teradataml 20.0.0.5__py3-none-any.whl → 20.0.0.6__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of teradataml might be problematic. Click here for more details.

Files changed (53) hide show
  1. teradataml/LICENSE-3RD-PARTY.pdf +0 -0
  2. teradataml/README.md +96 -0
  3. teradataml/_version.py +1 -1
  4. teradataml/analytics/analytic_function_executor.py +1 -1
  5. teradataml/analytics/utils.py +56 -11
  6. teradataml/clients/auth_client.py +10 -6
  7. teradataml/clients/keycloak_client.py +165 -0
  8. teradataml/common/constants.py +10 -0
  9. teradataml/common/exceptions.py +32 -0
  10. teradataml/common/messagecodes.py +27 -0
  11. teradataml/common/messages.py +9 -1
  12. teradataml/common/sqlbundle.py +3 -2
  13. teradataml/common/utils.py +94 -12
  14. teradataml/context/context.py +37 -9
  15. teradataml/data/jsons/byom/onnxembeddings.json +1 -0
  16. teradataml/data/pattern_matching_data.csv +11 -0
  17. teradataml/data/sdk/modelops/modelops_spec.json +101737 -0
  18. teradataml/data/teradataml_example.json +8 -1
  19. teradataml/data/url_data.csv +10 -9
  20. teradataml/dataframe/copy_to.py +1 -1
  21. teradataml/dataframe/dataframe.py +980 -82
  22. teradataml/dataframe/dataframe_utils.py +58 -25
  23. teradataml/dataframe/functions.py +962 -1
  24. teradataml/dataframe/sql.py +570 -1031
  25. teradataml/hyperparameter_tuner/utils.py +4 -2
  26. teradataml/lib/aed_0_1.dll +0 -0
  27. teradataml/opensource/_base.py +7 -1
  28. teradataml/options/configure.py +20 -4
  29. teradataml/scriptmgmt/UserEnv.py +13 -2
  30. teradataml/scriptmgmt/lls_utils.py +99 -24
  31. teradataml/sdk/README.md +79 -0
  32. teradataml/sdk/__init__.py +4 -0
  33. teradataml/sdk/_auth_modes.py +422 -0
  34. teradataml/sdk/_func_params.py +487 -0
  35. teradataml/sdk/_json_parser.py +453 -0
  36. teradataml/sdk/_openapi_spec_constants.py +249 -0
  37. teradataml/sdk/_utils.py +236 -0
  38. teradataml/sdk/api_client.py +897 -0
  39. teradataml/sdk/constants.py +62 -0
  40. teradataml/sdk/modelops/__init__.py +98 -0
  41. teradataml/sdk/modelops/_client.py +406 -0
  42. teradataml/sdk/modelops/_constants.py +304 -0
  43. teradataml/sdk/modelops/models.py +2308 -0
  44. teradataml/sdk/spinner.py +107 -0
  45. teradataml/table_operators/query_generator.py +4 -21
  46. teradataml/utils/dtypes.py +2 -1
  47. teradataml/utils/utils.py +0 -1
  48. teradataml/utils/validators.py +5 -1
  49. {teradataml-20.0.0.5.dist-info → teradataml-20.0.0.6.dist-info}/METADATA +101 -2
  50. {teradataml-20.0.0.5.dist-info → teradataml-20.0.0.6.dist-info}/RECORD +53 -36
  51. {teradataml-20.0.0.5.dist-info → teradataml-20.0.0.6.dist-info}/WHEEL +0 -0
  52. {teradataml-20.0.0.5.dist-info → teradataml-20.0.0.6.dist-info}/top_level.txt +0 -0
  53. {teradataml-20.0.0.5.dist-info → teradataml-20.0.0.6.dist-info}/zip-safe +0 -0
@@ -0,0 +1,107 @@
1
+ # ################################################################################################
2
+ #
3
+ # Copyright 2025 Teradata. All rights reserved.
4
+ # TERADATA CONFIDENTIAL AND TRADE SECRET
5
+ #
6
+ # Primary Owner: Adithya Avvaru (adithya.avvaru@teradata.com)
7
+ # Secondary Owner: Pankaj Purandare (pankajvinod.purandare@teradata.com)
8
+ #
9
+ # Version: 1.0
10
+ # ModelOps SDK Version: 1.0
11
+ #
12
+ # This file contains the code for spinner which spins during the SDK execution time.
13
+ # NOTE: This is taken from AoA SDK and will be updated/removed in future.
14
+ #
15
+ # ################################################################################################
16
+
17
+ import os
18
+ import sys
19
+ import threading
20
+
21
+ os.system("") # enables ansi escape characters in terminal
22
+
23
+ CODE = {
24
+ "CYAN": "\033[36m",
25
+ "END": "\033[0m",
26
+ "RM_LINE": "\033[2K\r",
27
+ "HIDE_CURSOR": "\033[?25l",
28
+ "SHOW_CURSOR": "\033[?25h",
29
+ "CURSOR_NEXT_LINE": "\033[1E",
30
+ "CURSOR_INIT": "\033[0G",
31
+ }
32
+
33
+
34
+ class ProgressBase(threading.Thread):
35
+ inplace = None
36
+ stopFlag = None
37
+
38
+ def __init__(self):
39
+ self.rlock = threading.RLock()
40
+ self.cv = threading.Condition()
41
+ threading.Thread.__init__(self)
42
+ self.setDaemon(True)
43
+
44
+ def __call__(self):
45
+ self.start()
46
+
47
+ def back_step(self):
48
+ if self.inplace:
49
+ sys_print(CODE["CURSOR_NEXT_LINE"])
50
+
51
+ def remove_line(self):
52
+ if self.inplace:
53
+ sys_print(CODE["RM_LINE"])
54
+
55
+ def start(self):
56
+ self.stopFlag = 0
57
+ threading.Thread.start(self)
58
+
59
+ def stop(self):
60
+ self.stopFlag = 1
61
+ sys_print(CODE["SHOW_CURSOR"])
62
+ self.cv.acquire()
63
+ self.cv.notify()
64
+ self.cv.release()
65
+ self.rlock.acquire()
66
+
67
+
68
+ class Spinner(ProgressBase):
69
+
70
+ def __init__(self, msg="", speed=0.1):
71
+ self.__seq = ["⣾", "⣷", "⣯", "⣟", "⡿", "⢿", "⣻", "⣽"]
72
+ self.__speed = speed
73
+ self.__msg = msg
74
+ self.inplace = 1
75
+ ProgressBase.__init__(self)
76
+
77
+ def run(self):
78
+ self.rlock.acquire()
79
+ self.cv.acquire()
80
+ sys_print(CODE["HIDE_CURSOR"])
81
+ while 1:
82
+ for char in self.__seq:
83
+ self.cv.wait(self.__speed)
84
+ if self.stopFlag:
85
+ self.back_step()
86
+ try:
87
+ return
88
+ finally:
89
+ self.rlock.release()
90
+ if self.inplace:
91
+ sys_print(
92
+ f"{CODE['CYAN']}{char}{CODE['END']} {self.__msg}{CODE['CURSOR_INIT']}"
93
+ )
94
+
95
+
96
+ def sys_print(msg):
97
+ sys.stdout.write(msg)
98
+ sys.stdout.flush()
99
+
100
+
101
+ def spin_it(function, msg, speed=0.25, *args, **kwargs):
102
+ indicator = Spinner(msg, speed)
103
+ indicator.start()
104
+ result = function(*args, **kwargs)
105
+ indicator.stop()
106
+ indicator.remove_line()
107
+ return result
@@ -484,27 +484,10 @@ class QueryGenerator:
484
484
  # If Table Operator function is IMAGE2MATRIX, then return alias name as TD_IMAGE2MATRIX.
485
485
  elif "IMAGE2MATRIX".lower() == function_name.lower():
486
486
  return "TD_IMAGE2MATRIX"
487
-
488
- engine_name = UtilFuncs._get_engine_name(self._engine)
489
-
490
- # Get function mappings which are already loaded during create_context or set_context.
491
- function_mappings = _get_function_mappings()
492
-
493
- try:
494
- return function_mappings[configure.vantage_version][engine_name][function_name.lower()]
495
- except KeyError as ke:
496
- if str(ke) == "'{}'".format(function_name.lower()):
497
- raise TeradataMlException(Messages.get_message(
498
- MessageCodes.FUNCTION_NOT_SUPPORTED).format(configure.vantage_version),
499
- MessageCodes.FUNCTION_NOT_SUPPORTED) from ke
500
- else:
501
- raise
502
- except TeradataMlException:
503
- raise
504
- except Exception as err:
505
- raise TeradataMlException(Messages.get_message(
506
- MessageCodes.CONFIG_ALIAS_ANLY_FUNC_NOT_FOUND).format(function_name, config_folder),
507
- MessageCodes.CONFIG_ALIAS_ANLY_FUNC_NOT_FOUND) from err
487
+ elif "Script".lower() == function_name.lower():
488
+ return "Script"
489
+ elif "Apply".lower() == function_name.lower():
490
+ return "Apply"
508
491
 
509
492
  def _get_string_size(self, string):
510
493
  return len(string.encode("utf8"))
@@ -253,7 +253,8 @@ class _DtypesMappers:
253
253
  bool: BYTEINT,
254
254
  datetime: TIMESTAMP,
255
255
  date: DATE,
256
- time: TIME
256
+ time: TIME,
257
+ bytes: BLOB
257
258
  }
258
259
 
259
260
  # Mapper which stores the mapping between TD type specified in in analytic JSON files to Python type.
teradataml/utils/utils.py CHANGED
@@ -85,7 +85,6 @@ def execute_sql(statement, parameters=None):
85
85
  raise TeradataMlException(Messages.get_message(MessageCodes.INVALID_CONTEXT_CONNECTION),
86
86
  MessageCodes.INVALID_CONTEXT_CONNECTION)
87
87
 
88
-
89
88
  class _AsyncDBExecutor:
90
89
  """
91
90
  An internal utility to run teradataml API's parallelly by opening
@@ -93,13 +93,17 @@ class _Validators:
93
93
  type_as_str.append(typ1.__name__)
94
94
  elif isinstance(typ, (_ListOf, _TupleOf)):
95
95
  type_as_str.append(str(typ))
96
+ elif typ is pd.DataFrame:
97
+ type_as_str.append("pandas DataFrame")
96
98
  elif typ.__name__ == "DataFrame":
97
99
  type_as_str.append("teradataml DataFrame")
98
100
  else:
99
101
  type_as_str.append(typ.__name__)
100
102
 
101
103
  if isinstance(type_list, type):
102
- if type_list.__name__ == "DataFrame":
104
+ if type_list is pd.DataFrame:
105
+ type_as_str.append("pandas DataFrame")
106
+ elif type_list.__name__ == "DataFrame":
103
107
  type_as_str.append("teradataml DataFrame")
104
108
  else:
105
109
  type_as_str.append(type_list.__name__)
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: teradataml
3
- Version: 20.0.0.5
3
+ Version: 20.0.0.6
4
4
  Summary: Teradata Vantage Python package for Advanced Analytics
5
5
  Home-page: http://www.teradata.com/
6
6
  Author: Teradata Corporation
@@ -18,7 +18,7 @@ Classifier: License :: Other/Proprietary License
18
18
  Requires-Python: >=3.8
19
19
  Description-Content-Type: text/markdown
20
20
  Requires-Dist: teradatasql (>=20.0.0.26)
21
- Requires-Dist: teradatasqlalchemy (>=20.0.0.5)
21
+ Requires-Dist: teradatasqlalchemy (>=20.0.0.6)
22
22
  Requires-Dist: pandas (>=0.22)
23
23
  Requires-Dist: psutil
24
24
  Requires-Dist: requests (>=2.25.1)
@@ -33,6 +33,9 @@ Requires-Dist: sqlalchemy (>=2.0)
33
33
  Requires-Dist: lightgbm (>=3.3.3)
34
34
  Requires-Dist: python-dotenv
35
35
  Requires-Dist: teradatamlwidgets (>=20.0.0.5)
36
+ Requires-Dist: oauthlib (>=3.2.2)
37
+ Requires-Dist: requests-oauthlib (>=2.0.0)
38
+ Requires-Dist: pydantic (>=2.10.6)
36
39
 
37
40
  ## Teradata Python package for Advanced Analytics.
38
41
 
@@ -53,6 +56,102 @@ Copyright 2025, Teradata. All Rights Reserved.
53
56
 
54
57
  ## Release Notes:
55
58
 
59
+ #### teradataml 20.00.00.06
60
+ * ##### New Features/Functionality
61
+ * ###### teradataml: SDK
62
+ * Added new client `teradataml.sdk.Client` which can be used by user to make REST calls through SDK.
63
+ * New exception added in `teradataml`, specifically for REST APIs `TeradatamlRestException` that has attribute `json_resonse` providing proper printable json.
64
+ * Exposed three different ways of authentication through `Client`.
65
+ * Client credentials Authentication through `ClientCredentialsAuth` class.
66
+ * Device code Authentication through `DeviceCodeAuth` class.
67
+ * Bearer Authentication through `BearerAuth` class.
68
+
69
+ * ###### teradataml: ModelOps SDK
70
+ * `teradataml` exposes Python interfaces for all the REST APIs provided by Teradata Vantage ModelOps.
71
+ * Added support for `blueprint()` method which prints available classes in `modelops` module.
72
+ * Added new client `ModelOpsClient` with some additional function compared to `teradataml.sdk.Client`.
73
+ * teradataml classes are added for the schema in ModelOps OpenAPI specification.
74
+ ```python
75
+ >>> from teradataml.sdk.modelops import ModelOpsClient, Projects
76
+ >>> from teradataml.common.exceptions import TeradatamlRestException
77
+ >>> from teradataml.sdk import DeviceCodeAuth, BearerAuth, ClientCredentialsAuth # Authentication related classes.
78
+ >>> from teradataml.sdk.modelops import models # All classes related to OpenAPI schema are present in this module.
79
+
80
+ # Print available classes in modelops module.
81
+ >>> from teradataml.sdk.modelops import blueprint
82
+ >>> blueprint()
83
+
84
+ # Create ClientCredentialsAuth object and create ModelOpsClient object.
85
+ >>> cc_obj = ClientCredentialsAuth(auth_client_id="<client_id>",
86
+ auth_client_secret="<client_secret>",
87
+ auth_token_url="https://<example.com>/token")
88
+ >>> client = ModelOpsClient(base_url="<base_url>", auth=cc_obj, ssl_verify=False)
89
+
90
+ # Create Projects object.
91
+ >>> p = Projects(client=client)
92
+
93
+ # Create project using `body` argument taking object of ProjectRequestBody.
94
+ >>> project_paylod = {
95
+ "name": "dummy_project",
96
+ "description": "dummy_project created for testing",
97
+ "groupId": "<group_ID>",
98
+ "gitRepositoryUrl": "/app/built-in/empty",
99
+ "branch": "<branch>"
100
+ }
101
+ >>> p.create_project(body=models.ProjectRequestBody(**project_payload))
102
+ ```
103
+
104
+ * ###### teradataml: Functions
105
+ * `get_formatters()` - Get the formatters for NUMERIC, DATE and CHAR types.
106
+
107
+ * ###### teradataml: DataFrame Methods
108
+ * `get_snapshot()` - Gets the snapshot data of a teradataml DataFrame created on OTF table for a given snapshot id or timestamp.
109
+ * `from_pandas()`: Creates a teradataml DataFrame from a pandas DataFrame.
110
+ * `from_records()`: Creates a teradataml DataFrame from a list.
111
+ * `from_dict()`: Creates a teradataml DataFrame from a dictionary.
112
+
113
+ * ###### teradataml: DataFrame Property
114
+ * `history` - Returns snapshot history for a DataFrame created on OTF table.
115
+ * `manifests` - Returns manifest information for a DataFrame created on OTF table.
116
+ * `partitions` - Returns partition information for a DataFrame created on OTF table.
117
+ * `snapshots` - Returns snapshot information for a DataFrame created on OTF table.
118
+
119
+ * ###### teradataml DataFrameColumn a.k.a. ColumnExpression
120
+ * `DataFrameColumn.rlike()` - Function to match a string against a regular expression pattern.
121
+ * `DataFrameColumn.substring_index()` - Function to return the substring from a column before a specified
122
+ delimiter, up to a given occurrence count.
123
+ * `DataFrameColumn.count_delimiters()` - Function to count the total number of occurrences of a specified delimiter.
124
+
125
+ * ##### Updates
126
+ * ###### teradataml DataFrameColumn a.k.a. ColumnExpression
127
+ * `DataFrameColumn.like()`
128
+ * Added argument `escape_char` to specify the escape character for the LIKE pattern.
129
+ * Argument `pattern` now accepts DataFrameColumn as input.
130
+ * `DataFrameColumn.ilike()`
131
+ * Added argument `escape_char` to specify the escape character for the ILIKE pattern.
132
+ * Argument `pattern` now accepts DataFrameColumn as input.
133
+ * `DataFrameColumn.parse_url()` - Added argument `key` to extract a specific query parameter when `url_part` is set to "QUERY".
134
+
135
+ * ###### teradataml: DataFrame function
136
+ * `groupby()`, `cube()` and `rollup()`
137
+ * Added argument `include_grouping_columns` to include aggregations on the grouping column(s).
138
+ * `DataFrame()`: New argument `data`, that accepts input data to create a teradataml DataFrame, is added.
139
+
140
+ * ###### General functions
141
+ * `set_auth_token()`
142
+ * New keyword argument `auth_url` accepts the endpoint URL for a keycloak server.
143
+ * New keyword argument `rest_client` accepts name of the service for which keycloak token is to be generated.
144
+ * New keyword argument `validate_jwt` accepts the boolean flag to decide whether to validate generated JWT token or not.
145
+ * New keyword argument `valid_from` accepts the epoch seconds representing time from which JWT token will be valid.
146
+
147
+ * ###### teradataml Options
148
+ * Configuration Options
149
+ * `configure.use_short_object_name`
150
+ Specifies whether to use a shorter name for temporary database objects which are created by teradataml internally.
151
+
152
+ * ###### BYOM Function
153
+ * Supports special characters.
154
+
56
155
  #### teradataml 20.00.00.05
57
156
  * ##### New Features/Functionality
58
157
  * ##### teradataml: AutoML
@@ -1,14 +1,14 @@
1
- teradataml/LICENSE-3RD-PARTY.pdf,sha256=C1_zJNnaiJX5OLwr6krXAY78ngnu3BKneKUPX2R3jb8,350063
1
+ teradataml/LICENSE-3RD-PARTY.pdf,sha256=vhxs8Emzgnk0ZApe2FMM4F6kZDvn12UoQ3NwQW3RnpE,594910
2
2
  teradataml/LICENSE.pdf,sha256=h9PSzKiUlTczm4oaa7dy83SO95nZRL11fAR4N1zsOzo,184254
3
- teradataml/README.md,sha256=2nE42FIqPB2oi8Fsl3ia5M-xLQ3Yv0_UeMJuJQAtOjg,135875
3
+ teradataml/README.md,sha256=UnO8Ets-_DATYOo0fRy_bgTrWpjcuk3n5xz255iK1xU,141461
4
4
  teradataml/__init__.py,sha256=OcxcbsK1UzsJxA158gWT_Q3Wz-KUp601dBK3PnxH-rk,2749
5
- teradataml/_version.py,sha256=v9T0lcYoiCTnwHEG7MI6ycLKgsnFEjCCtu_jRa0xF-I,364
5
+ teradataml/_version.py,sha256=14-Lygr0Bwm4n5zv37KkzqvHfVXnfvRoss5EEeigFqI,364
6
6
  teradataml/analytics/Transformations.py,sha256=5Ts7lqCSiO3LCi4xc3bA3D3FksODPJXAhxoyryf66js,149487
7
7
  teradataml/analytics/__init__.py,sha256=DnTOi9QlFJ-P20n2LbL2waKp76uL9KWE6w__6KG8m1I,3046
8
- teradataml/analytics/analytic_function_executor.py,sha256=2WR6skmGPDGMwWAUErxEs1JqlAfc024q1KjuBD1RD1I,106714
8
+ teradataml/analytics/analytic_function_executor.py,sha256=D9XlxO7wGfmtc2sVmwCMSP6Bhc1IaaVi9eLZ2vVsw2E,106718
9
9
  teradataml/analytics/analytic_query_generator.py,sha256=Si1lhWEhfa7Q4j3TZaD904lM3MumIsX3F3N9oysCkY0,45915
10
10
  teradataml/analytics/meta_class.py,sha256=YRsFEvwv8S73boaG8W85altpJTOoRz9Wk7YTplm6z9M,8427
11
- teradataml/analytics/utils.py,sha256=Mvp8a_30aHTFHvBhyai0DN8h7qV-tRwD5Sc_U2OfZzY,32215
11
+ teradataml/analytics/utils.py,sha256=TvL9AUHGqznj1B8570PSWr0pweCjiZ29US4Y9zlsm3Y,34122
12
12
  teradataml/analytics/valib.py,sha256=4iwJj9usJDkmAGNDNdKqkV1kwtrbvOH4OAXg8hFwIMQ,74380
13
13
  teradataml/analytics/byom/H2OPredict.py,sha256=S69BUkxG8Dr2pgzDAqYVIl2Wupf0eXdmW46i3hHNJp4,25128
14
14
  teradataml/analytics/byom/PMMLPredict.py,sha256=TCxQinbQ50ZHrL-8teN-gRpXf93JnQSekHi33Y618Eo,20269
@@ -39,22 +39,23 @@ teradataml/catalog/byom.py,sha256=6sZ-lyOr65XGmDcJo1SHogXmoSvCFooFOKeAIN8JUms,99
39
39
  teradataml/catalog/function_argument_mapper.py,sha256=fTu0YrTb4ZgbcFmw15H-G7I8iln_QRImy38BhXsph34,40018
40
40
  teradataml/catalog/model_cataloging_utils.py,sha256=g6S6kwkE87c1rd02YAWIQ-u2z9OhduX1RXsLqsmSPsI,20624
41
41
  teradataml/clients/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
42
- teradataml/clients/auth_client.py,sha256=e91cY9Bv9h7L_eZrxS-sDRGwsk6v3H6dTdAiLpib6HI,4033
42
+ teradataml/clients/auth_client.py,sha256=jxjrlqM3Xjl8yhH83Q-Rtuq8O4yMER8GKc4qTYf5RUQ,4341
43
+ teradataml/clients/keycloak_client.py,sha256=5asUIBalHt3nEVaUMUfyOa9SsOoO3tCK8i3eyKrlGjo,6131
43
44
  teradataml/clients/pkce_client.py,sha256=m7FYwfMf_xTP7-L4_wFLQdWWpO4sTEEIyZCZSHJVjkA,16604
44
45
  teradataml/common/__init__.py,sha256=KeFSq3wtcYMpZEFepWsgC7e9ocmmsv6WSrDosIviAVY,52
45
46
  teradataml/common/aed_utils.py,sha256=oMxLrtf5M2LVd5Xrm9hLkistQ9QFs5Uxki1omAmW3RA,106195
46
47
  teradataml/common/bulk_exposed_utils.py,sha256=tV5xvysJAXibUIm8AyzV4cE4USQFe7Eubhyl9m4ZiJY,4622
47
- teradataml/common/constants.py,sha256=qTetg2qSyaP4Olls2xegePWB8JInhXsJHy4JA0eTZIk,63408
48
+ teradataml/common/constants.py,sha256=-6_fJZUF_qVsauQpxTJ3UoKiNW3zkEYQ1m52YA4ZL-o,63706
48
49
  teradataml/common/deprecations.py,sha256=-KkDiJe9_08CIvCR4Xbzg3_WPZlJ5rqyKVlfpMhKrk0,6211
49
- teradataml/common/exceptions.py,sha256=U3rze_QiIVMPP-2xr4a3Bnz1UQ_mbODC_uwbdBQ46aA,2775
50
+ teradataml/common/exceptions.py,sha256=FX51jVCyMgQ-h20l-im_EwT-I1_fz5XdgJzpwEeOcgc,3760
50
51
  teradataml/common/formula.py,sha256=IBBDwllFru21EerpV4v9zjbYCBqILZJy4M-vQnT1yd8,31089
51
52
  teradataml/common/garbagecollector.py,sha256=ebvLmRn-M4dNPJCrTH1l0gccljmcT_gdIId5xaRf6vo,28428
52
- teradataml/common/messagecodes.py,sha256=8fc1Xkn3AS5AGuFDGoKj5w6pyUxZAD8nT5eSUOSGbsA,29838
53
- teradataml/common/messages.py,sha256=7QhGEvEhjweMmLjU7dEKp2vvNIsSJwZcwYuSSi8PSPk,18270
53
+ teradataml/common/messagecodes.py,sha256=k1NuIBtqYeQmlDjWLtaSvC6E91tB38lD__jBBBBvLhM,31291
54
+ teradataml/common/messages.py,sha256=ABbdWCLipRYyUovhTLL0gNQyMX2qKSJds1eXwBO20z4,19008
54
55
  teradataml/common/pylogger.py,sha256=8G36wPGbnCVAaabYeimuSuRazwbnX-NhKyZc-a_deJ0,1752
55
- teradataml/common/sqlbundle.py,sha256=ViH_-OwvTDUqXWGIvCSqDqP5020humJuGc5Dm3VxyKk,26498
56
+ teradataml/common/sqlbundle.py,sha256=8KSYwm_BMM4HNRYwMyVNhCiMTJuqUVeGoV5Si5NIrkY,26681
56
57
  teradataml/common/td_coltype_code_to_tdtype.py,sha256=8RzvJAnC9iHXsCHVVDbPXG3e1ESyZFLVtvw00M1Tj3I,1193
57
- teradataml/common/utils.py,sha256=CT_ES84pz03upvoufQm6fe1CVcgXtOpUMd2u3GPG5dI,109777
58
+ teradataml/common/utils.py,sha256=FuO8DSL4H0U0MoB3a_D7rgPUKqK0Cg6BUW1sr2XF2iw,113230
58
59
  teradataml/common/warnings.py,sha256=PO6nQT9W3pIeT9TLYyLLbwe-f897Zk-j5E8RqyPFs48,1049
59
60
  teradataml/common/wrapper_utils.py,sha256=f2DxS-FqgEqbAJbHpOtKD4wU7GLj2XSX_d3xWNn9VvM,27843
60
61
  teradataml/config/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
@@ -65,7 +66,7 @@ teradataml/config/sqlengine_alias_definitions_v1.1,sha256=iHEB832KDSO0DdugW8Mivh
65
66
  teradataml/config/sqlengine_alias_definitions_v1.3,sha256=pCt661hEVA_YM_i4WL69DwwD1wKm_A4uzqHqwzRf0bo,534
66
67
  teradataml/context/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
67
68
  teradataml/context/aed_context.py,sha256=qNCX27R8KxJ3LScU9wXQzos1Gm78Cv0ahVdwSg5iq6Y,7578
68
- teradataml/context/context.py,sha256=jqL9jMXEzMJO22IkFqF0fZU8kDXInJkm69laG6jJRus,59400
69
+ teradataml/context/context.py,sha256=rqx0-rsQVGB06nrdPPQjJGyT1LXv2lHgkmyIw6kGgkk,61029
69
70
  teradataml/data/A_loan.csv,sha256=HFfTfH1cC-xh4yiYGddaoiB0hHG17pWKbmySolOLdoc,584
70
71
  teradataml/data/BINARY_REALS_LEFT.csv,sha256=LW8o1jCKyUv9UFM3E5WbRMDYPQfwkFMZtifDAf9cp30,416
71
72
  teradataml/data/BINARY_REALS_RIGHT.csv,sha256=LW8o1jCKyUv9UFM3E5WbRMDYPQfwkFMZtifDAf9cp30,416
@@ -366,6 +367,7 @@ teradataml/data/paragraphs_input.csv,sha256=_9owa9OoNgqLR1QhGnAIcCu6txVUwdzZSMj-
366
367
  teradataml/data/pathanalyzer_example.json,sha256=AiiJxKnvF4Q536y1-6kdr6ZcfxtQqMERTHiEn1nxebM,138
367
368
  teradataml/data/pathgenerator_example.json,sha256=AiiJxKnvF4Q536y1-6kdr6ZcfxtQqMERTHiEn1nxebM,138
368
369
  teradataml/data/patient_profile.csv,sha256=TwZzE3TII362SjT_1yMfscZnkJ6gK6hvy7k3KyUfigg,3729
370
+ teradataml/data/pattern_matching_data.csv,sha256=YJ0iZUuRa2_H9Um01oFsiYqwM6bpxkUq4jnX92zneA4,313
369
371
  teradataml/data/peppers.png,sha256=imrSYKQni781u4YSajHlrS9qVM7NRMtkB6buXYb_PjU,732014
370
372
  teradataml/data/phrases.csv,sha256=CX_QEgAX37IUVKf8ctD6uNkG4bixeH0Tn1LM0nCEco0,110
371
373
  teradataml/data/pivot_example.json,sha256=ZHd3QFtx0yXPZm7fIfss8SsyZU5-mTG40Wv1Qliln5M,165
@@ -458,7 +460,7 @@ teradataml/data/target_udt_data.csv,sha256=BRiHn4P68J1Pyh9MvTmxtKe0eEze-EUuBVYMV
458
460
  teradataml/data/tdnerextractor_example.json,sha256=yjRT9NSUb0d4Oi5yqF40sfnEwN-FgIbsjJG7G8aIVwg,275
459
461
  teradataml/data/templatedata.csv,sha256=_NYyMgobQ0-oIjZhIUcv16iOM4EtajZ4mKOrx39cfDY,22391
460
462
  teradataml/data/teradata_icon.ico,sha256=M4qHNiblJAmGmYqsy9bD5xSP83ePf6089KdFuoQhaFM,1150
461
- teradataml/data/teradataml_example.json,sha256=WNfsndXCnq9Ot-4PDvMdCP3AMnHxwD9ARSh6uzaythw,42212
463
+ teradataml/data/teradataml_example.json,sha256=bFGM6aPlRUU6trmJ3qdnEFd-i35ONShsj6jQtbrfp1s,42389
462
464
  teradataml/data/test_classification.csv,sha256=BDKuA82t60YWQu23BDxMn3j7X2Ws_HJXfUoFcwa76Og,9523
463
465
  teradataml/data/test_loan_prediction.csv,sha256=RW7R4PPMRGdpHmHxvH-1TssLQFg5bVfd8tteuJ3Ukg0,863
464
466
  teradataml/data/test_pacf_12.csv,sha256=ltIEUeJksRLCcvfXyrFhGcc7GkI89NXhRbQ5gOidvNM,1003
@@ -504,7 +506,7 @@ teradataml/data/univariatestatistics_example.json,sha256=b9FN__52MuTp_I_y54LMpwt
504
506
  teradataml/data/unpack_example.json,sha256=5-v3zdRXoSgVuQbL0sQTQ-n2d-KhdFpRdjm83DhWM8g,186
505
507
  teradataml/data/unpivot_example.json,sha256=LJP--etfQ56RASpoQ8Ozvgi2AMpTl6M5eKmMi5OhKTc,566
506
508
  teradataml/data/unpivot_input.csv,sha256=80W9AQhe_5-JULJA_SJXJbi-lV-6pkfOJ6bygb_oZL8,294
507
- teradataml/data/url_data.csv,sha256=zIpqkGUxPsv-62ncrjvM9TUf3l8FRMZTlN1I9N1j3_s,536
509
+ teradataml/data/url_data.csv,sha256=LA239dXk9NejKiJifVGF8gwXHzBigLQolHC15y3Lo9o,704
508
510
  teradataml/data/us_air_pass.csv,sha256=LdhRm7SOl573NEP8jJYaB4d44lBhfsDO1vXw8SLStnY,1056
509
511
  teradataml/data/us_population.csv,sha256=KcNP7DOv-X3qvQ2tg2yz154FYPg5xeVFyQ-nG15aT4M,18420
510
512
  teradataml/data/us_states_shapes.csv,sha256=Uk75jUs3LV9B3Hy_fgQ3N_ql0e1GcrCqjdTEVqSNCIA,86308
@@ -767,7 +769,7 @@ teradataml/data/jsons/paired_functions.json,sha256=5EGDbgTwKrR-HcjwMa187tPyOm23a
767
769
  teradataml/data/jsons/byom/dataikupredict.json,sha256=szvH79NGcniprg7eborSyKb_1JL8-Zg8lC0KT8efM3c,4752
768
770
  teradataml/data/jsons/byom/datarobotpredict.json,sha256=42VOrJFvlc87ZKgq6mu0FwcUkIFEaY41rzW2PTibVTM,4735
769
771
  teradataml/data/jsons/byom/h2opredict.json,sha256=-neUkuTjHSVWAoK7uyIcAv9HfAa0IGiiWXuNES73fgc,6132
770
- teradataml/data/jsons/byom/onnxembeddings.json,sha256=-_y50FRtV8KQNeHW29tlRss3MsnJs_FBZ1xrK60qfpI,8866
772
+ teradataml/data/jsons/byom/onnxembeddings.json,sha256=FDxTY4B6NeuHILqlMFhNgkfasupwKTpm8mFIBIUtKxA,8935
771
773
  teradataml/data/jsons/byom/onnxpredict.json,sha256=pkzmSpmzpx0V7UVKGc2_FkTCISa3U1vkqV5gpae5aBg,6114
772
774
  teradataml/data/jsons/byom/pmmlpredict.json,sha256=Rm2Dt1PXu4wG8xj3a7MaTGYPb9_2cXgeUYy4enevUzw,4686
773
775
  teradataml/data/jsons/sqle/16.20/Antiselect.json,sha256=Zyw4BroIZwI7UeYjeHsWO51MukZmAH38UKS4-8nPuLg,1621
@@ -1084,18 +1086,19 @@ teradataml/data/scripts/sklearn/sklearn_model_selection_split.py,sha256=SKdueW62
1084
1086
  teradataml/data/scripts/sklearn/sklearn_neighbors.py,sha256=Uqyn6blWs2epKUlZtdhpCWpWT_vMa5ZRkMaT6g-u9Z0,5938
1085
1087
  teradataml/data/scripts/sklearn/sklearn_score.py,sha256=VtEP3sGJUasWWDHKWZau08vwShECy15vQ9OFINt9N4A,4754
1086
1088
  teradataml/data/scripts/sklearn/sklearn_transform.py,sha256=EgrVc5_Uw0AMdhy2GBDhGA0WNMA2A9DkQUC5n2MXsCI,14613
1089
+ teradataml/data/sdk/modelops/modelops_spec.json,sha256=HRF5rpVdaivyUVTGagaiHASbV9aLq7TrlQ77JaHIpDQ,5329976
1087
1090
  teradataml/data/templates/open_source_ml.json,sha256=dLbP86NVftkR8eoQRLQr_vFpJYszhnPvWNcSF1LRG78,308
1088
1091
  teradataml/dataframe/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
1089
- teradataml/dataframe/copy_to.py,sha256=wLQB5EIIpQxqKrgrEEBtAvXKHIDQiSiORmPCujiNexI,77295
1092
+ teradataml/dataframe/copy_to.py,sha256=dL1evyK-lXxM-MQjBIPPXJo3_Gp5TKgE9gVGodys3lw,77304
1090
1093
  teradataml/dataframe/data_transfer.py,sha256=AgSb7OMzVgBQQ8vvhs-joO0i62JAueLJ5IzwWHG3OHw,125128
1091
- teradataml/dataframe/dataframe.py,sha256=BvqQh3AfxZF-3e3Wic0TaJTXVZ_io4xZ_V4rxCBx0gY,1000729
1092
- teradataml/dataframe/dataframe_utils.py,sha256=1QeJQ9PYuVYeF05WshnuRg3yGocQ2LeW_O1HXzRB_8Q,95099
1094
+ teradataml/dataframe/dataframe.py,sha256=BtLPSDYIYVELTkytENJgwka2hXbt-9HUK8ZyTHOlo4I,1045652
1095
+ teradataml/dataframe/dataframe_utils.py,sha256=UAtmXgWD6tTiPiItLws9Bxntf0FfxXlcXU-vWltCp6M,96882
1093
1096
  teradataml/dataframe/fastload.py,sha256=Qyq4xEzS9E5NRDvEUlmv3hoAQy5nhTDEfW1QiVg3e9U,42032
1094
- teradataml/dataframe/functions.py,sha256=JRfUH2yRbcSp9OejJGO6EZuRPM6m7fTlltdc85YbOZM,43600
1097
+ teradataml/dataframe/functions.py,sha256=BxHJQYtFQ5vMaMIpvp6N7xMETWVNJq2_nqOFQScR7e0,148370
1095
1098
  teradataml/dataframe/indexer.py,sha256=xDLYMuUy77VpVo1rO0RHrM-fpexr1Mm3o1hF_I3PsdQ,19787
1096
1099
  teradataml/dataframe/row.py,sha256=zgt4G-05ZE8QOfC0aCJVpK3WwC9_ExIgpMV7ZD3wKu0,4622
1097
1100
  teradataml/dataframe/setop.py,sha256=lgXCXZ8ACAAHIzf0YDws31Ydzdl9b9xcZYLeziSRPu0,57203
1098
- teradataml/dataframe/sql.py,sha256=pELFHZ7npF1j4wcNkT6o7Fv-6f5Lqo_Q_yw3OukDnMY,669372
1101
+ teradataml/dataframe/sql.py,sha256=IbRl_5Fv2mYFbNFv4XFp85v8btpVbnMniy99_d8ISms,584258
1099
1102
  teradataml/dataframe/sql_function_parameters.py,sha256=BVuHGJ78TjxbrwMdytXfUVKrMZb4Ge20taVwcj0E8gU,22241
1100
1103
  teradataml/dataframe/sql_functions.py,sha256=-v5Gx8x_Tr-Ru9YrmjrM-JfIDhguk8HcO2G1xMcg0Wo,29482
1101
1104
  teradataml/dataframe/sql_interfaces.py,sha256=WzM-jq7JyRmEMs7yZTgX6W3nnD7YjxXwdTHauI4BQPA,3812
@@ -1112,20 +1115,20 @@ teradataml/geospatial/geodataframecolumn.py,sha256=znNHkjpbOoS3a8xrYS2Q0ou4-hhm0
1112
1115
  teradataml/geospatial/geometry_types.py,sha256=hUKAUluD8ufvXaLY1-cwnsB3RsFkHR8Wr7eVE4YCtoU,38518
1113
1116
  teradataml/hyperparameter_tuner/__init__.py,sha256=RQvotxJqh80M8Du-5IWdjdJvKYHDiGlepkgm5oyKqpY,80
1114
1117
  teradataml/hyperparameter_tuner/optimizer.py,sha256=TOm7bTFuHoLz5yRDxFw5FJvuFpiCdrRxMmcTq-QBzks,198688
1115
- teradataml/hyperparameter_tuner/utils.py,sha256=Bu0A_mP1WPyWtoBGz9NTkNhWOz_nZUkc5gsqcPrYfnk,11727
1118
+ teradataml/hyperparameter_tuner/utils.py,sha256=du8Xy2JVKvnW8Vk06xI7VZA7499nRPVBxVkvqm6sVyE,11877
1116
1119
  teradataml/lib/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
1117
- teradataml/lib/aed_0_1.dll,sha256=cQqvUotPZhtAwruDaojavGSnhx6JAO4bHNJ9pXviQJQ,3735757
1120
+ teradataml/lib/aed_0_1.dll,sha256=AgsH4Zd7G546nljFZIDR2ESakpXJmLlPXGLT3EiJTZ4,3735757
1118
1121
  teradataml/lib/libaed_0_1.dylib,sha256=nKlbPxiSJw-kCw6NktpqMy-UDfq4zYq7gLy6S2N2Ppg,1806401
1119
1122
  teradataml/lib/libaed_0_1.so,sha256=xi4gwYQtbbdUlRTXsTEJSf0J0e9jt-cguTzdPQdrsEU,1040824
1120
1123
  teradataml/opensource/__init__.py,sha256=-EOpCOiaaHWuCFP1vDCOlHkqyPNid4CrnkQnQ0BOzKo,66
1121
- teradataml/opensource/_base.py,sha256=cleN8Zpu2xWksJ0wKkvdZABW5hNC9eaLGySXhkb765A,64098
1124
+ teradataml/opensource/_base.py,sha256=TcY6vHt8oc31Mka4MkF8t0x9Y4AsB7GlAmLjvEpOkf4,64347
1122
1125
  teradataml/opensource/_class.py,sha256=6Qo0pu2_Y0SK8RN9PistIFRCP1_q3fEsXRL0ZJSYo6I,18463
1123
1126
  teradataml/opensource/_constants.py,sha256=pAqYmkh6dQD9DXr4pdlZ5FOk78wXLUdyGaupL-oumCE,3083
1124
1127
  teradataml/opensource/_lightgbm.py,sha256=CkQqy3dkORIFPH_qKP3LiMBvJ9MvUIcDJP_ut-PhRSE,49321
1125
1128
  teradataml/opensource/_sklearn.py,sha256=UAV3A8xL8aDkiqPP6IMfRN0AmH3i6m1T3xxNShlpS_s,50537
1126
1129
  teradataml/opensource/_wrapper_utils.py,sha256=7xsCNjy7flVvxpyhp7vMzBUXJdkdPWj5TnpPjtkVXeY,12122
1127
1130
  teradataml/options/__init__.py,sha256=avSPE90damRcMHIRUxbarQ3CdFO8Vs8Jcon3EG8R32k,6587
1128
- teradataml/options/configure.py,sha256=kb_M2G1YHnWmvhv9PifnxQGTvpbmEO-Bo1Zqz0i7l4o,25794
1131
+ teradataml/options/configure.py,sha256=RYNRWjg3VII0dsvUPqyO7chYXzqmdrHBvMHwLAS7gKM,26798
1129
1132
  teradataml/options/display.py,sha256=vLEHfN7ZvqqTUrGuRXnEjy6a7pgtSmU-dcnu5jXMCJc,8482
1130
1133
  teradataml/plot/__init__.py,sha256=pKzD81TdmCSnrHtWsR2Gt_nyDQzXqAdxydepUQvKl6g,126
1131
1134
  teradataml/plot/axis.py,sha256=atxWOVq1ebSBTHz2QPwh5fqq9EFEJeMl2VR-rXSq_G4,55486
@@ -1134,9 +1137,23 @@ teradataml/plot/figure.py,sha256=aWqABKdtdJ0awymC0i4fa310mrs6dnTG2ofKGLI-E8E,132
1134
1137
  teradataml/plot/plot.py,sha256=3gnC6rtrLxhV9wY5Tfejqx-DvxDFzPW3m8_bYTmcFdg,32450
1135
1138
  teradataml/plot/query_generator.py,sha256=so8_w73Qday0b5hGUvJNrx9ELkYgXFpwjTUsbjNZvJg,3552
1136
1139
  teradataml/plot/subplot.py,sha256=c-Npnr5LWb4TUHwfdwzMsZBiti6FunzdFC5EtcuOWjY,10246
1137
- teradataml/scriptmgmt/UserEnv.py,sha256=3VC7kVriMwZU5q1lbbwigDjocMrUSg6DRdJrqpZ7vOE,191989
1140
+ teradataml/scriptmgmt/UserEnv.py,sha256=02aW3NXcecAUOHgloADEzozB9LxUYjJim6oW_3FjCRU,192350
1138
1141
  teradataml/scriptmgmt/__init__.py,sha256=dG0Yef5V3gLu1KasRhBLd6OgdC2NAFqjzJC8BDhark8,185
1139
- teradataml/scriptmgmt/lls_utils.py,sha256=gyXcjFy3UdKm5mqoo6U7E6cQGbzYDXBLb8w8OEjaYeg,92806
1142
+ teradataml/scriptmgmt/lls_utils.py,sha256=KzhCMUOmdvIecjOQmkRC1WY2kjBUuP1ahMnzhO6woWg,96662
1143
+ teradataml/sdk/README.md,sha256=VGfz2dKiH0pA8iJqfsbDU_rh43fsn7xYK2oam_K0590,5355
1144
+ teradataml/sdk/__init__.py,sha256=aKiN-rFiaGECXKhgRpgDrSRHSLYReZ34ddaiuC_2w-g,233
1145
+ teradataml/sdk/_auth_modes.py,sha256=4O8W5LLceD4xp2F1xe--DgnTl6uhha6H0D57YGG1nCk,15183
1146
+ teradataml/sdk/_func_params.py,sha256=mzyvuB4MoXlHJU9fNuj0fqdrIw1bEmgoguEGrBsghN4,21110
1147
+ teradataml/sdk/_json_parser.py,sha256=sQwiNLgk-f5VvVTUHwyq2u_sr_HCxy7K4ydhy8g1Ges,22135
1148
+ teradataml/sdk/_openapi_spec_constants.py,sha256=osIt-Z0DZKAqiF_7CUhiV87VhK8GKKWIYCZH29dYJa0,6850
1149
+ teradataml/sdk/_utils.py,sha256=cmCFjQgjTJdCaP-xoaNZysmiTBx_qCCmxNfsIk3D8Ko,10717
1150
+ teradataml/sdk/api_client.py,sha256=olvhphWyyhS-TaKi18YCanIuRpVTnteOk0sg5zr6VvU,37271
1151
+ teradataml/sdk/constants.py,sha256=uzohRFJTk6Y3IqEjd1cDwrprPzIEuSlYWlN06k0mTI4,1751
1152
+ teradataml/sdk/spinner.py,sha256=dF4aOGpNQWBWeczgkvWIVN6t8rr-vf1IGRlhl6jowPo,2979
1153
+ teradataml/sdk/modelops/__init__.py,sha256=LC4W2Ytq8bAVccBp_UX4mieeN0kQoNrV8sow2wM_Cxs,3690
1154
+ teradataml/sdk/modelops/_client.py,sha256=OAqE4e3RJDrO6Inf7UyUuqc5HGlncVf3B6oX6o3T3So,16969
1155
+ teradataml/sdk/modelops/_constants.py,sha256=FR2Mwr6JEW2QRUfcqFESeV72t0wJ8CtnLivnUxDQow8,9383
1156
+ teradataml/sdk/modelops/models.py,sha256=6jMB5E7qPy2E_DfAw352LgFNcr6ogHDw_ucunkaf4Ws,72632
1140
1157
  teradataml/series/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
1141
1158
  teradataml/series/series.py,sha256=nJF6tJmF_rsPHH1kboGrWdTvEUZZFu_JunKSoKnN3tI,17724
1142
1159
  teradataml/series/series_utils.py,sha256=ufuY8Z5oVB6K3ro23AXaxg6aAjjjEYg4jbAf1_W8aDU,2681
@@ -1150,7 +1167,7 @@ teradataml/table_operators/Script.py,sha256=Quh9_GngNHbNnIEd3xrw5R8hR1EBSWddbxZB
1150
1167
  teradataml/table_operators/TableOperator.py,sha256=yKn0XLtQwhjs1cdDG0IM4ZLEZBO9sRn_vBE_RTIIoKg,77099
1151
1168
  teradataml/table_operators/__init__.py,sha256=MTuTiCyGt7Le4MQ5XEfTyp_9Za-vAIreZhfz9GEAzrU,106
1152
1169
  teradataml/table_operators/apply_query_generator.py,sha256=41ah294SyyG0tl88h8og7AXOWDzT1Lb1J1GjO0M1swA,12207
1153
- teradataml/table_operators/query_generator.py,sha256=984JEgcnrz63ala-Mm8y5NqGAlqltfMpUn-OhPEoeLQ,23201
1170
+ teradataml/table_operators/query_generator.py,sha256=odqpOTD2IzNg2TB6YgZBwWYY3nDK8rLv5VhqdjpDBYE,22291
1154
1171
  teradataml/table_operators/table_operator_query_generator.py,sha256=luATy6uVS8-ixvObaxmPvNro76BNCiVwytYIHOnAnK8,22456
1155
1172
  teradataml/table_operators/table_operator_util.py,sha256=jR5fYekNG7Bjo-eLLMUaDIETolWYack0MqSKJ2l7lks,33870
1156
1173
  teradataml/table_operators/templates/dataframe_apply.template,sha256=3FiK_nivSf343xlYHfCJA2pn0dycvX_pB0daKBXg64M,8054
@@ -1161,13 +1178,13 @@ teradataml/table_operators/templates/script_executor.template,sha256=dLqU8z2WXi1
1161
1178
  teradataml/telemetry_utils/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
1162
1179
  teradataml/telemetry_utils/queryband.py,sha256=yMq-hY81elmNoFpHNsMBxOMv--jMB81d9QFxDUppV4g,2354
1163
1180
  teradataml/utils/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
1164
- teradataml/utils/dtypes.py,sha256=7LFHyjpywxwgKMgMpy-4AmXDhr5IuDRsXij4gJ0Ymw4,27975
1181
+ teradataml/utils/dtypes.py,sha256=J9fWcQBOG8CVW7ctMrywcUo-Sn4_oSwzQyh4sVzXx2M,28009
1165
1182
  teradataml/utils/internal_buffer.py,sha256=Amjji6Dmosc0zWjIHBMUxLVj3eO-UbknohYkIOreLPQ,3042
1166
1183
  teradataml/utils/print_versions.py,sha256=m-ByrRZEQkiCmDyaBNknwpE8UhYY1bPPlW3YYHDTrlc,6535
1167
- teradataml/utils/utils.py,sha256=RDSUXNHNyG4bkgFSa6nGaGRc3W0mHjqX_mx_2vGvizw,17254
1168
- teradataml/utils/validators.py,sha256=0PoqjhdLsd8C5E5rS8yMjkVfxGf6ZWjsmHGgatWG0ts,108816
1169
- teradataml-20.0.0.5.dist-info/METADATA,sha256=eX-ojIs7NHCQ_cMJBGCrhpi0vAJYGNxem81hK3IdNv0,134630
1170
- teradataml-20.0.0.5.dist-info/WHEEL,sha256=G16H4A3IeoQmnOrYV4ueZGKSjhipXx8zc8nu9FGlvMA,92
1171
- teradataml-20.0.0.5.dist-info/top_level.txt,sha256=j0jkK8Hmxb5acGSNrbbEePXSgqTQEItdFZXhyJT7qUM,11
1172
- teradataml-20.0.0.5.dist-info/zip-safe,sha256=frcCV1k9oG9oKj3dpUqdJg1PxRT2RSN_XKdLCPjaYaY,2
1173
- teradataml-20.0.0.5.dist-info/RECORD,,
1184
+ teradataml/utils/utils.py,sha256=cgxkL7wOe2PZsEbmF4AyKWGXDFZiHCVFrU97EYdURGI,17252
1185
+ teradataml/utils/validators.py,sha256=mwMYsCoQ24preyF50KvnGmTh91AWzoIYPVnutNrrtLU,109020
1186
+ teradataml-20.0.0.6.dist-info/METADATA,sha256=ppB-Ksd_3kjy9qnvnxCCw2oGVNqM2OwqnsVy3VYoGG4,140232
1187
+ teradataml-20.0.0.6.dist-info/WHEEL,sha256=G16H4A3IeoQmnOrYV4ueZGKSjhipXx8zc8nu9FGlvMA,92
1188
+ teradataml-20.0.0.6.dist-info/top_level.txt,sha256=j0jkK8Hmxb5acGSNrbbEePXSgqTQEItdFZXhyJT7qUM,11
1189
+ teradataml-20.0.0.6.dist-info/zip-safe,sha256=frcCV1k9oG9oKj3dpUqdJg1PxRT2RSN_XKdLCPjaYaY,2
1190
+ teradataml-20.0.0.6.dist-info/RECORD,,