat.v2 as tf
20
20
  from tf_keras.src import constraints
21
21
  from tf_keras.src import initializers
22
22
  from tf_keras.src import regularizers
23
+ from tf_keras.src.engine.base_layer import Layer
23
24
  from tf_keras.src.engine.input_spec import InputSpec
24
25
  from tf_keras.src.layers.convolutional.base_conv import Conv
25
26
 
@@ -202,7 +203,8 @@ class DepthwiseConv(Conv):
202
203
  self.input_spec = InputSpec(
203
204
  min_ndim=self.rank + 2, axes={channel_axis: input_dim}
204
205
  )
205
- self.built = True
206
+ # Call Layer.build() to skip Conv.build() which we override here.
207
+ Layer.build(self, input_shape)
206
208
 
207
209
  def call(self, inputs):
208
210
  raise NotImplementedError
@@ -21,6 +21,7 @@ from tf_keras.src import activations
21
21
  from tf_keras.src import constraints
22
22
  from tf_keras.src import initializers
23
23
  from tf_keras.src import regularizers
24
+ from tf_keras.src.engine.base_layer import Layer
24
25
  from tf_keras.src.engine.input_spec import InputSpec
25
26
  from tf_keras.src.layers.convolutional.base_conv import Conv
26
27
 
@@ -203,7 +204,8 @@ class SeparableConv(Conv):
203
204
  )
204
205
  else:
205
206
  self.bias = None
206
- self.built = True
207
+ # Call Layer.build() to skip Conv.build() which we override here.
208
+ Layer.build(self, input_shape)
207
209
 
208
210
  def call(self, inputs):
209
211
  raise NotImplementedError
@@ -22,6 +22,7 @@ from tf_keras.src import constraints
22
22
  from tf_keras.src import initializers
23
23
  from tf_keras.src import regularizers
24
24
  from tf_keras.src.dtensor import utils
25
+ from tf_keras.src.engine.base_layer import Layer
25
26
  from tf_keras.src.engine.input_spec import InputSpec
26
27
  from tf_keras.src.layers.convolutional.conv1d import Conv1D
27
28
  from tf_keras.src.utils import conv_utils
@@ -214,7 +215,8 @@ class Conv1DTranspose(Conv1D):
214
215
  )
215
216
  else:
216
217
  self.bias = None
217
- self.built = True
218
+ # Call Layer.build() to skip Conv.build() which we override here.
219
+ Layer.build(self, input_shape)
218
220
 
219
221
  def call(self, inputs):
220
222
  inputs_shape = tf.shape(inputs)
@@ -23,6 +23,7 @@ from tf_keras.src import constraints
23
23
  from tf_keras.src import initializers
24
24
  from tf_keras.src import regularizers
25
25
  from tf_keras.src.dtensor import utils
26
+ from tf_keras.src.engine.base_layer import Layer
26
27
  from tf_keras.src.engine.input_spec import InputSpec
27
28
  from tf_keras.src.layers.convolutional.conv2d import Conv2D
28
29
  from tf_keras.src.utils import conv_utils
@@ -240,7 +241,8 @@ class Conv2DTranspose(Conv2D):
240
241
  )
241
242
  else:
242
243
  self.bias = None
243
- self.built = True
244
+ # Call Layer.build() to skip Conv.build() which we override here.
245
+ Layer.build(self, input_shape)
244
246
 
245
247
  def call(self, inputs):
246
248
  inputs_shape = tf.shape(inputs)
@@ -22,6 +22,7 @@ from tf_keras.src import constraints
22
22
  from tf_keras.src import initializers
23
23
  from tf_keras.src import regularizers
24
24
  from tf_keras.src.dtensor import utils
25
+ from tf_keras.src.engine.base_layer import Layer
25
26
  from tf_keras.src.engine.input_spec import InputSpec
26
27
  from tf_keras.src.layers.convolutional.conv3d import Conv3D
27
28
  from tf_keras.src.utils import conv_utils
@@ -247,7 +248,8 @@ class Conv3DTranspose(Conv3D):
247
248
  )
248
249
  else:
249
250
  self.bias = None
250
- self.built = True
251
+ # Call Layer.build() to skip Conv.build() which we override here.
252
+ Layer.build(self, input_shape)
251
253
 
252
254
  def call(self, inputs):
253
255
  inputs_shape = tf.shape(inputs)
@@ -174,7 +174,7 @@ class Dense(Layer):
174
174
  )
175
175
  else:
176
176
  self.bias = None
177
- self.built = True
177
+ super().build(input_shape)
178
178
 
179
179
  def call(self, inputs):
180
180
  if inputs.dtype.base_dtype != self._compute_dtype_object.base_dtype:
@@ -185,7 +185,7 @@ class Embedding(Layer):
185
185
  constraint=self.embeddings_constraint,
186
186
  experimental_autocast=False,
187
187
  )
188
- self.built = True
188
+ super().build(input_shape)
189
189
 
190
190
  def compute_mask(self, inputs, mask=None):
191
191
  if not self.mask_zero:
@@ -284,7 +284,7 @@ class LocallyConnected1D(Layer):
284
284
  self.input_spec = InputSpec(ndim=3, axes={1: input_dim})
285
285
  else:
286
286
  self.input_spec = InputSpec(ndim=3, axes={-1: input_dim})
287
- self.built = True
287
+ super().build(input_shape)
288
288
 
289
289
  @tf_utils.shape_type_conversion
290
290
  def compute_output_shape(self, input_shape):
@@ -308,7 +308,7 @@ class LocallyConnected2D(Layer):
308
308
  self.input_spec = InputSpec(ndim=4, axes={1: input_filter})
309
309
  else:
310
310
  self.input_spec = InputSpec(ndim=4, axes={-1: input_filter})
311
- self.built = True
311
+ super().build(input_shape)
312
312
 
313
313
  @tf_utils.shape_type_conversion
314
314
  def compute_output_shape(self, input_shape):
@@ -542,7 +542,7 @@ class BatchNormalizationBase(Layer):
542
542
  finally:
543
543
  if partitioner:
544
544
  self._scope.set_partitioner(partitioner)
545
- self.built = True
545
+ super().build(input_shape)
546
546
 
547
547
  def call(self, inputs, training=None, mask=None):
548
548
  inputs = tf.cast(inputs, self.compute_dtype)
@@ -249,7 +249,7 @@ class LayerNormalization(Layer):
249
249
  self.beta = None
250
250
 
251
251
  self._fused = self._fused_can_be_used(rank)
252
- self.built = True
252
+ super().build(input_shape)
253
253
 
254
254
  def call(self, inputs):
255
255
  # TODO(b/229545225): Remove the RaggedTensor check.
@@ -56,7 +56,7 @@ class AbstractRNNCell(base_layer.Layer):
56
56
  shape=(self.units, self.units),
57
57
  initializer='uniform',
58
58
  name='recurrent_kernel')
59
- self.built = True
59
+ super().build(input_shape)
60
60
 
61
61
  def call(self, inputs, states):
62
62
  prev_output = states[0]
@@ -218,7 +218,6 @@ class ConvLSTMCell(DropoutRNNCellMixin, base_layer.BaseRandomLayer):
218
218
  )
219
219
  else:
220
220
  self.bias = None
221
- self.built = True
222
221
 
223
222
  def call(self, inputs, states, training=None):
224
223
  h_tm1 = states[0] # previous memory state
@@ -20,6 +20,7 @@ import tensorflow.compat.v2 as tf
20
20
 
21
21
  from tf_keras.src import backend
22
22
  from tf_keras.src.engine import base_layer
23
+ from tf_keras.src.engine.base_layer import Layer
23
24
  from tf_keras.src.engine.input_spec import InputSpec
24
25
  from tf_keras.src.layers.rnn.base_rnn import RNN
25
26
  from tf_keras.src.utils import conv_utils
@@ -207,6 +208,8 @@ class ConvRNN(RNN):
207
208
 
208
209
  @tf_utils.shape_type_conversion
209
210
  def build(self, input_shape):
211
+ # Call Layer.build() to skip RNN.build() which we override here.
212
+ Layer.build(self, input_shape)
210
213
  # Note input_shape will be list of shapes of initial states and
211
214
  # constants if these are passed in __call__.
212
215
  if self._num_constants is not None:
@@ -263,7 +266,6 @@ class ConvRNN(RNN):
263
266
  ]
264
267
  if self.stateful:
265
268
  self.reset_states()
266
- self.built = True
267
269
 
268
270
  def get_initial_state(self, inputs):
269
271
  # (samples, timesteps, img_dims..., filters)
@@ -207,7 +207,7 @@ class RNN(base_layer.Layer):
207
207
  shape=(self.units, self.units),
208
208
  initializer='uniform',
209
209
  name='recurrent_kernel')
210
- self.built = True
210
+ super().build(input_shape)
211
211
 
212
212
  def call(self, inputs, states):
213
213
  prev_output = states[0]
@@ -56,7 +56,7 @@ class Wrapper(Layer):
56
56
  if not self.layer.built:
57
57
  self.layer.build(input_shape)
58
58
  self.layer.built = True
59
- self.built = True
59
+ super().build(input_shape)
60
60
 
61
61
  @property
62
62
  def activity_regularizer(self):
@@ -470,7 +470,8 @@ class Bidirectional(Wrapper):
470
470
  self.forward_layer.build(input_shape)
471
471
  with backend.name_scope(self.backward_layer.name):
472
472
  self.backward_layer.build(input_shape)
473
- self.built = True
473
+ # Call Layer.build() to skip Wrapper.build() which we override here.
474
+ Layer.build(self, input_shape)
474
475
 
475
476
  def compute_mask(self, inputs, mask):
476
477
  if isinstance(mask, list):
@@ -102,10 +102,10 @@ class _RNNCellWrapper(AbstractRNNCell):
102
102
  inputs, state, cell_call_fn=self.cell.call, **kwargs
103
103
  )
104
104
 
105
- def build(self, inputs_shape):
105
+ def build(self, input_shape):
106
106
  """Builds the wrapped cell."""
107
- self.cell.build(inputs_shape)
108
- self.built = True
107
+ self.cell.build(input_shape)
108
+ super().build(input_shape)
109
109
 
110
110
  @property
111
111
  def wrapped_cell(self):
@@ -144,8 +144,6 @@ class CuDNNGRU(_CuDNNRNN):
144
144
  constraint=self.bias_constraint,
145
145
  )
146
146
 
147
- self.built = True
148
-
149
147
  def _process_batch(self, inputs, initial_state):
150
148
  if not self.time_major:
151
149
  inputs = tf.transpose(inputs, perm=(1, 0, 2))
@@ -170,8 +170,6 @@ class CuDNNLSTM(_CuDNNRNN):
170
170
  constraint=self.bias_constraint,
171
171
  )
172
172
 
173
- self.built = True
174
-
175
173
  def _process_batch(self, inputs, initial_state):
176
174
  if not self.time_major:
177
175
  inputs = tf.transpose(inputs, perm=(1, 0, 2))
@@ -222,7 +222,6 @@ class GRUCell(DropoutRNNCellMixin, base_layer.BaseRandomLayer):
222
222
  )
223
223
  else:
224
224
  self.bias = None
225
- self.built = True
226
225
 
227
226
  def call(self, inputs, states, training=None):
228
227
  h_tm1 = (
@@ -368,9 +368,9 @@ class DropoutWrapper(_RNNCellWrapperV1):
368
368
  def wrapped_cell(self):
369
369
  return self.cell
370
370
 
371
- def build(self, inputs_shape):
372
- self.cell.build(inputs_shape)
373
- self.built = True
371
+ def build(self, input_shape):
372
+ self.cell.build(input_shape)
373
+ super().build(input_shape)
374
374
 
375
375
  def _variational_recurrent_dropout_value(
376
376
  self, unused_index, value, noise, keep_prob
@@ -246,11 +246,6 @@ class RNNCell(base_layer.Layer):
246
246
  """Integer or TensorShape: size of outputs produced by this cell."""
247
247
  raise NotImplementedError("Abstract method")
248
248
 
249
- def build(self, _):
250
- # This tells the parent Layer object that it's OK to call
251
- # self.add_weight() inside the call() method.
252
- pass
253
-
254
249
  def get_initial_state(self, inputs=None, batch_size=None, dtype=None):
255
250
  if inputs is not None:
256
251
  # Validate the given batch_size and dtype against inputs if
@@ -445,15 +440,15 @@ class BasicRNNCell(LayerRNNCell):
445
440
  return self._num_units
446
441
 
447
442
  @tf_utils.shape_type_conversion
448
- def build(self, inputs_shape):
449
- if inputs_shape[-1] is None:
443
+ def build(self, input_shape):
444
+ if input_shape[-1] is None:
450
445
  raise ValueError(
451
446
  "Expected inputs.shape[-1] to be known, "
452
- f"received shape: {inputs_shape}"
447
+ f"received shape: {input_shape}"
453
448
  )
454
449
  _check_supported_dtypes(self.dtype)
455
450
 
456
- input_depth = inputs_shape[-1]
451
+ input_depth = input_shape[-1]
457
452
  self._kernel = self.add_weight(
458
453
  _WEIGHTS_VARIABLE_NAME,
459
454
  shape=[input_depth + self._num_units, self._num_units],
@@ -464,7 +459,7 @@ class BasicRNNCell(LayerRNNCell):
464
459
  initializer=tf.compat.v1.zeros_initializer(dtype=self.dtype),
465
460
  )
466
461
 
467
- self.built = True
462
+ super().build(input_shape)
468
463
 
469
464
  def call(self, inputs, state):
470
465
  """Most basic RNN: output = new_state = act(W * input + U * state +
@@ -563,14 +558,14 @@ class GRUCell(LayerRNNCell):
563
558
  return self._num_units
564
559
 
565
560
  @tf_utils.shape_type_conversion
566
- def build(self, inputs_shape):
567
- if inputs_shape[-1] is None:
561
+ def build(self, input_shape):
562
+ if input_shape[-1] is None:
568
563
  raise ValueError(
569
564
  "Expected inputs.shape[-1] to be known, "
570
- f"received shape: {inputs_shape}"
565
+ f"received shape: {input_shape}"
571
566
  )
572
567
  _check_supported_dtypes(self.dtype)
573
- input_depth = inputs_shape[-1]
568
+ input_depth = input_shape[-1]
574
569
  self._gate_kernel = self.add_weight(
575
570
  f"gates/{_WEIGHTS_VARIABLE_NAME}",
576
571
  shape=[input_depth + self._num_units, 2 * self._num_units],
@@ -600,7 +595,7 @@ class GRUCell(LayerRNNCell):
600
595
  ),
601
596
  )
602
597
 
603
- self.built = True
598
+ super().build(input_shape)
604
599
 
605
600
  def call(self, inputs, state):
606
601
  """Gated recurrent unit (GRU) with nunits cells."""
@@ -774,14 +769,14 @@ class BasicLSTMCell(LayerRNNCell):
774
769
  return self._num_units
775
770
 
776
771
  @tf_utils.shape_type_conversion
777
- def build(self, inputs_shape):
778
- if inputs_shape[-1] is None:
772
+ def build(self, input_shape):
773
+ if input_shape[-1] is None:
779
774
  raise ValueError(
780
775
  "Expected inputs.shape[-1] to be known, "
781
- f"received shape: {inputs_shape}"
776
+ f"received shape: {input_shape}"
782
777
  )
783
778
  _check_supported_dtypes(self.dtype)
784
- input_depth = inputs_shape[-1]
779
+ input_depth = input_shape[-1]
785
780
  h_depth = self._num_units
786
781
  self._kernel = self.add_weight(
787
782
  _WEIGHTS_VARIABLE_NAME,
@@ -793,7 +788,7 @@ class BasicLSTMCell(LayerRNNCell):
793
788
  initializer=tf.compat.v1.zeros_initializer(dtype=self.dtype),
794
789
  )
795
790
 
796
- self.built = True
791
+ super().build(input_shape)
797
792
 
798
793
  def call(self, inputs, state):
799
794
  """Long short-term memory cell (LSTM).
@@ -1017,14 +1012,14 @@ class LSTMCell(LayerRNNCell):
1017
1012
  return self._output_size
1018
1013
 
1019
1014
  @tf_utils.shape_type_conversion
1020
- def build(self, inputs_shape):
1021
- if inputs_shape[-1] is None:
1015
+ def build(self, input_shape):
1016
+ if input_shape[-1] is None:
1022
1017
  raise ValueError(
1023
1018
  "Expected inputs.shape[-1] to be known, "
1024
- f"received shape: {inputs_shape}"
1019
+ f"received shape: {input_shape}"
1025
1020
  )
1026
1021
  _check_supported_dtypes(self.dtype)
1027
- input_depth = inputs_shape[-1]
1022
+ input_depth = input_shape[-1]
1028
1023
  h_depth = self._num_units if self._num_proj is None else self._num_proj
1029
1024
  maybe_partitioner = (
1030
1025
  tf.compat.v1.fixed_size_partitioner(self._num_unit_shards)
@@ -1076,7 +1071,7 @@ class LSTMCell(LayerRNNCell):
1076
1071
  partitioner=maybe_proj_partitioner,
1077
1072
  )
1078
1073
 
1079
- self.built = True
1074
+ super().build(input_shape)
1080
1075
 
1081
1076
  def call(self, inputs, state):
1082
1077
  """Run one step of LSTM.
@@ -236,7 +236,6 @@ class LSTMCell(DropoutRNNCellMixin, base_layer.BaseRandomLayer):
236
236
  )
237
237
  else:
238
238
  self.bias = None
239
- self.built = True
240
239
 
241
240
  def _compute_carry_and_output(self, x, h_tm1, c_tm1):
242
241
  """Computes carry and output using split kernels."""
@@ -189,7 +189,6 @@ class SimpleRNNCell(DropoutRNNCellMixin, base_layer.BaseRandomLayer):
189
189
  )
190
190
  else:
191
191
  self.bias = None
192
- self.built = True
193
192
 
194
193
  def call(self, inputs, states, training=None):
195
194
  prev_output = states[0] if tf.nest.is_nested(states) else states
@@ -166,6 +166,7 @@ class StackedRNNCells(base_layer.Layer):
166
166
 
167
167
  @tf_utils.shape_type_conversion
168
168
  def build(self, input_shape):
169
+ super().build(input_shape)
169
170
  if isinstance(input_shape, list):
170
171
  input_shape = input_shape[0]
171
172
 
@@ -195,7 +196,6 @@ class StackedRNNCells(base_layer.Layer):
195
196
  input_shape = tuple(
196
197
  [batch_size] + tf.TensorShape(output_dim).as_list()
197
198
  )
198
- self.built = True
199
199
 
200
200
  def get_config(self):
201
201
  cells = []
@@ -135,7 +135,6 @@ class TimeDistributed(Wrapper):
135
135
  )
136
136
  child_input_shape = tf_utils.convert_shapes(child_input_shape)
137
137
  super().build(tuple(child_input_shape))
138
- self.built = True
139
138
 
140
139
  def compute_output_shape(self, input_shape):
141
140
  input_shape = tf_utils.convert_shapes(input_shape, to_tuples=False)
@@ -171,14 +171,14 @@ class MultiplyLayer(AssertTypeLayer):
171
171
  activity_regularizer=self._activity_regularizer, **kwargs
172
172
  )
173
173
 
174
- def build(self, _):
174
+ def build(self, input_shape):
175
175
  self.v = self.add_weight(
176
176
  self._var_name,
177
177
  (),
178
178
  initializer="ones",
179
179
  regularizer=self._regularizer,
180
180
  )
181
- self.built = True
181
+ super().build(input_shape)
182
182
 
183
183
  def call(self, inputs):
184
184
  self.assert_input_types(inputs)
@@ -205,7 +205,7 @@ class MultiplyLayer(AssertTypeLayer):
205
205
  class MultiplyLayerWithoutAutoCast(MultiplyLayer):
206
206
  """Same as MultiplyLayer, but does not use AutoCastVariables."""
207
207
 
208
- def build(self, _):
208
+ def build(self, input_shape):
209
209
  dtype = self.dtype
210
210
  if dtype in ("float16", "bfloat16"):
211
211
  dtype = "float32"
@@ -217,7 +217,8 @@ class MultiplyLayerWithoutAutoCast(MultiplyLayer):
217
217
  autocast=False,
218
218
  regularizer=self._regularizer,
219
219
  )
220
- self.built = True
220
+ # Call Layer.build() to skip MultiplyLayer.build() which we override.
221
+ base_layer.Layer.build(self, input_shape)
221
222
 
222
223
  def call(self, inputs):
223
224
  self.assert_input_types(inputs)
@@ -156,7 +156,8 @@ class LinearModel(training.Model):
156
156
  )
157
157
  else:
158
158
  self.bias = None
159
- self.built = True
159
+ # Call Layer.build() to skip Model.build() which we override here.
160
+ base_layer.Layer.build(self, input_shape)
160
161
 
161
162
  def call(self, inputs):
162
163
  result = None
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: tf_keras-nightly
3
- Version: 2.18.0.dev2024091909
3
+ Version: 2.19.0.dev2024092709
4
4
  Summary: Deep learning for humans.
5
5
  Home-page: https://keras.io/
6
6
  Download-URL: https://github.com/keras-team/tf-keras/tags
@@ -26,7 +26,7 @@ Classifier: Topic :: Software Development
26
26
  Classifier: Topic :: Software Development :: Libraries
27
27
  Classifier: Topic :: Software Development :: Libraries :: Python Modules
28
28
  Requires-Python: >=3.9
29
- Requires-Dist: tf-nightly ~=2.18.0.dev
29
+ Requires-Dist: tf-nightly ~=2.19.0.dev
30
30
 
31
31
  TF-Keras is a deep learning API written in Python,
32
32
  running on top of the machine learning platform TensorFlow.
@@ -1,4 +1,4 @@
1
- tf_keras/__init__.py,sha256=UfgxnxbZSOdhsjCXV0iAIQLT6D3H55tuOqv6gO73Ih4,911
1
+ tf_keras/__init__.py,sha256=3LTT6ED9KL_19FzHLHovWxBqSx4_H6t_UR8pXXJ4OSs,911
2
2
  tf_keras/__internal__/__init__.py,sha256=OHQbeIC0QtRBI7dgXaJaVbH8F00x8dCI-DvEcIfyMsE,671
3
3
  tf_keras/__internal__/backend/__init__.py,sha256=LnMs2A6685gDG79fxqmdulIYlVE_3WmXlBTBo9ZWYcw,162
4
4
  tf_keras/__internal__/layers/__init__.py,sha256=F5SGMhOTPzm-PR44VrfinURHcVeQPIEdwnZlAkSTB3A,176
@@ -206,7 +206,7 @@ tf_keras/protobuf/saved_metadata_pb2.py,sha256=K4ROX6DQeyFej5TBrUvfY7e_gzpQuCRui
206
206
  tf_keras/protobuf/versions_pb2.py,sha256=HP6fzinb4-KIEZaINXIAe-BpxQnGROxrxECgGcpcvFE,1119
207
207
  tf_keras/regularizers/__init__.py,sha256=D6TnroEDjnyP79TY_624g2DToxVWuKzuaiBAn_gUQaY,634
208
208
  tf_keras/saving/__init__.py,sha256=Xo0imlDhiYV7Rowy8BjMwrFJuAB8h2DdIuVcxvaeEa0,681
209
- tf_keras/src/__init__.py,sha256=zogCD1H65aeYRu_EMjB0bBQBXq2IAww7ys3SjEw1IKU,1502
209
+ tf_keras/src/__init__.py,sha256=ktueaG_fEdT2BKApAf_y3NT4BQiz8Ux9qkOGhkiKcXY,1502
210
210
  tf_keras/src/activations.py,sha256=QNTCdIuNGww5BPwkkjkaNZf4j09m27Nqi-r4aTBOxnk,22630
211
211
  tf_keras/src/backend.py,sha256=025YEbBOWW2J_iqO3IpPx549tsJtcHqtlQadXq4ssWs,248504
212
212
  tf_keras/src/backend_config.py,sha256=DaKkQg6jLmzR2GtgjNxwFoHuTXwVcAzx_Hx8XgAKPNs,4516
@@ -312,34 +312,34 @@ tf_keras/src/layers/serialization.py,sha256=wxkHcwBUz44K1JSIInpcyK4sHgW1eirFmbbV
312
312
  tf_keras/src/layers/activation/__init__.py,sha256=Vas1813Mdk2viSDB7h_iwhCp7F8XqKYxzzVZUzpkN7k,1097
313
313
  tf_keras/src/layers/activation/elu.py,sha256=n-WAE6NjC9mbqcV7Kxgpt8tTbvwCQIGsoCVaQXPr-8s,2174
314
314
  tf_keras/src/layers/activation/leaky_relu.py,sha256=cJmpwgg4KEu--iK9gFuJT7uEGpDArB8q-XNBmJfC7_U,2618
315
- tf_keras/src/layers/activation/prelu.py,sha256=QTU_6imxARZoPmxbX-tpzUzTzddE8llAyhsLLN05h8Y,4431
315
+ tf_keras/src/layers/activation/prelu.py,sha256=D2yhneQrYQP6aHSK8nvnMKa1hIeuPZO_XCB2Cu9Cl4Y,4440
316
316
  tf_keras/src/layers/activation/relu.py,sha256=JklQuReRiR3huAGr3QRtuGL0URpdspDFzBNjZgv0HDw,4281
317
317
  tf_keras/src/layers/activation/softmax.py,sha256=G6MfTCogGTKwyP7b6ByxeIHFNQtUKgrZXB8MP9hNstQ,4105
318
318
  tf_keras/src/layers/activation/thresholded_relu.py,sha256=rQLn9cr-w6hVJET2mS7OIQ9diiUiqUrX4CysXKNYbmg,2503
319
319
  tf_keras/src/layers/attention/__init__.py,sha256=6HjPSyLhs_bf4erT65KyhSCHQF7WeWZe9YTH7iW6Nek,945
320
320
  tf_keras/src/layers/attention/additive_attention.py,sha256=jie0cAXJEjU4xXK_Ur1SrEL9RqDIIAPyaAkK8O71TEs,7485
321
321
  tf_keras/src/layers/attention/attention.py,sha256=TCnoOWAfh6i275TvudxyjosczBmL_zz9ByEUi-xXkAU,8682
322
- tf_keras/src/layers/attention/base_dense_attention.py,sha256=R0f8WcmyVgSTLBsekOu0Uop1SbrYqVI5mRHlbSzPZP0,10814
322
+ tf_keras/src/layers/attention/base_dense_attention.py,sha256=cEzBldjwQfuJfNZRimW5s-NqyENU2-lmqaNNxAGxhKw,10856
323
323
  tf_keras/src/layers/attention/multi_head_attention.py,sha256=05RC-2BSmCcBFtVY2loQPeiMYp8XArmbvovPl8kpiEA,30279
324
324
  tf_keras/src/layers/convolutional/__init__.py,sha256=U-4tja5JhSUva2G9uMmsZyZty2N2N9jT6EJRu5HAo-Y,3355
325
- tf_keras/src/layers/convolutional/base_conv.py,sha256=JeXiyvzDKzHk8eQd_-ilBoFI5p7kECYN2C4E7EtF7o4,17565
326
- tf_keras/src/layers/convolutional/base_depthwise_conv.py,sha256=6h1S0Nk3eVQ1TKMMTiCL4LRqEF2MjKrUtMuycGSeN6c,9525
327
- tf_keras/src/layers/convolutional/base_separable_conv.py,sha256=cy_FtWKUD59xn4vAkpj-xxorUdO7YgevSsvzeDWabPk,10923
325
+ tf_keras/src/layers/convolutional/base_conv.py,sha256=jvm4elEyIVSNfYZxh4inzQ1Q2CKS_f8VawvXMIJFSC4,17574
326
+ tf_keras/src/layers/convolutional/base_depthwise_conv.py,sha256=SVgR2Y8dpeX4eDEF1e0UY0Mxh4A47eGHhJCQ1peGwNQ,9661
327
+ tf_keras/src/layers/convolutional/base_separable_conv.py,sha256=wEvPXY1w_qLcvT5rNvBIRyly6oBetQ96mfeM4TKg7ZM,11059
328
328
  tf_keras/src/layers/convolutional/conv1d.py,sha256=LfxKi1mxvMb4U1nec8CX6HnKlPdI7C7RA5y4lb0W7To,7623
329
- tf_keras/src/layers/convolutional/conv1d_transpose.py,sha256=3mAYXVBklvr9cZhY-ZrG8Rowc0YvkwXyEQD9f1q28Oc,11885
329
+ tf_keras/src/layers/convolutional/conv1d_transpose.py,sha256=3pNpJqWB6CMkUTME2K-uK_HkbtmJy8aTmpiF00Xorx8,12021
330
330
  tf_keras/src/layers/convolutional/conv2d.py,sha256=iVavNYrNPs0ODfeRAMfRCrgrYCGiW49bY4-iFGitPjQ,8613
331
- tf_keras/src/layers/convolutional/conv2d_transpose.py,sha256=LgbLksQtFLpjFogpoNK4IHJavLW5x0qUQA4-0FVZyXI,14496
331
+ tf_keras/src/layers/convolutional/conv2d_transpose.py,sha256=a1WN-bupT2L5iS_QkvWN3YY4B12i1xYyUVuaqKMoX_I,14632
332
332
  tf_keras/src/layers/convolutional/conv3d.py,sha256=c5pZ3ItOMyBKifyRczIB0578pF2PWzMn4a_mPEeA37U,8270
333
- tf_keras/src/layers/convolutional/conv3d_transpose.py,sha256=PByjp1hOvzu7YKCGa8pdD_iRY8I_SytoGBCsohAaqRU,15002
333
+ tf_keras/src/layers/convolutional/conv3d_transpose.py,sha256=K4DXgWm1M_GmxiSM2A5pK0-uKzIh8vAT-885w1kNx7o,15138
334
334
  tf_keras/src/layers/convolutional/depthwise_conv1d.py,sha256=j1nefCFtFW7p5bhE5_MDz-qwqBWevOoncHEqQPMZc10,8930
335
335
  tf_keras/src/layers/convolutional/depthwise_conv2d.py,sha256=P31M5QbLp1eJ-63VyK6LZ26KGsAFqc8XZ5uUDUSF3X8,8759
336
336
  tf_keras/src/layers/convolutional/separable_conv1d.py,sha256=mbaKkj-wwbG7W2vC6SeqLMDrmydReZLrGY7EzGfo33I,9393
337
337
  tf_keras/src/layers/convolutional/separable_conv2d.py,sha256=yPP2HQJN0C_JGAfhqONdcSDRewZTZeA6fuv-1ZGGITQ,8928
338
338
  tf_keras/src/layers/core/__init__.py,sha256=FQAeRQKlbh4-DTfIEVebaENXc2QLWeCBnSqaXMSnnsc,2426
339
339
  tf_keras/src/layers/core/activation.py,sha256=ERwRaaov1hTr9e3NEx4MFKcFoCiK-4yiYnZUFokDOEA,2248
340
- tf_keras/src/layers/core/dense.py,sha256=zd4cQYdWFNXbcfrubQlaWMafTFB-lZIgXntFaxVRS00,12936
340
+ tf_keras/src/layers/core/dense.py,sha256=j3VbRtzaVkS1dTkHWGnAu15Uy5qEUpOOkn1ljdvYhDg,12945
341
341
  tf_keras/src/layers/core/einsum_dense.py,sha256=aeze2i8o6U8V9kuVGN10NWsdJdmZAVvUHUekw1Yh5E8,14007
342
- tf_keras/src/layers/core/embedding.py,sha256=82ZTUOM-smVYnAeEVpaZEV3G2ZiI0N8QALhQn59R2AA,13525
342
+ tf_keras/src/layers/core/embedding.py,sha256=iOdkBiP1IzwOVPjsKWA54NXrlk5KgJ0DfQ82lt0UVZE,13534
343
343
  tf_keras/src/layers/core/identity.py,sha256=yj5cWlUTlYq_J_ZQb1iLzM0bqaM4V6TXVwM4iuBFp9U,1301
344
344
  tf_keras/src/layers/core/lambda_layer.py,sha256=QzetX-lV9ybonQKg_6QzSm8w9Vkq8CPAM4BcAke7CZk,16481
345
345
  tf_keras/src/layers/core/masking.py,sha256=19p6HYGlKdUfQnelsAoee6wf87fWx67NSGinyjagNc4,3340
@@ -348,8 +348,8 @@ tf_keras/src/layers/experimental/__init__.py,sha256=AbpHGcgLb-kRsJGnwFEktk7uzpZO
348
348
  tf_keras/src/layers/experimental/dynamic_embedding.py,sha256=KuVIawm3avPEa5c2IDOyBH14xiU5bYbPqcm_HugfWYA,10730
349
349
  tf_keras/src/layers/experimental/dynamic_lookup.py,sha256=CMNOaxAIkB1ChPcusuymhLAYTvobEbCBli6YkuWw8RE,13720
350
350
  tf_keras/src/layers/locally_connected/__init__.py,sha256=he5Wa4s_DiFkRbxcuoFmE_M_c6FlWl2379Un_EbQgcc,925
351
- tf_keras/src/layers/locally_connected/locally_connected1d.py,sha256=T7eEfJ70SM9BOIrv9tfU37EG7nFDyrSCmst396hNdyU,15039
352
- tf_keras/src/layers/locally_connected/locally_connected2d.py,sha256=m8mswK_egaBdI-v0TXX9_62WQnploL4P6mmrrIGzjak,16660
351
+ tf_keras/src/layers/locally_connected/locally_connected1d.py,sha256=OITBJiyfBzZn7D1FF5c3oUHREurmBFqbEkxIxE7-7b4,15048
352
+ tf_keras/src/layers/locally_connected/locally_connected2d.py,sha256=MZYFgHZQg8T6-td1JxCVO8ow5gP07D889pCaYqqIMOM,16669
353
353
  tf_keras/src/layers/locally_connected/locally_connected_utils.py,sha256=24pnOc2RhbTAoJVKod14CK9aOFzgH82fJBPgpxjzCnA,8489
354
354
  tf_keras/src/layers/merging/__init__.py,sha256=OlWxPrEij6ZKaIjscFCTaaUF_bKlQF6rx3blk3zGsOU,1647
355
355
  tf_keras/src/layers/merging/add.py,sha256=TbNc6MgEvcdn3H8u7b-Y4JDT6oSOrgIe2SP18XZlrr8,3006
@@ -362,10 +362,10 @@ tf_keras/src/layers/merging/minimum.py,sha256=xVe8fGShRp-uDb9fLiSl_CPlb4CXe6FI9D
362
362
  tf_keras/src/layers/merging/multiply.py,sha256=u0cLt7eCWP7N2IhvgwTv6t58zDS4x9NcE5h5KEjnddk,2868
363
363
  tf_keras/src/layers/merging/subtract.py,sha256=mphudM-LLhPfITqr-y-75paXKvsQP8BagV-s_FQ_HCo,3125
364
364
  tf_keras/src/layers/normalization/__init__.py,sha256=AbpHGcgLb-kRsJGnwFEktk7uzpZOCcBY74-YBdrKVGs,1
365
- tf_keras/src/layers/normalization/batch_normalization.py,sha256=-Hcsf5BUs-0iH2k1Rak0CPom6jzIoTcQNTJ9CZx_vm0,68515
365
+ tf_keras/src/layers/normalization/batch_normalization.py,sha256=RdFwlFhXj4i612oyEyJIJg1eVic4nUJ8sXwoYzetZkU,68524
366
366
  tf_keras/src/layers/normalization/batch_normalization_v1.py,sha256=7I8SioqbqZzLvCXGRiiSbbiUeeQsNMfrlils1CEm61Y,1191
367
367
  tf_keras/src/layers/normalization/group_normalization.py,sha256=nqAW5vM96uqBcgF0jea-DkPcHixfbbzC3B2lyFHqNEg,10028
368
- tf_keras/src/layers/normalization/layer_normalization.py,sha256=BQ2--IeB8Xrueb5BfHJrTz5G__NyiF9V2cck3FormJs,14013
368
+ tf_keras/src/layers/normalization/layer_normalization.py,sha256=YvZsvSwZsBxP9O7K-f4orTSz69ADiPRIygqLq4kUI7k,14022
369
369
  tf_keras/src/layers/normalization/spectral_normalization.py,sha256=XyxoPHUTJvfFVJagGcaOySeixV6hb53oGx_Fx_fsrhk,4984
370
370
  tf_keras/src/layers/normalization/unit_normalization.py,sha256=dVNUrLlAyner-xk9-wvxHmiZap_0B6AJ4R4QbB7hUus,2611
371
371
  tf_keras/src/layers/pooling/__init__.py,sha256=6WvDC0BWmYKwJlurf_1QFRNAHW-kqEy4NI63K4XWzVc,2590
@@ -447,31 +447,31 @@ tf_keras/src/layers/reshaping/zero_padding1d.py,sha256=ZEEfNTZldK-EqXsfAZfSql2-v
447
447
  tf_keras/src/layers/reshaping/zero_padding2d.py,sha256=k4YWMW5zfSZXn9r5oCX7c890cMFCliFitTiWp5EsKCs,5949
448
448
  tf_keras/src/layers/reshaping/zero_padding3d.py,sha256=UB_oVHNvDpQpPTLkrjpUGVkcfdoIDQsrOINk8ElPdN8,6669
449
449
  tf_keras/src/layers/rnn/__init__.py,sha256=mo3SpxcLPfv1JU2uJ4EQrRZCofDM9Y13g11rYPNk59w,3007
450
- tf_keras/src/layers/rnn/abstract_rnn_cell.py,sha256=JLn_N7yhLYfqlYjn3Z3JZy9Zq9JUKYePqwuSapewf3o,4481
451
- tf_keras/src/layers/rnn/base_conv_lstm.py,sha256=vlkzJ1jccRU8oDNggqyrpITDZqFlvMEswyZpx0PShP0,25008
452
- tf_keras/src/layers/rnn/base_conv_rnn.py,sha256=wWx6Nmjq6oA7PENGILv5dn7ypjR7Hk_CzluOzfPHAnI,18539
450
+ tf_keras/src/layers/rnn/abstract_rnn_cell.py,sha256=Tg0Avi5JcXjFxUT5-KnvvXWh__CL6q6LMiI2B9qi4Fs,4490
451
+ tf_keras/src/layers/rnn/base_conv_lstm.py,sha256=emCfrA_agbnfaTIuUtPWSZqyHE72w7_ciz8BsXYHggg,24982
452
+ tf_keras/src/layers/rnn/base_conv_rnn.py,sha256=bHd3DTLvAzEQzfhwutQIHoQ23r_deKgfRd4wmmIPKho,18674
453
453
  tf_keras/src/layers/rnn/base_cudnn_rnn.py,sha256=cuPVg6r4L1pVWYTp3WFbJhikuIR2VmgbkcPOg_VaPgc,5412
454
- tf_keras/src/layers/rnn/base_rnn.py,sha256=Zi77y0I73173UBMc6cPgBALQJfT7AgxtZtjbw10dAgY,41959
455
- tf_keras/src/layers/rnn/base_wrapper.py,sha256=EFoFi7n7jZN18zvkp05zlDtA1smQS6hlZ-Cg7X5lkdU,3150
456
- tf_keras/src/layers/rnn/bidirectional.py,sha256=AwAKX-0kodKB5jiuLg1CGpIEa_fZ0-Id_ZhNAVx9O6g,22580
457
- tf_keras/src/layers/rnn/cell_wrappers.py,sha256=8IBJYjollddx4DULRFfs2k-L_6wjN3dAUCZ7nxjpGiU,26867
454
+ tf_keras/src/layers/rnn/base_rnn.py,sha256=I7mWl4KQC26gILDt9pZ9moZ81yM57lvci6hzJ9ROrxo,41968
455
+ tf_keras/src/layers/rnn/base_wrapper.py,sha256=x4GANiXtmh9ztAFh7QtfbnQE76UVCGpaHp_XhrSs0Os,3159
456
+ tf_keras/src/layers/rnn/bidirectional.py,sha256=JyZuBU0q2lt4augThwm8vyTvYwEJxyawsHmgNIul5vU,22670
457
+ tf_keras/src/layers/rnn/cell_wrappers.py,sha256=T3FIiY9vIr0Or1N_SWNVnHR3LH6xnJ5DgNNYLk-sV6c,26874
458
458
  tf_keras/src/layers/rnn/conv_lstm1d.py,sha256=suShze6ipNXabGlKJTxkOia17ZP4SeEei3Mi4F8lFOQ,8761
459
459
  tf_keras/src/layers/rnn/conv_lstm2d.py,sha256=myxOioB3yNn0L_-gMh0R41sb-MwTXO993lAT05_N0Zw,8874
460
460
  tf_keras/src/layers/rnn/conv_lstm3d.py,sha256=GT4OoPFtCr5xgaaqy3ezt5DyDu8Ut-wQEihCOHFk0D4,8969
461
- tf_keras/src/layers/rnn/cudnn_gru.py,sha256=8xXHC2w7zBHJh6yIjIBaavGg336955AvPfeuK-9g5s0,8835
462
- tf_keras/src/layers/rnn/cudnn_lstm.py,sha256=_Y-19bvo3_WsnBULprb6FjEFHH8kAD8wHsbLa6y3-LM,10324
461
+ tf_keras/src/layers/rnn/cudnn_gru.py,sha256=5byB6wz0svxT6RoOW9UsRAcgNjsna1HVtZahCi6VTR0,8808
462
+ tf_keras/src/layers/rnn/cudnn_lstm.py,sha256=LOtcPnL6ahgcQFB4jJ8LTspFxoWJqtSK1bgJbkk2dbU,10297
463
463
  tf_keras/src/layers/rnn/dropout_rnn_cell_mixin.py,sha256=8K10_2IhX8x7edq0_aBfKEpA3O991dJXvr3dKs7EZfw,7610
464
- tf_keras/src/layers/rnn/gru.py,sha256=_TT51hEnf3zLXcC-Nh9I4TXWGBoRBv4bYCXUTNsM59Y,50259
464
+ tf_keras/src/layers/rnn/gru.py,sha256=RxcFA_7tK97Xnwn335waub8eWUs3jsEgW0PikctZCo0,50233
465
465
  tf_keras/src/layers/rnn/gru_lstm_utils.py,sha256=mEs-0Tk2iphhC7FClhLTk0QBfxSNYpbrVHpXxQ2ebL4,9922
466
466
  tf_keras/src/layers/rnn/gru_v1.py,sha256=9fuHFObkrvH5euyefVaupxJ15ctRgaHLFuZIbKBbgWY,15761
467
- tf_keras/src/layers/rnn/legacy_cell_wrappers.py,sha256=84oVtywCAxv2rALypz9_PFuBtZAXlWlAIFRg6yOKFBw,25382
468
- tf_keras/src/layers/rnn/legacy_cells.py,sha256=YB59DHuZwVQa9CikUNAHug0GgGocnixP9l4-ixf7Hhc,52845
469
- tf_keras/src/layers/rnn/lstm.py,sha256=X9Tkqg-b0FNtR_ehQpmFTbWhjP18wpngoGnBrwXUo4w,52770
467
+ tf_keras/src/layers/rnn/legacy_cell_wrappers.py,sha256=nb9sG7nQFx7vToZP65uCqJ7Nmi8iTnD-H2gABarnBW0,25389
468
+ tf_keras/src/layers/rnn/legacy_cells.py,sha256=V1eGpqy20kNt_sI-5HmOaqpaqKHbh1KfvoVmDpNeo-M,52707
469
+ tf_keras/src/layers/rnn/lstm.py,sha256=Z2UGApmNjfm0haoVXjcNOLjUBniugG9Xag0YhRepLeM,52744
470
470
  tf_keras/src/layers/rnn/lstm_v1.py,sha256=6Ot8lHDlKeZsTxuvob4pSlnEljB2vAg1HoerYYQJtmo,15790
471
471
  tf_keras/src/layers/rnn/rnn_utils.py,sha256=0LiMi0efBFIi4RNPxpjTV6TjIn69WxbUSGpm1JVMJQM,8180
472
- tf_keras/src/layers/rnn/simple_rnn.py,sha256=JAxrvRhxMvE1qt5sh-Mc728o71QgJIuM4wpADY8yY6I,19937
473
- tf_keras/src/layers/rnn/stacked_rnn_cells.py,sha256=PofKuaVwU13VI-XWLEdqpHWZrwxisXbJkFICeX4M02s,8308
474
- tf_keras/src/layers/rnn/time_distributed.py,sha256=VX9j2hrVGm_cp5-ZnIlNaBy_jeNX8bQHZ6PlAZF2iVo,15573
472
+ tf_keras/src/layers/rnn/simple_rnn.py,sha256=6oV89N_jAWrwgP8F4F1YivVa1f91R1mES7ORKU-_9uQ,19911
473
+ tf_keras/src/layers/rnn/stacked_rnn_cells.py,sha256=v7Uyb_W6InbkJt7RNqroVqtSwFe_u-hmqhGXSb7v64c,8317
474
+ tf_keras/src/layers/rnn/time_distributed.py,sha256=U8xGI8jtACmglATbhXA1Jh97XzHWINfUQO70_SfA6iM,15547
475
475
  tf_keras/src/legacy_tf_layers/__init__.py,sha256=LwGrh8anFJ6JC8RA8GCFOg5P534QIyuyanyP5L-iNNQ,77
476
476
  tf_keras/src/legacy_tf_layers/base.py,sha256=H-TscGGp_ebejtIkSmI_bgNHqt-ID86ArLeI54G_LdY,26544
477
477
  tf_keras/src/legacy_tf_layers/convolutional.py,sha256=ksz8_FDaDoyhVbefnFX30mZE37Ipn4_2LmyWRL5u7-Q,83036
@@ -495,7 +495,7 @@ tf_keras/src/mixed_precision/autocast_variable.py,sha256=1Rz_cG1qtInnbCtKRJtP59Y
495
495
  tf_keras/src/mixed_precision/device_compatibility_check.py,sha256=oSVZwizUlPMTnhJxr7zgWxX2v8jHOHhyZCwDCo8aYK0,6252
496
496
  tf_keras/src/mixed_precision/loss_scale_optimizer.py,sha256=A_WXEJc0XCAWFsy55f6EWmDORRSX4LoeGcHrC-upHvo,64122
497
497
  tf_keras/src/mixed_precision/policy.py,sha256=1GWHp99dU0f6D0h_jIrSQkoLyIf0ClRJ0BbwHqIYiCg,22734
498
- tf_keras/src/mixed_precision/test_util.py,sha256=po2OTcD7IYt_Bkl3O8MJlEQ-4lNmOEDhNHL_VwzGim8,8510
498
+ tf_keras/src/mixed_precision/test_util.py,sha256=S4dDVLvFmv3OXvo-7kswO8MStwvTjP_caE3DrUhy9Po,8641
499
499
  tf_keras/src/models/__init__.py,sha256=VQ3cZve-CsmM_4CEi9q-V7m2qFO9HbdiO38mAR4dKdM,1823
500
500
  tf_keras/src/models/cloning.py,sha256=PHLTG0gSjvoKl8jxGaLCUq3ejK_o0PNA7gxSqxyoLBI,36839
501
501
  tf_keras/src/models/sharpness_aware_minimization.py,sha256=4nofg5_fbrRuGa5RAIQwJ-OL8eeiWg7jlNkMuJSCB_g,7301
@@ -528,7 +528,7 @@ tf_keras/src/optimizers/legacy/rmsprop.py,sha256=jGoPiNA4xfnE4SOuZNTBj2-Do0l81xS
528
528
  tf_keras/src/optimizers/schedules/__init__.py,sha256=otlrYjzO1uYlfR2PE124yoEANdnUhsrgtX1ILp2Ahbc,1101
529
529
  tf_keras/src/optimizers/schedules/learning_rate_schedule.py,sha256=7KKPbqIZpJPQeiLduuFoDcGSYAFKB-xH2lL9iHLOY9I,48113
530
530
  tf_keras/src/premade_models/__init__.py,sha256=XVMLK-CVHQZn3b1Rhl8MjtaHIimvJfeyKRvfdJKO5zg,813
531
- tf_keras/src/premade_models/linear.py,sha256=2-z-YZXlQnte6kThUYg8bu3L2BZuVgWlGth6nQjHAt0,8035
531
+ tf_keras/src/premade_models/linear.py,sha256=K2OIV9L4YrGtFWgqZt6V41SwJzQjrqlZiYUtgPfiTP4,8134
532
532
  tf_keras/src/premade_models/wide_deep.py,sha256=u8ZDAGKDHtyRe7OOhLzUSx7h4OhGDcB4yd19Hh7Rw2I,9921
533
533
  tf_keras/src/preprocessing/__init__.py,sha256=J_83ElwazNeTGSpg7oA1_bCCUXS6yiuWvZYUb8kogOI,1711
534
534
  tf_keras/src/preprocessing/image.py,sha256=wRDaJrl8J3SWi3ppOcI2XhQCz14LOrgsailNSxDuDzo,104419
@@ -606,7 +606,7 @@ tf_keras/src/utils/legacy/__init__.py,sha256=EfMmeHYDzwvxNaktPhQbkTdcPSIGCqMhBND
606
606
  tf_keras/utils/__init__.py,sha256=b7_d-USe_EmLo02_P99Q1rUCzKBYayPCfiYFStP-0nw,2735
607
607
  tf_keras/utils/experimental/__init__.py,sha256=DzGogE2AosjxOVILQBT8PDDcqbWTc0wWnZRobCdpcec,97
608
608
  tf_keras/utils/legacy/__init__.py,sha256=7ujlDa5HeSRcth2NdqA0S1P2-VZF1kB3n68jye6Dj-8,189
609
- tf_keras_nightly-2.18.0.dev2024091909.dist-info/METADATA,sha256=Bipfmb6h5QIY-9UpBGkfFidva18x1idf0rKsK6SfkJc,1638
610
- tf_keras_nightly-2.18.0.dev2024091909.dist-info/WHEEL,sha256=GV9aMThwP_4oNCtvEC2ec3qUYutgWeAzklro_0m4WJQ,91
611
- tf_keras_nightly-2.18.0.dev2024091909.dist-info/top_level.txt,sha256=LC8FK7zHDNKxB17C6lGKvrZ_fZZGJsRiBK23SfiDegY,9
612
- tf_keras_nightly-2.18.0.dev2024091909.dist-info/RECORD,,
609
+ tf_keras_nightly-2.19.0.dev2024092709.dist-info/METADATA,sha256=_yZznFrLj6d5MpNaPdoZaQrH4xMuis5KlyXsrPF0aQw,1638
610
+ tf_keras_nightly-2.19.0.dev2024092709.dist-info/WHEEL,sha256=GV9aMThwP_4oNCtvEC2ec3qUYutgWeAzklro_0m4WJQ,91
611
+ tf_keras_nightly-2.19.0.dev2024092709.dist-info/top_level.txt,sha256=LC8FK7zHDNKxB17C6lGKvrZ_fZZGJsRiBK23SfiDegY,9
612
+ tf_keras_nightly-2.19.0.dev2024092709.dist-info/RECORD,,