teradataml 20.0.0.4__py3-none-any.whl → 20.0.0.6__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of teradataml might be problematic. Click here for more details.

Files changed (131) hide show
  1. teradataml/LICENSE-3RD-PARTY.pdf +0 -0
  2. teradataml/README.md +182 -13
  3. teradataml/__init__.py +2 -1
  4. teradataml/_version.py +2 -2
  5. teradataml/analytics/analytic_function_executor.py +8 -13
  6. teradataml/analytics/json_parser/analytic_functions_argument.py +4 -0
  7. teradataml/analytics/sqle/__init__.py +16 -1
  8. teradataml/analytics/utils.py +60 -1
  9. teradataml/automl/__init__.py +290 -106
  10. teradataml/automl/autodataprep/__init__.py +471 -0
  11. teradataml/automl/data_preparation.py +29 -10
  12. teradataml/automl/data_transformation.py +11 -0
  13. teradataml/automl/feature_engineering.py +64 -4
  14. teradataml/automl/feature_exploration.py +639 -25
  15. teradataml/automl/model_training.py +1 -1
  16. teradataml/clients/auth_client.py +12 -8
  17. teradataml/clients/keycloak_client.py +165 -0
  18. teradataml/common/constants.py +71 -26
  19. teradataml/common/exceptions.py +32 -0
  20. teradataml/common/messagecodes.py +28 -0
  21. teradataml/common/messages.py +13 -4
  22. teradataml/common/sqlbundle.py +3 -2
  23. teradataml/common/utils.py +345 -45
  24. teradataml/context/context.py +259 -93
  25. teradataml/data/apriori_example.json +22 -0
  26. teradataml/data/docs/sqle/docs_17_20/Apriori.py +138 -0
  27. teradataml/data/docs/sqle/docs_17_20/NERExtractor.py +121 -0
  28. teradataml/data/docs/sqle/docs_17_20/NGramSplitter.py +3 -3
  29. teradataml/data/docs/sqle/docs_17_20/SMOTE.py +212 -0
  30. teradataml/data/docs/sqle/docs_17_20/TextMorph.py +119 -0
  31. teradataml/data/docs/sqle/docs_17_20/TextParser.py +54 -3
  32. teradataml/data/docs/uaf/docs_17_20/ACF.py +1 -1
  33. teradataml/data/docs/uaf/docs_17_20/ArimaEstimate.py +2 -2
  34. teradataml/data/docs/uaf/docs_17_20/ArimaXEstimate.py +2 -2
  35. teradataml/data/docs/uaf/docs_17_20/DFFT.py +1 -1
  36. teradataml/data/docs/uaf/docs_17_20/DFFT2.py +1 -1
  37. teradataml/data/docs/uaf/docs_17_20/DFFT2Conv.py +1 -1
  38. teradataml/data/docs/uaf/docs_17_20/DFFTConv.py +1 -1
  39. teradataml/data/docs/uaf/docs_17_20/FilterFactory1d.py +4 -4
  40. teradataml/data/docs/uaf/docs_17_20/GenseriesSinusoids.py +2 -2
  41. teradataml/data/docs/uaf/docs_17_20/GoldfeldQuandt.py +2 -2
  42. teradataml/data/docs/uaf/docs_17_20/HoltWintersForecaster.py +6 -6
  43. teradataml/data/docs/uaf/docs_17_20/LineSpec.py +1 -1
  44. teradataml/data/docs/uaf/docs_17_20/LinearRegr.py +1 -1
  45. teradataml/data/docs/uaf/docs_17_20/Matrix2Image.py +4 -4
  46. teradataml/data/docs/uaf/docs_17_20/MultivarRegr.py +1 -1
  47. teradataml/data/docs/uaf/docs_17_20/PACF.py +1 -1
  48. teradataml/data/docs/uaf/docs_17_20/PowerSpec.py +2 -2
  49. teradataml/data/docs/uaf/docs_17_20/PowerTransform.py +3 -3
  50. teradataml/data/docs/uaf/docs_17_20/Resample.py +5 -5
  51. teradataml/data/docs/uaf/docs_17_20/SAX.py +3 -3
  52. teradataml/data/docs/uaf/docs_17_20/SignifPeriodicities.py +1 -1
  53. teradataml/data/docs/uaf/docs_17_20/SimpleExp.py +1 -1
  54. teradataml/data/docs/uaf/docs_17_20/Smoothma.py +3 -3
  55. teradataml/data/docs/uaf/docs_17_20/UNDIFF.py +1 -1
  56. teradataml/data/jsons/byom/onnxembeddings.json +1 -0
  57. teradataml/data/jsons/sqle/17.20/NGramSplitter.json +6 -6
  58. teradataml/data/jsons/sqle/17.20/TD_Apriori.json +181 -0
  59. teradataml/data/jsons/sqle/17.20/TD_NERExtractor.json +145 -0
  60. teradataml/data/jsons/sqle/17.20/TD_SMOTE.json +267 -0
  61. teradataml/data/jsons/sqle/17.20/TD_TextMorph.json +134 -0
  62. teradataml/data/jsons/sqle/17.20/TD_TextParser.json +114 -9
  63. teradataml/data/jsons/sqle/20.00/AI_AnalyzeSentiment.json +328 -0
  64. teradataml/data/jsons/sqle/20.00/AI_AskLLM.json +420 -0
  65. teradataml/data/jsons/sqle/20.00/AI_DetectLanguage.json +343 -0
  66. teradataml/data/jsons/sqle/20.00/AI_ExtractKeyPhrases.json +328 -0
  67. teradataml/data/jsons/sqle/20.00/AI_MaskPII.json +328 -0
  68. teradataml/data/jsons/sqle/20.00/AI_RecognizeEntities.json +328 -0
  69. teradataml/data/jsons/sqle/20.00/AI_RecognizePIIEntities.json +328 -0
  70. teradataml/data/jsons/sqle/20.00/AI_TextClassifier.json +359 -0
  71. teradataml/data/jsons/sqle/20.00/AI_TextEmbeddings.json +360 -0
  72. teradataml/data/jsons/sqle/20.00/AI_TextSummarize.json +343 -0
  73. teradataml/data/jsons/sqle/20.00/AI_TextTranslate.json +343 -0
  74. teradataml/data/jsons/sqle/20.00/TD_SMOTE.json +2 -2
  75. teradataml/data/jsons/sqle/20.00/TD_VectorDistance.json +1 -1
  76. teradataml/data/ner_dict.csv +8 -0
  77. teradataml/data/ner_input_eng.csv +7 -0
  78. teradataml/data/ner_rule.csv +5 -0
  79. teradataml/data/pattern_matching_data.csv +11 -0
  80. teradataml/data/pos_input.csv +40 -0
  81. teradataml/data/sdk/modelops/modelops_spec.json +101737 -0
  82. teradataml/data/tdnerextractor_example.json +14 -0
  83. teradataml/data/teradataml_example.json +21 -1
  84. teradataml/data/textmorph_example.json +5 -0
  85. teradataml/data/to_num_data.csv +4 -0
  86. teradataml/data/tochar_data.csv +5 -0
  87. teradataml/data/trans_dense.csv +16 -0
  88. teradataml/data/trans_sparse.csv +55 -0
  89. teradataml/data/url_data.csv +10 -9
  90. teradataml/dataframe/copy_to.py +38 -27
  91. teradataml/dataframe/data_transfer.py +61 -45
  92. teradataml/dataframe/dataframe.py +1110 -132
  93. teradataml/dataframe/dataframe_utils.py +73 -27
  94. teradataml/dataframe/functions.py +1070 -9
  95. teradataml/dataframe/sql.py +750 -959
  96. teradataml/dbutils/dbutils.py +33 -13
  97. teradataml/dbutils/filemgr.py +14 -10
  98. teradataml/hyperparameter_tuner/utils.py +4 -2
  99. teradataml/lib/aed_0_1.dll +0 -0
  100. teradataml/opensource/_base.py +12 -157
  101. teradataml/options/configure.py +24 -9
  102. teradataml/scriptmgmt/UserEnv.py +317 -39
  103. teradataml/scriptmgmt/lls_utils.py +456 -135
  104. teradataml/sdk/README.md +79 -0
  105. teradataml/sdk/__init__.py +4 -0
  106. teradataml/sdk/_auth_modes.py +422 -0
  107. teradataml/sdk/_func_params.py +487 -0
  108. teradataml/sdk/_json_parser.py +453 -0
  109. teradataml/sdk/_openapi_spec_constants.py +249 -0
  110. teradataml/sdk/_utils.py +236 -0
  111. teradataml/sdk/api_client.py +897 -0
  112. teradataml/sdk/constants.py +62 -0
  113. teradataml/sdk/modelops/__init__.py +98 -0
  114. teradataml/sdk/modelops/_client.py +406 -0
  115. teradataml/sdk/modelops/_constants.py +304 -0
  116. teradataml/sdk/modelops/models.py +2308 -0
  117. teradataml/sdk/spinner.py +107 -0
  118. teradataml/store/__init__.py +1 -1
  119. teradataml/table_operators/Apply.py +16 -1
  120. teradataml/table_operators/Script.py +20 -1
  121. teradataml/table_operators/query_generator.py +4 -21
  122. teradataml/table_operators/table_operator_util.py +58 -9
  123. teradataml/utils/dtypes.py +4 -2
  124. teradataml/utils/internal_buffer.py +22 -2
  125. teradataml/utils/utils.py +0 -1
  126. teradataml/utils/validators.py +318 -58
  127. {teradataml-20.0.0.4.dist-info → teradataml-20.0.0.6.dist-info}/METADATA +188 -14
  128. {teradataml-20.0.0.4.dist-info → teradataml-20.0.0.6.dist-info}/RECORD +131 -84
  129. {teradataml-20.0.0.4.dist-info → teradataml-20.0.0.6.dist-info}/WHEEL +0 -0
  130. {teradataml-20.0.0.4.dist-info → teradataml-20.0.0.6.dist-info}/top_level.txt +0 -0
  131. {teradataml-20.0.0.4.dist-info → teradataml-20.0.0.6.dist-info}/zip-safe +0 -0
@@ -1,59 +1,61 @@
1
- teradataml/LICENSE-3RD-PARTY.pdf,sha256=S_ZbiH6gd6WFIbgTWQ0WnHeune5sXf5P4Bc7VE_eZkA,317583
1
+ teradataml/LICENSE-3RD-PARTY.pdf,sha256=vhxs8Emzgnk0ZApe2FMM4F6kZDvn12UoQ3NwQW3RnpE,594910
2
2
  teradataml/LICENSE.pdf,sha256=h9PSzKiUlTczm4oaa7dy83SO95nZRL11fAR4N1zsOzo,184254
3
- teradataml/README.md,sha256=Z1sTfwWvTyNzshSXyyRT2BpPS2hxqWyMv76gGRRBlbE,131103
4
- teradataml/__init__.py,sha256=Kf9kqZkiq48LNHkFk9xcY3ixXc6-Ll4leJFGmR6xbZg,2707
5
- teradataml/_version.py,sha256=mSa1EoEAUSwGrge8moM1l_yHxKsZemXWRSERGkmGQOg,364
3
+ teradataml/README.md,sha256=UnO8Ets-_DATYOo0fRy_bgTrWpjcuk3n5xz255iK1xU,141461
4
+ teradataml/__init__.py,sha256=OcxcbsK1UzsJxA158gWT_Q3Wz-KUp601dBK3PnxH-rk,2749
5
+ teradataml/_version.py,sha256=14-Lygr0Bwm4n5zv37KkzqvHfVXnfvRoss5EEeigFqI,364
6
6
  teradataml/analytics/Transformations.py,sha256=5Ts7lqCSiO3LCi4xc3bA3D3FksODPJXAhxoyryf66js,149487
7
7
  teradataml/analytics/__init__.py,sha256=DnTOi9QlFJ-P20n2LbL2waKp76uL9KWE6w__6KG8m1I,3046
8
- teradataml/analytics/analytic_function_executor.py,sha256=kDvLwsAFYeGMvMrwdNtCNgBE2U3M8FN5xAiBjmqE5m8,107400
8
+ teradataml/analytics/analytic_function_executor.py,sha256=D9XlxO7wGfmtc2sVmwCMSP6Bhc1IaaVi9eLZ2vVsw2E,106718
9
9
  teradataml/analytics/analytic_query_generator.py,sha256=Si1lhWEhfa7Q4j3TZaD904lM3MumIsX3F3N9oysCkY0,45915
10
10
  teradataml/analytics/meta_class.py,sha256=YRsFEvwv8S73boaG8W85altpJTOoRz9Wk7YTplm6z9M,8427
11
- teradataml/analytics/utils.py,sha256=aDcopiSu0kvwAVzPspFvtSVg6RT8dxJ-qcuFxgxQAsc,31046
11
+ teradataml/analytics/utils.py,sha256=TvL9AUHGqznj1B8570PSWr0pweCjiZ29US4Y9zlsm3Y,34122
12
12
  teradataml/analytics/valib.py,sha256=4iwJj9usJDkmAGNDNdKqkV1kwtrbvOH4OAXg8hFwIMQ,74380
13
13
  teradataml/analytics/byom/H2OPredict.py,sha256=S69BUkxG8Dr2pgzDAqYVIl2Wupf0eXdmW46i3hHNJp4,25128
14
14
  teradataml/analytics/byom/PMMLPredict.py,sha256=TCxQinbQ50ZHrL-8teN-gRpXf93JnQSekHi33Y618Eo,20269
15
15
  teradataml/analytics/byom/__init__.py,sha256=3dNopwwaA_b_JUd5Qv2Pehgl_WCLrSaabR9N5oRirj8,894
16
16
  teradataml/analytics/json_parser/__init__.py,sha256=0He6U5ogdUfyOb21DjOosv6QRBc9tu6P-5LJFN1pz5A,4392
17
- teradataml/analytics/json_parser/analytic_functions_argument.py,sha256=vpvUB_Vh5lSohIMTFf8TiQFIEq7YTgJTQbpk-L8tLvw,65703
17
+ teradataml/analytics/json_parser/analytic_functions_argument.py,sha256=d3reu75UnirP6_wcJ47Ce04KvOrNyHKtIUePrEfNcxY,65915
18
18
  teradataml/analytics/json_parser/json_store.py,sha256=snwrJzvXzYBw3Xot6IRMsC7RtxBgxTq4eeXBeD9-Pps,7175
19
19
  teradataml/analytics/json_parser/metadata.py,sha256=09D3SdeYZh8VdJi17Ri_cYmq97puXdq8ACVMYWUUatk,74938
20
20
  teradataml/analytics/json_parser/utils.py,sha256=EdhCRUdWW6_mvLsj-gHxrDuNcQY6kOT5CT2txkbsUsE,33977
21
21
  teradataml/analytics/sqle/DecisionTreePredict.py,sha256=gacMEgCbKPsLcrzpdiegBB5ySa_wsQvYouLEqp7eshk,22289
22
22
  teradataml/analytics/sqle/NaiveBayesPredict.py,sha256=uPw3srh5U_I4lhOZQY1KQnaTcBy0LqH-6nika9M_Y8o,19508
23
- teradataml/analytics/sqle/__init__.py,sha256=iY_xPIp7rk9MWseGQzDuLEXffPFBlPRVuqiztI4rqg0,4290
23
+ teradataml/analytics/sqle/__init__.py,sha256=R9WhUuskRqV5Ff9CVw0TQ0xEARpbIVntKC6122l4zvI,4832
24
24
  teradataml/analytics/sqle/json/decisiontreepredict_sqle.json,sha256=rQ9nB-IE7FgWEZH6KY1MxxbhWT9n1kRPuZCqEL5-R5Y,2196
25
25
  teradataml/analytics/sqle/json/naivebayespredict_sqle.json,sha256=ehvbAugEnH73nUxdJqfOfzWL70zIc_oIWfdgEOnpO7Y,1683
26
26
  teradataml/analytics/table_operator/__init__.py,sha256=OBxjuKXWlwhCw2lowtl2VfRGwS729Y4rbZkmRt2Mp8o,545
27
27
  teradataml/analytics/uaf/__init__.py,sha256=Esh1vLn8CUOWPAMlqv0JUHGzNdj3l1I9RDlOI9lNXc8,3028
28
- teradataml/automl/__init__.py,sha256=KFRMfRklWAuZp68VL4XqHbTgJI3tnaA-_rA1-hjukIk,136703
28
+ teradataml/automl/__init__.py,sha256=A7s7XKdgfc4g7yKsdeWKYguC0qx5kR1Cd09oRpyc84c,143313
29
29
  teradataml/automl/custom_json_utils.py,sha256=LRcORPatvV15fGbDcp8tQWcEiIZYnK7SakATy5QUVyM,66780
30
- teradataml/automl/data_preparation.py,sha256=tDx5uFPfti-UVuCrkdtcYD1FQEKujklB065hAd7B254,43252
31
- teradataml/automl/data_transformation.py,sha256=j7sHFoF-J9rDunJ-NrFOoozS_oeeeB6fqrW-_pnQqTo,44569
32
- teradataml/automl/feature_engineering.py,sha256=jd7u7QNgitPhdsSP00a5wkCk7tk5lXaPNbXREJ44FQw,95327
33
- teradataml/automl/feature_exploration.py,sha256=mlxXUnx0EyePxYChAutKg1KZTNVJgGBM7hwXp64BINc,21986
30
+ teradataml/automl/data_preparation.py,sha256=qbKgvIgrV7oLm669dIe7KPvPyuLncM6j-wrydu8Veg0,44697
31
+ teradataml/automl/data_transformation.py,sha256=Nz3mQOWLKrGJTSKENhIc2mpgJcsrZ6NrdymRUm7llOs,45174
32
+ teradataml/automl/feature_engineering.py,sha256=Z-RGh2UbMliL8QbiEZqHjTVCX9Wf26Wa4Vh2ToroEqA,99088
33
+ teradataml/automl/feature_exploration.py,sha256=m003nP6AACu9zxXTR3W78yO5F7CxpAT3zBdbu8Q0SQg,45543
34
34
  teradataml/automl/model_evaluation.py,sha256=A_j7hiw4DRrsGOAcfUZV5ejjJ0Hs2eYNpxpisTKBhoc,5867
35
- teradataml/automl/model_training.py,sha256=yZAgH2Z1aslLmgrZS8KsagEmc2o7hqqXizWVQkDWPx4,42722
35
+ teradataml/automl/model_training.py,sha256=yDIbXbeJNUGAW9j4g-5bzn4TGm0lEA5kOwC1DG6qflE,42716
36
+ teradataml/automl/autodataprep/__init__.py,sha256=YPWAMg3YzrTR9Ij6xT6XKEWHdPDwNDclppo6RBRa9oo,18101
36
37
  teradataml/catalog/__init__.py,sha256=JmX5fC634ewbSyYy24rsTIk9mg9gSIMFTc15coJKTWQ,134
37
38
  teradataml/catalog/byom.py,sha256=6sZ-lyOr65XGmDcJo1SHogXmoSvCFooFOKeAIN8JUms,99687
38
39
  teradataml/catalog/function_argument_mapper.py,sha256=fTu0YrTb4ZgbcFmw15H-G7I8iln_QRImy38BhXsph34,40018
39
40
  teradataml/catalog/model_cataloging_utils.py,sha256=g6S6kwkE87c1rd02YAWIQ-u2z9OhduX1RXsLqsmSPsI,20624
40
41
  teradataml/clients/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
41
- teradataml/clients/auth_client.py,sha256=G_abYn8Y4Y6JAW4tEzWQ14OBI3Vi7JdauD9CRrAp4Bo,3981
42
+ teradataml/clients/auth_client.py,sha256=jxjrlqM3Xjl8yhH83Q-Rtuq8O4yMER8GKc4qTYf5RUQ,4341
43
+ teradataml/clients/keycloak_client.py,sha256=5asUIBalHt3nEVaUMUfyOa9SsOoO3tCK8i3eyKrlGjo,6131
42
44
  teradataml/clients/pkce_client.py,sha256=m7FYwfMf_xTP7-L4_wFLQdWWpO4sTEEIyZCZSHJVjkA,16604
43
45
  teradataml/common/__init__.py,sha256=KeFSq3wtcYMpZEFepWsgC7e9ocmmsv6WSrDosIviAVY,52
44
46
  teradataml/common/aed_utils.py,sha256=oMxLrtf5M2LVd5Xrm9hLkistQ9QFs5Uxki1omAmW3RA,106195
45
47
  teradataml/common/bulk_exposed_utils.py,sha256=tV5xvysJAXibUIm8AyzV4cE4USQFe7Eubhyl9m4ZiJY,4622
46
- teradataml/common/constants.py,sha256=KAzJrpEweV4nNXd9xivtyVoRp1aQobWE2pQPh3lCFQQ,62464
48
+ teradataml/common/constants.py,sha256=-6_fJZUF_qVsauQpxTJ3UoKiNW3zkEYQ1m52YA4ZL-o,63706
47
49
  teradataml/common/deprecations.py,sha256=-KkDiJe9_08CIvCR4Xbzg3_WPZlJ5rqyKVlfpMhKrk0,6211
48
- teradataml/common/exceptions.py,sha256=U3rze_QiIVMPP-2xr4a3Bnz1UQ_mbODC_uwbdBQ46aA,2775
50
+ teradataml/common/exceptions.py,sha256=FX51jVCyMgQ-h20l-im_EwT-I1_fz5XdgJzpwEeOcgc,3760
49
51
  teradataml/common/formula.py,sha256=IBBDwllFru21EerpV4v9zjbYCBqILZJy4M-vQnT1yd8,31089
50
52
  teradataml/common/garbagecollector.py,sha256=ebvLmRn-M4dNPJCrTH1l0gccljmcT_gdIId5xaRf6vo,28428
51
- teradataml/common/messagecodes.py,sha256=xqMg0lOD4qNugdgopZ80w7MganDtb6LXpi5AdJnBD-s,29729
52
- teradataml/common/messages.py,sha256=1ztNM9kQHnn3Fa9YfC300mTtIW4YcLn-2ZyzlOu-eFU,18172
53
+ teradataml/common/messagecodes.py,sha256=k1NuIBtqYeQmlDjWLtaSvC6E91tB38lD__jBBBBvLhM,31291
54
+ teradataml/common/messages.py,sha256=ABbdWCLipRYyUovhTLL0gNQyMX2qKSJds1eXwBO20z4,19008
53
55
  teradataml/common/pylogger.py,sha256=8G36wPGbnCVAaabYeimuSuRazwbnX-NhKyZc-a_deJ0,1752
54
- teradataml/common/sqlbundle.py,sha256=ViH_-OwvTDUqXWGIvCSqDqP5020humJuGc5Dm3VxyKk,26498
56
+ teradataml/common/sqlbundle.py,sha256=8KSYwm_BMM4HNRYwMyVNhCiMTJuqUVeGoV5Si5NIrkY,26681
55
57
  teradataml/common/td_coltype_code_to_tdtype.py,sha256=8RzvJAnC9iHXsCHVVDbPXG3e1ESyZFLVtvw00M1Tj3I,1193
56
- teradataml/common/utils.py,sha256=BT84Xu8leBoQR9i9l1R7DtMm-nw4cbvfEBcyhoWU6Jg,98953
58
+ teradataml/common/utils.py,sha256=FuO8DSL4H0U0MoB3a_D7rgPUKqK0Cg6BUW1sr2XF2iw,113230
57
59
  teradataml/common/warnings.py,sha256=PO6nQT9W3pIeT9TLYyLLbwe-f897Zk-j5E8RqyPFs48,1049
58
60
  teradataml/common/wrapper_utils.py,sha256=f2DxS-FqgEqbAJbHpOtKD4wU7GLj2XSX_d3xWNn9VvM,27843
59
61
  teradataml/config/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
@@ -64,7 +66,7 @@ teradataml/config/sqlengine_alias_definitions_v1.1,sha256=iHEB832KDSO0DdugW8Mivh
64
66
  teradataml/config/sqlengine_alias_definitions_v1.3,sha256=pCt661hEVA_YM_i4WL69DwwD1wKm_A4uzqHqwzRf0bo,534
65
67
  teradataml/context/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
66
68
  teradataml/context/aed_context.py,sha256=qNCX27R8KxJ3LScU9wXQzos1Gm78Cv0ahVdwSg5iq6Y,7578
67
- teradataml/context/context.py,sha256=uj3JOmNs6B25Z0HtiKsGWlPvGjWDjs0DvEC1pRfxr0c,51804
69
+ teradataml/context/context.py,sha256=rqx0-rsQVGB06nrdPPQjJGyT1LXv2lHgkmyIw6kGgkk,61029
68
70
  teradataml/data/A_loan.csv,sha256=HFfTfH1cC-xh4yiYGddaoiB0hHG17pWKbmySolOLdoc,584
69
71
  teradataml/data/BINARY_REALS_LEFT.csv,sha256=LW8o1jCKyUv9UFM3E5WbRMDYPQfwkFMZtifDAf9cp30,416
70
72
  teradataml/data/BINARY_REALS_RIGHT.csv,sha256=LW8o1jCKyUv9UFM3E5WbRMDYPQfwkFMZtifDAf9cp30,416
@@ -100,6 +102,7 @@ teradataml/data/antiselect_input.csv,sha256=bgJVm4qOd2xIpMt2vcfw3Vp4EhFh31MeR0UI
100
102
  teradataml/data/antiselect_input_mixed_case.csv,sha256=6kBAJUTdD_m36JQ4XW_BdUZ_GYb6tVguMZ1Y-eYuZyM,1000
101
103
  teradataml/data/applicant_external.csv,sha256=jaVV1nwxzQjoVZHzdMuaqivRp9erlQFRF8y9CxNSpik,453
102
104
  teradataml/data/applicant_reference.csv,sha256=u5oawSEvTCPsxnZNRCSZo-KiVHhehmVORB3Nudm91Yw,604
105
+ teradataml/data/apriori_example.json,sha256=WC8CuZCWlOFs8JTqB7iUfpfpLPT6v3f5ErqRqZZHc5w,528
103
106
  teradataml/data/arima_example.json,sha256=NQuqX9F1wzHNZTwE9s4UNBXaEDlHLR_zWzvRBYzlux8,226
104
107
  teradataml/data/assortedtext_input.csv,sha256=iWaIWvSB3JBTLDfkBa--uJV7TDFeB_V3fM9Oqvtxskw,947
105
108
  teradataml/data/attribution_example.json,sha256=7cfF6OikimBid3vENprLwEwMezF211iC_-my6dpcR7M,923
@@ -328,7 +331,10 @@ teradataml/data/namedentityfindertrainer_example.json,sha256=k8V-bdBlV0SpAmz3bf4
328
331
  teradataml/data/nb_iris_input_test.csv,sha256=Pa7US_YC42gUIsurIJvekgwiaLBv1B_EWpa5ZRlQX6o,1002
329
332
  teradataml/data/nb_iris_input_train.csv,sha256=HU8MSrt9H9b-sF4XFkoQ_AXC0YvgcTrVV42zkuPXKSw,3746
330
333
  teradataml/data/nbp_iris_model.csv,sha256=PIhJGQx842zibQVeQWL2kHcHJDnODDjtcE0xa3NZspM,759
334
+ teradataml/data/ner_dict.csv,sha256=E_TqAEwQRhJvwOtNb0IKObdpCzXA4ey-rCQzU8x5amA,168
331
335
  teradataml/data/ner_extractor_text.csv,sha256=2jAgKS5rHifnrlVRuEuBCvXmpppHRvNYrGR-4tCskZ8,168
336
+ teradataml/data/ner_input_eng.csv,sha256=aoJyOwrYu2Uq-VbGQ6CpCA8IVBR5i5VgbfVWLgo6kds,842
337
+ teradataml/data/ner_rule.csv,sha256=DzoIcqG_ThhXqLRDoeq4ZG41StKZOuKW_1Yj35mOdG8,159
332
338
  teradataml/data/ner_sports_test2.csv,sha256=WrjjEq11SBVu6SoRgfs8e2IddMBzQk4atjLo7l8Fyig,2452
333
339
  teradataml/data/ner_sports_train.csv,sha256=uQFnG_Vk7o0c1RH0wMz1L5I15qReEAMKfRDPPFsEeuE,35416
334
340
  teradataml/data/nerevaluator_example.json,sha256=OvjhjbtA9atK8K6thtV2Jwt_q7WT91T_QfQZtYxpezA,117
@@ -361,11 +367,13 @@ teradataml/data/paragraphs_input.csv,sha256=_9owa9OoNgqLR1QhGnAIcCu6txVUwdzZSMj-
361
367
  teradataml/data/pathanalyzer_example.json,sha256=AiiJxKnvF4Q536y1-6kdr6ZcfxtQqMERTHiEn1nxebM,138
362
368
  teradataml/data/pathgenerator_example.json,sha256=AiiJxKnvF4Q536y1-6kdr6ZcfxtQqMERTHiEn1nxebM,138
363
369
  teradataml/data/patient_profile.csv,sha256=TwZzE3TII362SjT_1yMfscZnkJ6gK6hvy7k3KyUfigg,3729
370
+ teradataml/data/pattern_matching_data.csv,sha256=YJ0iZUuRa2_H9Um01oFsiYqwM6bpxkUq4jnX92zneA4,313
364
371
  teradataml/data/peppers.png,sha256=imrSYKQni781u4YSajHlrS9qVM7NRMtkB6buXYb_PjU,732014
365
372
  teradataml/data/phrases.csv,sha256=CX_QEgAX37IUVKf8ctD6uNkG4bixeH0Tn1LM0nCEco0,110
366
373
  teradataml/data/pivot_example.json,sha256=ZHd3QFtx0yXPZm7fIfss8SsyZU5-mTG40Wv1Qliln5M,165
367
374
  teradataml/data/pivot_input.csv,sha256=1VUxgb3CUuSDzy1aTXgsLurRIZa13Rdoxh_UGqovhnE,763
368
375
  teradataml/data/playerRating.csv,sha256=m9YmSbd4WYiEPxBFqRqnEbCpLcfnYc1yaWCj12IMZcw,504
376
+ teradataml/data/pos_input.csv,sha256=MWA_BaFaX6IEuCJgpsOICQwub89f_jWa51jM-SsmmWc,661
369
377
  teradataml/data/postagger_example.json,sha256=n3WsdqH_oU9lhLHnJqs1plrrwZ_oHRRL2ZRTRA4TiFs,126
370
378
  teradataml/data/posttagger_output.csv,sha256=PESlDu3rVt-_0Yl7fwjEgj-1VnYNhR16LL4XPsd3P_c,945
371
379
  teradataml/data/production_data.csv,sha256=U35ycGMK--e0E7E6eUq6xvzrLoqcvBnfpohaadjPx8o,821
@@ -449,9 +457,10 @@ teradataml/data/svmsparsesummary_example.json,sha256=bOqLVJnyyCJTSY2hdxG6DRAsGRz
449
457
  teradataml/data/target_mobile_data.csv,sha256=FBT4cAV5zHloVOCR9cKZx3JFyv4OC5vlqrJoClQQ-4c,316
450
458
  teradataml/data/target_mobile_data_dense.csv,sha256=HIeUmij5i2pSUA6TaxLl2oNjwWnlshWB0vu0AouTQmw,122
451
459
  teradataml/data/target_udt_data.csv,sha256=BRiHn4P68J1Pyh9MvTmxtKe0eEze-EUuBVYMV228JqY,141
460
+ teradataml/data/tdnerextractor_example.json,sha256=yjRT9NSUb0d4Oi5yqF40sfnEwN-FgIbsjJG7G8aIVwg,275
452
461
  teradataml/data/templatedata.csv,sha256=_NYyMgobQ0-oIjZhIUcv16iOM4EtajZ4mKOrx39cfDY,22391
453
462
  teradataml/data/teradata_icon.ico,sha256=M4qHNiblJAmGmYqsy9bD5xSP83ePf6089KdFuoQhaFM,1150
454
- teradataml/data/teradataml_example.json,sha256=kr0fl1j09pNSCKKvbHv-gqP9etjcf7h9zb0Ce6r0Lww,41894
463
+ teradataml/data/teradataml_example.json,sha256=bFGM6aPlRUU6trmJ3qdnEFd-i35ONShsj6jQtbrfp1s,42389
455
464
  teradataml/data/test_classification.csv,sha256=BDKuA82t60YWQu23BDxMn3j7X2Ws_HJXfUoFcwa76Og,9523
456
465
  teradataml/data/test_loan_prediction.csv,sha256=RW7R4PPMRGdpHmHxvH-1TssLQFg5bVfd8tteuJ3Ukg0,863
457
466
  teradataml/data/test_pacf_12.csv,sha256=ltIEUeJksRLCcvfXyrFhGcc7GkI89NXhRbQ5gOidvNM,1003
@@ -463,7 +472,7 @@ teradataml/data/textchunker_example.json,sha256=gbivWisZUlfIM0HtNxT7rPaQUKMicwzL
463
472
  teradataml/data/textclassifier_example.json,sha256=e6BeVdgRMqNQEvWEXHEOde9Yf8YcdEpPuiwX2LgeoEQ,125
464
473
  teradataml/data/textclassifier_input.csv,sha256=AzinMnRrexjkM1vLojt7ODyS1TNrssm9DzDlE2YIQR8,1144
465
474
  teradataml/data/textclassifiertrainer_example.json,sha256=3WWCFqxDuSWexNDm3d3PL6J5AQHetNe12PEFp7WT1XA,122
466
- teradataml/data/textmorph_example.json,sha256=s0Vm5QBCj87iSC3fHTIW-iCgPHef_W7cBXmqb6YE7ic,78
475
+ teradataml/data/textmorph_example.json,sha256=zrFQcSQ_HB9iHiRcBh0ojwbpBwOtbK2k8nL3mGhfd94,184
467
476
  teradataml/data/textparser_example.json,sha256=VVe_-lV623BqJI91v2nh60YgjjrHvVidqKtAjHNKrSc,294
468
477
  teradataml/data/texttagger_example.json,sha256=Cdie6HATy7RMAU3QdrR3fHfC45lsSN-xDA7uZr2xpo0,236
469
478
  teradataml/data/texttokenizer_example.json,sha256=15AIwWNtVtA7yqdpqQREKC1stnWiHjTZqhZ3tIFGJGw,120
@@ -479,11 +488,15 @@ teradataml/data/timeseriesdatasetsd4.csv,sha256=bCoFR0ohIN7eVk18FhA1GShiQ9ARVPK6
479
488
  teradataml/data/timestamp_data.csv,sha256=KcV3J8qNfj2-EwQlNaG9uGkCTNjBKE21nSfIAj3Dgd4,281
480
489
  teradataml/data/titanic.csv,sha256=IZvCBiupJPNBQBats7EL8iiZCSBPkpCfCSUQ_BrnHeQ,61192
481
490
  teradataml/data/titanic_dataset_unpivoted.csv,sha256=NsU8OJIn6bmCCgmOx4lTy7-pxTqbncADzXpWgrqEhI8,350
491
+ teradataml/data/to_num_data.csv,sha256=m7IErUPD_LRT31quAvY0k45EMy4P9Gi-ESoK_Z1h9LM,67
492
+ teradataml/data/tochar_data.csv,sha256=4N0OsOCW8bYsrE447DJ4nebTkYRnQTokSONEzzddJtA,247
482
493
  teradataml/data/token_table.csv,sha256=mZTppDLBmQC4j3jqZ9T5czAPUl2xO1sxHqM-DIR-DKs,14812
483
494
  teradataml/data/train_multiclass.csv,sha256=VLz6t2cuAqsOCmD6MZwoy4iWkrcuc4w4mvG7NuR5CD4,9435
484
495
  teradataml/data/train_regression.csv,sha256=uLtcSqAws8rdcXKyyKBNXvmm-4OBosQUqzyAUT6niLk,9662
485
496
  teradataml/data/train_regression_multiple_labels.csv,sha256=ReJ4gRwrn9CQ3w0mH1zgEZMGZIkG5SZ30PffOJgoii0,10044
486
497
  teradataml/data/train_tracking.csv,sha256=IobrRHY9augTggczpN-zLOlIsQS38lY3n3c_qkodvhI,3317
498
+ teradataml/data/trans_dense.csv,sha256=Kfy-SvfKS3fb6GqRnJkCgQrDqW3sFoCVhVf1I_Wbj4w,1178
499
+ teradataml/data/trans_sparse.csv,sha256=iwCBg0SiEaONTJqCG0u1-XEwGlV4kAm4QvV0-fJadvU,3221
487
500
  teradataml/data/transformation_table.csv,sha256=UsqIzYYEw1y-GUY5z6oztSqC0NJAsMOjSIx0k9e8fa4,173
488
501
  teradataml/data/transformation_table_new.csv,sha256=DDCJ5_o_tHndTiAbQT92QmYKWEaKLTR1XJjLuiberBQ,76
489
502
  teradataml/data/tv_spots.csv,sha256=rIJK9AjKGBFiK9qYTGLdgF0whw7Y6nUJAcin00txutE,321
@@ -493,7 +506,7 @@ teradataml/data/univariatestatistics_example.json,sha256=b9FN__52MuTp_I_y54LMpwt
493
506
  teradataml/data/unpack_example.json,sha256=5-v3zdRXoSgVuQbL0sQTQ-n2d-KhdFpRdjm83DhWM8g,186
494
507
  teradataml/data/unpivot_example.json,sha256=LJP--etfQ56RASpoQ8Ozvgi2AMpTl6M5eKmMi5OhKTc,566
495
508
  teradataml/data/unpivot_input.csv,sha256=80W9AQhe_5-JULJA_SJXJbi-lV-6pkfOJ6bygb_oZL8,294
496
- teradataml/data/url_data.csv,sha256=zIpqkGUxPsv-62ncrjvM9TUf3l8FRMZTlN1I9N1j3_s,536
509
+ teradataml/data/url_data.csv,sha256=LA239dXk9NejKiJifVGF8gwXHzBigLQolHC15y3Lo9o,704
497
510
  teradataml/data/us_air_pass.csv,sha256=LdhRm7SOl573NEP8jJYaB4d44lBhfsDO1vXw8SLStnY,1056
498
511
  teradataml/data/us_population.csv,sha256=KcNP7DOv-X3qvQ2tg2yz154FYPg5xeVFyQ-nG15aT4M,18420
499
512
  teradataml/data/us_states_shapes.csv,sha256=Uk75jUs3LV9B3Hy_fgQ3N_ql0e1GcrCqjdTEVqSNCIA,86308
@@ -579,6 +592,7 @@ teradataml/data/docs/sqle/docs_17_10/ZTest.py,sha256=rWwAe8bEWYiPySlCJkzmMkCSce6
579
592
  teradataml/data/docs/sqle/docs_17_10/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
580
593
  teradataml/data/docs/sqle/docs_17_20/ANOVA.py,sha256=l96tqbGqoaCfLkjiK1vy6zIOagOpuWWiqnrUQdmIgU0,8035
581
594
  teradataml/data/docs/sqle/docs_17_20/Antiselect.py,sha256=ACzwv_Hm17d5UCbQWPJOGZeWMiRnOPw07_ZUPpd7GJ8,3502
595
+ teradataml/data/docs/sqle/docs_17_20/Apriori.py,sha256=7AjhKhAEJKcLJIWujbzU_tDWN3S6q7uyu4KGSq0TavU,5987
582
596
  teradataml/data/docs/sqle/docs_17_20/Attribution.py,sha256=CWh4QdRfrphC6nZkxdqVVZjW7JMzcyRFy7WqSJRYNIU,9131
583
597
  teradataml/data/docs/sqle/docs_17_20/BincodeFit.py,sha256=NDLIl3SfNIHDpTK9cQgrGsjcyyMokDJLItzUby4ZepE,7381
584
598
  teradataml/data/docs/sqle/docs_17_20/BincodeTransform.py,sha256=6cbjBT0J9yMhQGoZw6eOnCw7pLnOna7UguJAnZx6aFs,6552
@@ -607,7 +621,8 @@ teradataml/data/docs/sqle/docs_17_20/KMeans.py,sha256=EDv-GI6i1V58ScOvU8PWAQS1hp
607
621
  teradataml/data/docs/sqle/docs_17_20/KMeansPredict.py,sha256=tgVCNf8iqFZ86URQ7zCulwJhMqaT1qHvjQc73fcdfuo,6115
608
622
  teradataml/data/docs/sqle/docs_17_20/KNN.py,sha256=qsTD6BbQ7UFTS5WtnV_-ZBBvLVqMdDQZmJlb4ujzapk,9540
609
623
  teradataml/data/docs/sqle/docs_17_20/MovingAverage.py,sha256=DSbxNLB1OpnYgS_6v_MVAJDxtS49UtGIcOrOzUVhbus,5738
610
- teradataml/data/docs/sqle/docs_17_20/NGramSplitter.py,sha256=bgJbAsi36ymoqWmAlxaZAz0aLM7KnGubriSxgIhrW2U,9358
624
+ teradataml/data/docs/sqle/docs_17_20/NERExtractor.py,sha256=2JnXUaPpmNGQ0uf8-Q0CuOMr7JI_e_tg-v8afHafSmU,5372
625
+ teradataml/data/docs/sqle/docs_17_20/NGramSplitter.py,sha256=PEZ0pkJdmTcgKmSjvHKi2nquy30qXUErW1ogYuIMqys,9430
611
626
  teradataml/data/docs/sqle/docs_17_20/NPath.py,sha256=CBof2pQwE0tXJRLYxPruimIyOd6nEnwj6f8r1SpTys8,13931
612
627
  teradataml/data/docs/sqle/docs_17_20/NaiveBayes.py,sha256=_O_MUZX1qmaZTpAehrdiy5dre3OLoQ0o0yZYFLU8yKA,7665
613
628
  teradataml/data/docs/sqle/docs_17_20/NaiveBayesPredict.py,sha256=9P9iLhGmB3bPvrNZzh2gtWRjZRP8s66NHhzvqLKJuRs,5379
@@ -637,6 +652,7 @@ teradataml/data/docs/sqle/docs_17_20/RegressionEvaluator.py,sha256=HuQHFN3qGalcE
637
652
  teradataml/data/docs/sqle/docs_17_20/RoundColumns.py,sha256=57NVyAecTwnbY9pZnCQfjvaOklrH4g2Q_8OKyzDNC4o,4956
638
653
  teradataml/data/docs/sqle/docs_17_20/RowNormalizeFit.py,sha256=wdbFuCdeJslfSq-fD3OU20JHEjdOC2WXF0ljukymuNU,5348
639
654
  teradataml/data/docs/sqle/docs_17_20/RowNormalizeTransform.py,sha256=9Ja5ev4neABpv_jJagr34AAXyXve0b1gI-r8VyNOBw8,4994
655
+ teradataml/data/docs/sqle/docs_17_20/SMOTE.py,sha256=VvsdLtNJwFiR0aG_0j1JaZhXtroPluJrLi805engYE4,9184
640
656
  teradataml/data/docs/sqle/docs_17_20/SVM.py,sha256=txuwmP54us3xk5UzTYKrPj40bZYMGWzNhE3glmvo6_U,18482
641
657
  teradataml/data/docs/sqle/docs_17_20/SVMPredict.py,sha256=XR9sK9CxSNdK62c4TqFa9Jq15aAfonZ2S2tRUe4orYY,9245
642
658
  teradataml/data/docs/sqle/docs_17_20/SVMSparsePredict.py,sha256=aKczZjm_QTN1jVFv3Ty1eMYzG6lrx8Nz1BinyItNhjQ,7102
@@ -656,7 +672,8 @@ teradataml/data/docs/sqle/docs_17_20/TDNaiveBayesPredict.py,sha256=E68CcMdaXarPS
656
672
  teradataml/data/docs/sqle/docs_17_20/TFIDF.py,sha256=Kjvggu2W2EV3PjA8In1ksyYo4ByA4c-x2hSbVIOj_wU,5797
657
673
  teradataml/data/docs/sqle/docs_17_20/TargetEncodingFit.py,sha256=K_BOaUNA9Zi2XaHC32vMpLbTfA51AieaUR0LMimWflQ,12698
658
674
  teradataml/data/docs/sqle/docs_17_20/TargetEncodingTransform.py,sha256=ga8DeTlJUmszVPBJj_kfASst6aK7Oc1yb46lPSwuoog,6510
659
- teradataml/data/docs/sqle/docs_17_20/TextParser.py,sha256=I419XK5ZhiXQD8vd1GL4v0PJCoKwxABIQALPFQO9VvE,7562
675
+ teradataml/data/docs/sqle/docs_17_20/TextMorph.py,sha256=y6jIiTv9473TLqm-v6ZYBw3HM8spRprkWDkqcqH1ij0,5148
676
+ teradataml/data/docs/sqle/docs_17_20/TextParser.py,sha256=HWizryh0QtY2-q8-uN_v9tCLKzPt4P-Tymj7on0dIoE,9673
660
677
  teradataml/data/docs/sqle/docs_17_20/TrainTestSplit.py,sha256=WtGPOcE8GdX2BYcaaUQHO_Q15HdUdzzUMeu5ZnEr1Tg,7603
661
678
  teradataml/data/docs/sqle/docs_17_20/Transform.py,sha256=Mm2SYFZpEnJ3nOATDA8ZOxfNz73r7O-N8JsRkeM9c3A,5732
662
679
  teradataml/data/docs/sqle/docs_17_20/UnivariateStatistics.py,sha256=PUPH8k-CRdL5kM6mJ5i7wIadRyJvsP8B4eww39FLGbU,6001
@@ -684,11 +701,11 @@ teradataml/data/docs/tableoperator/docs_17_20/ReadNOS.py,sha256=Kgd6-tAYGKNfD6VL
684
701
  teradataml/data/docs/tableoperator/docs_17_20/WriteNOS.py,sha256=fDnIpFl9RidXamu_qCvgViD0fDplbG4BfBuy-ClXGy8,20423
685
702
  teradataml/data/docs/tableoperator/docs_17_20/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
686
703
  teradataml/data/docs/uaf/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
687
- teradataml/data/docs/uaf/docs_17_20/ACF.py,sha256=-s0sm_E-IS9PC3igu9jGIl_ns5lC_kOk4iNWQ9IrbhE,7691
688
- teradataml/data/docs/uaf/docs_17_20/ArimaEstimate.py,sha256=88KujTMVra_Bb9SSyWmecF2QA3xzqUwwYNdFVvhrwFE,16782
704
+ teradataml/data/docs/uaf/docs_17_20/ACF.py,sha256=vlZfKrkQFZqJx1jrSy2u1WJiJpPP9SfA1mKo5jKAya0,7698
705
+ teradataml/data/docs/uaf/docs_17_20/ArimaEstimate.py,sha256=B00e9j1nlFe_3l91UpVxgSVco8D_YXuwVXf774nN8YQ,16818
689
706
  teradataml/data/docs/uaf/docs_17_20/ArimaForecast.py,sha256=KPRkOCAeQysFQO6HEjhJpiB2PlfCBf8tqkw3hM4S4Gs,7612
690
707
  teradataml/data/docs/uaf/docs_17_20/ArimaValidate.py,sha256=xwnoDwKQ1oWJ7OSiJmMLO-qLA-ppgl5zSsPJ2_ptvi4,6974
691
- teradataml/data/docs/uaf/docs_17_20/ArimaXEstimate.py,sha256=WsGyT_F4USv6ya0ROTl-YN0rq4oGo3XEpIQn-WSRTUY,12426
708
+ teradataml/data/docs/uaf/docs_17_20/ArimaXEstimate.py,sha256=-k3efDfeVfXlqRCcBW487z04RMcKjakR6Yxg0tW9iKc,12462
692
709
  teradataml/data/docs/uaf/docs_17_20/AutoArima.py,sha256=Jo8DtwfR5XPcKnshD94NRUMA_7z8feGpnk791zLAh4s,13683
693
710
  teradataml/data/docs/uaf/docs_17_20/BinaryMatrixOp.py,sha256=E5tUEdZsYCRl_NbkzNu8nqaG5mr-Ej68evf68IX4GMM,12061
694
711
  teradataml/data/docs/uaf/docs_17_20/BinarySeriesOp.py,sha256=3eVNlmV4lnUpmy3BxMfCuPR25bhls1X3GWl0Vr-IPBA,12111
@@ -698,10 +715,10 @@ teradataml/data/docs/uaf/docs_17_20/Convolve.py,sha256=BY8a2hbxw3OW_HP84ITTe5yY0
698
715
  teradataml/data/docs/uaf/docs_17_20/Convolve2.py,sha256=ePINkBVSJ65jB5e-UbhHC7pHLhQXDWFKWoZyfappuN4,10348
699
716
  teradataml/data/docs/uaf/docs_17_20/CopyArt.py,sha256=5gbep83z82bJusgpLwIrgax6PqEpCVBsys7IV9uchMI,5728
700
717
  teradataml/data/docs/uaf/docs_17_20/CumulPeriodogram.py,sha256=Fs0NzzzxMtefpWvXMmdTjHlLu_GtVFh-AkOPXkohMb0,8475
701
- teradataml/data/docs/uaf/docs_17_20/DFFT.py,sha256=eym9uqsRSR9ne_Tjt9UQUn-X79dZBbddmk1YqFcvm5A,9026
702
- teradataml/data/docs/uaf/docs_17_20/DFFT2.py,sha256=x6CvaDd482J0EfM4vCyCEUHbLfd1q3rLubGmY8ZUG6U,9662
703
- teradataml/data/docs/uaf/docs_17_20/DFFT2Conv.py,sha256=AyinWi8Lehd7BgmeEpKKw7QDnXDJMVwQhWlAJDE0aqo,9452
704
- teradataml/data/docs/uaf/docs_17_20/DFFTConv.py,sha256=QaU8sNSNew04dVTq_HBHP19EhiCuZALITmd9ZyvFmNg,8182
718
+ teradataml/data/docs/uaf/docs_17_20/DFFT.py,sha256=zczbwjMdiF76m4cKXScKQ1Ql-Swgej4ckYLB0wA7amQ,9033
719
+ teradataml/data/docs/uaf/docs_17_20/DFFT2.py,sha256=qnHfK9M8PZZJLm1pSj5QK3be-wBWjae_y83u4u77HV4,9669
720
+ teradataml/data/docs/uaf/docs_17_20/DFFT2Conv.py,sha256=S02XTvsuwOrxh-Rd751B5bCjK9Dvu9IUjD_UDmgj9kI,9459
721
+ teradataml/data/docs/uaf/docs_17_20/DFFTConv.py,sha256=kv6QhvZnF7jvkDxmioiVAyImohxHUMYjBFe3CkHi_dU,8189
705
722
  teradataml/data/docs/uaf/docs_17_20/DIFF.py,sha256=QQLYLVW5bbm2orirYrr7avv4UcQKOSK5sXwC82ykt88,7299
706
723
  teradataml/data/docs/uaf/docs_17_20/DTW.py,sha256=Gvkr55dwBV_gxhk_k6O1JhO3Pcm0N0w8PZMf9lg41OM,7299
707
724
  teradataml/data/docs/uaf/docs_17_20/DWT.py,sha256=luav08ng-JxSEsTCFCAgl89Bm_LBe7g0i8-lvl5Lz78,9728
@@ -709,40 +726,40 @@ teradataml/data/docs/uaf/docs_17_20/DWT2D.py,sha256=cNqKwpMlFahz-S1EpdceP_hxqGgx
709
726
  teradataml/data/docs/uaf/docs_17_20/DickeyFuller.py,sha256=v0D2wcaOsJ2AxmJqQfdG0d_QQeB9hqav90jyNCLQhUA,5975
710
727
  teradataml/data/docs/uaf/docs_17_20/DurbinWatson.py,sha256=lI07DSn8XeSMoUBqiiHyWcOgw1E3x0YN_UL7c4TsnrE,7874
711
728
  teradataml/data/docs/uaf/docs_17_20/ExtractResults.py,sha256=KZNhDt2jcC6JiGEmSc194guAtVx3uFlY3EL0DHC3578,9314
712
- teradataml/data/docs/uaf/docs_17_20/FilterFactory1d.py,sha256=f9Fxm3Mm9Gy1k7IxgC4wWMNW5cO24rLuNNSv9MieJ9Y,6873
729
+ teradataml/data/docs/uaf/docs_17_20/FilterFactory1d.py,sha256=CA9euo9yygMTe4ZOGd_nWZ5wDNQQYW11dHczJVexSlA,6901
713
730
  teradataml/data/docs/uaf/docs_17_20/FitMetrics.py,sha256=sL5VaeCBQFsLdauFjR3fl00duraZ-MhEaAzAkGZeo6I,7292
714
731
  teradataml/data/docs/uaf/docs_17_20/GenseriesFormula.py,sha256=vRV44UIDIosCoTrzeuO4TAX7Te_mBQ7SeHD-3VrujRE,9340
715
- teradataml/data/docs/uaf/docs_17_20/GenseriesSinusoids.py,sha256=yqDiMlYPAeKgQ6aflD-nEuQLwPddqCjzC6VN7t2Ll_8,6036
716
- teradataml/data/docs/uaf/docs_17_20/GoldfeldQuandt.py,sha256=ANe0_6uaiuLsRgGt2-FRwofirq8nxK2OnNdtJ0NuTCc,8923
717
- teradataml/data/docs/uaf/docs_17_20/HoltWintersForecaster.py,sha256=7VDJCyPvL4jXaaWeO9iBk_rMCPYoFPLU8zb1m-kcFZ8,11096
732
+ teradataml/data/docs/uaf/docs_17_20/GenseriesSinusoids.py,sha256=RM7pCdOkSPgRkokzkG7ket_qskCxCIw6e9adxjqU4nI,6066
733
+ teradataml/data/docs/uaf/docs_17_20/GoldfeldQuandt.py,sha256=Fmbo1ggffXZZKhSmtnpjfATBF7Saa4xGFCqRF6LzVC8,8937
734
+ teradataml/data/docs/uaf/docs_17_20/HoltWintersForecaster.py,sha256=voc6zz0wsHhaTUC4sGJksyi5Ihrtb059Avok-MnCSHc,11150
718
735
  teradataml/data/docs/uaf/docs_17_20/IDFFT.py,sha256=CFhVY_6NdGF7kzk_RFZqGkaF_-lLC9XK3AyapHLfDoM,7226
719
736
  teradataml/data/docs/uaf/docs_17_20/IDFFT2.py,sha256=d-Syxypd40wtLppuvq6QEW29LOo8nqqcjXMDjWy-sB8,8437
720
737
  teradataml/data/docs/uaf/docs_17_20/IDWT.py,sha256=tQpomLX8hPO0-moPKOZfHYYh6Z0fGu7U5OESnkMvq2s,9846
721
738
  teradataml/data/docs/uaf/docs_17_20/IDWT2D.py,sha256=X1HKTz0B5QTUr7LKC_F_Ai8a2WSEhlImKX-HegW-lI0,9506
722
739
  teradataml/data/docs/uaf/docs_17_20/IQR.py,sha256=TUhYaVU8BTbUQLrUil_cKWsafkNWZgIhm4Fdudd-L5M,5271
723
740
  teradataml/data/docs/uaf/docs_17_20/InputValidator.py,sha256=E0U4H7t9QFicekEBopjnlPva64uJ5wYkiGHe2sqXlf4,5068
724
- teradataml/data/docs/uaf/docs_17_20/LineSpec.py,sha256=54El1YgvQK79jDiNYtl5k1SMiIP5QrsT-8ZpYQfS5dE,6353
725
- teradataml/data/docs/uaf/docs_17_20/LinearRegr.py,sha256=Y9w5SeANPADamCE85lbTy2sU_rXxLzZozZ3rFBqCm3M,9444
741
+ teradataml/data/docs/uaf/docs_17_20/LineSpec.py,sha256=2KN-2eUNWHjV2boEF3XpPUWcEzzX6o8KX-M3YJue7jo,6360
742
+ teradataml/data/docs/uaf/docs_17_20/LinearRegr.py,sha256=cm2uVZLkFWpSdfn8i2ePUlnSMYcnykrvZ3DyiKJhI9A,9451
726
743
  teradataml/data/docs/uaf/docs_17_20/MAMean.py,sha256=Kfb11dv1YhAVXBwQ4FwQrIF7QuTBMKKxm5SAMUZXYhk,7123
727
744
  teradataml/data/docs/uaf/docs_17_20/MInfo.py,sha256=5vbnWEp5nHZxBBwBfBhVRlsKEHz6G5F5cuNyiqsYWQQ,5528
728
- teradataml/data/docs/uaf/docs_17_20/Matrix2Image.py,sha256=6C9efeXQIRjcrnAD3stwvXTsAXQppxroZxctqLFbzsM,12242
745
+ teradataml/data/docs/uaf/docs_17_20/Matrix2Image.py,sha256=U23HykDU2wtMPZ7czMOM6SM97Yb_p444Ar-KossXp8o,12314
729
746
  teradataml/data/docs/uaf/docs_17_20/MatrixMultiply.py,sha256=-A5so6qYHsesJkRmcElL-fTgu7FAFJOkASLE0KCVET4,6161
730
- teradataml/data/docs/uaf/docs_17_20/MultivarRegr.py,sha256=kmW4TdDf4HLIn9RzMk4F0pcHWUKQ7BxHrnoZZkRKsu8,8344
731
- teradataml/data/docs/uaf/docs_17_20/PACF.py,sha256=2ShZR_0uqtTeoR0_fP-eQamuw2fINeXJA0gYUfDTIhw,6626
747
+ teradataml/data/docs/uaf/docs_17_20/MultivarRegr.py,sha256=HtBn-XRd7m1QeG-ILAXE8Ej7ZiwT2e5n-o5ga1kaYLM,8351
748
+ teradataml/data/docs/uaf/docs_17_20/PACF.py,sha256=MyLFOTVrLAwswWs5uvVLsQWLlfIMRrFansbzznbN0A8,6633
732
749
  teradataml/data/docs/uaf/docs_17_20/Portman.py,sha256=LT7FiEIFgF59lBgb6cAwh292b0cX2LzM_TXTPHj85zI,9926
733
- teradataml/data/docs/uaf/docs_17_20/PowerSpec.py,sha256=JfZXJqumaS4FiJLuWuxX2hW-0RL1RLLZkPEpwZQ0mSA,8585
734
- teradataml/data/docs/uaf/docs_17_20/PowerTransform.py,sha256=6y_6xud9cZXwa_443orsftN4VRf7b8vNqHBNN1rsvR0,6451
735
- teradataml/data/docs/uaf/docs_17_20/Resample.py,sha256=OJ8V2lo9G99VwLZ_SVd8FHv8JzDooSR-E0VinDw5Ddc,9416
736
- teradataml/data/docs/uaf/docs_17_20/SAX.py,sha256=VbxA0cJLpaayJxFAsifEjQgkNwukTia2vbixOEdRg14,9794
750
+ teradataml/data/docs/uaf/docs_17_20/PowerSpec.py,sha256=IlSXb27I41ukmCsuoifOBSJiYjoFUckAOkCCNtjnkNI,8599
751
+ teradataml/data/docs/uaf/docs_17_20/PowerTransform.py,sha256=nBQBNBk8_crsAjGx4AOpdrM7h8_oIEYmTrr2kH7osno,6472
752
+ teradataml/data/docs/uaf/docs_17_20/Resample.py,sha256=2G-edIrTEZyvSFb4SZYKPRqRWmF5WYBLUlwl8cnfsDw,9451
753
+ teradataml/data/docs/uaf/docs_17_20/SAX.py,sha256=Ocm6VyKbuPAhYR8pytULf6ro2yPiO2GK7zuXUq2FdtY,9848
737
754
  teradataml/data/docs/uaf/docs_17_20/SInfo.py,sha256=eeG3Mm7xLTurI-NSvnj2y44thZx5hliacqZEGQPQiu0,4928
738
755
  teradataml/data/docs/uaf/docs_17_20/SeasonalNormalize.py,sha256=Nx-DmS3U46MFu0Twr_WJimaSa8fXM0yaaJWsSz0WPbo,7275
739
756
  teradataml/data/docs/uaf/docs_17_20/SelectionCriteria.py,sha256=Q6NqVl-QfiSRXp3Z-3r-1TUsi7ZUkThGIFJu07E4k-M,7583
740
- teradataml/data/docs/uaf/docs_17_20/SignifPeriodicities.py,sha256=NgGEJvjIIctWh_pm7acr00WjD-c9FpfxFi0arY3epJE,7485
757
+ teradataml/data/docs/uaf/docs_17_20/SignifPeriodicities.py,sha256=C_kVZ_jcm_rWEdKdO3FCxWiN7oIedajb0RrDvYC6I2k,7501
741
758
  teradataml/data/docs/uaf/docs_17_20/SignifResidmean.py,sha256=-_QvdNnKdmIfzc23FQRQkRGNz9uwWjuXrbbam1_KKmE,7475
742
- teradataml/data/docs/uaf/docs_17_20/SimpleExp.py,sha256=sKzOAq5ZPq3XvNUFFmKEThT-3MyjAVu9pquz7L6kiqI,7370
743
- teradataml/data/docs/uaf/docs_17_20/Smoothma.py,sha256=qG_D4FTESO0YOWIk1hmwAihCakoxIrT9UG-xF2cBtXE,8920
759
+ teradataml/data/docs/uaf/docs_17_20/SimpleExp.py,sha256=EwIdrQrrJ_6SE42hEoLaBluDTYg__F7enp2thROiIEc,7377
760
+ teradataml/data/docs/uaf/docs_17_20/Smoothma.py,sha256=TD0sSm6y_n043zfX6cPT1BG__g6ZmA5bLM50uin3He8,8939
744
761
  teradataml/data/docs/uaf/docs_17_20/TrackingOp.py,sha256=pmNKBRmxvNK_K2novZbRYpupqGlNTzVRHNEBTnphmI8,6518
745
- teradataml/data/docs/uaf/docs_17_20/UNDIFF.py,sha256=KF8WvCzSXavCzvapJS7JdA0Z2gRXiYA6-7jy5OakOus,7114
762
+ teradataml/data/docs/uaf/docs_17_20/UNDIFF.py,sha256=fvxmNcgsTLggzGz-mOOpcmO2-5Nswng9pjyvyS39TAk,7132
746
763
  teradataml/data/docs/uaf/docs_17_20/Unnormalize.py,sha256=dbkm81T_CaQZdQyuVW6PPYSmW_bs2zfROKEOTB3B9e4,8632
747
764
  teradataml/data/docs/uaf/docs_17_20/WhitesGeneral.py,sha256=wR4WdoR4zNfza1w4BNeeK7Qdmz_KvgnEYJ_2rfULpm4,7544
748
765
  teradataml/data/docs/uaf/docs_17_20/WindowDFFT.py,sha256=Qcuc2OHmBHXoEHqLByZizE3j2CEd3SsQuCp31Y9QQ6A,15374
@@ -752,7 +769,7 @@ teradataml/data/jsons/paired_functions.json,sha256=5EGDbgTwKrR-HcjwMa187tPyOm23a
752
769
  teradataml/data/jsons/byom/dataikupredict.json,sha256=szvH79NGcniprg7eborSyKb_1JL8-Zg8lC0KT8efM3c,4752
753
770
  teradataml/data/jsons/byom/datarobotpredict.json,sha256=42VOrJFvlc87ZKgq6mu0FwcUkIFEaY41rzW2PTibVTM,4735
754
771
  teradataml/data/jsons/byom/h2opredict.json,sha256=-neUkuTjHSVWAoK7uyIcAv9HfAa0IGiiWXuNES73fgc,6132
755
- teradataml/data/jsons/byom/onnxembeddings.json,sha256=-_y50FRtV8KQNeHW29tlRss3MsnJs_FBZ1xrK60qfpI,8866
772
+ teradataml/data/jsons/byom/onnxembeddings.json,sha256=FDxTY4B6NeuHILqlMFhNgkfasupwKTpm8mFIBIUtKxA,8935
756
773
  teradataml/data/jsons/byom/onnxpredict.json,sha256=pkzmSpmzpx0V7UVKGc2_FkTCISa3U1vkqV5gpae5aBg,6114
757
774
  teradataml/data/jsons/byom/pmmlpredict.json,sha256=Rm2Dt1PXu4wG8xj3a7MaTGYPb9_2cXgeUYy4enevUzw,4686
758
775
  teradataml/data/jsons/sqle/16.20/Antiselect.json,sha256=Zyw4BroIZwI7UeYjeHsWO51MukZmAH38UKS4-8nPuLg,1621
@@ -854,7 +871,7 @@ teradataml/data/jsons/sqle/17.20/DecisionForestPredict.json,sha256=-DFxNNjkWPZCt
854
871
  teradataml/data/jsons/sqle/17.20/DecisionTreePredict.json,sha256=2Ou6QmEwhptX9jdhl8xPnydiXqVZDTb8pVkgVJx1tzs,5774
855
872
  teradataml/data/jsons/sqle/17.20/GLMPredict.json,sha256=pgagDfqyWiEnFV-fzof1zz5StSoeZODbyn9AGmMq5Z0,5376
856
873
  teradataml/data/jsons/sqle/17.20/MovingAverage.json,sha256=q8OpbyhlJeeQPOZNwlBF2SBGpe7k_NNyqXWpPdAghuc,12652
857
- teradataml/data/jsons/sqle/17.20/NGramSplitter.json,sha256=O5paj2xoNL38YQK6j9bQIxgsEZV1XNgyyRLSIDoj09g,11756
874
+ teradataml/data/jsons/sqle/17.20/NGramSplitter.json,sha256=EVW5Np5ObnL48IW1FIkX-_Hqfzs_-igCPhCUrhLZtIM,11895
858
875
  teradataml/data/jsons/sqle/17.20/NaiveBayesPredict.json,sha256=lsB-AmLdZ2rztT54Hj8KCbitTvwkCuJYE9dFHMuZXIQ,5044
859
876
  teradataml/data/jsons/sqle/17.20/NaiveBayesTextClassifierPredict.json,sha256=Uwl8lHLVFZeqpH848jl-2QqfRKiMecvyu876_Axf5W0,9553
860
877
  teradataml/data/jsons/sqle/17.20/Pack.json,sha256=rGLF10fH5fpsiK9DfNu9YxMuyC9K5zWKcPtcvCNbd3g,5335
@@ -862,6 +879,7 @@ teradataml/data/jsons/sqle/17.20/SVMSparsePredict.json,sha256=sMUK3DVXTHI_bIxlHx
862
879
  teradataml/data/jsons/sqle/17.20/Sessionize.json,sha256=IIA23vN016aUNl5IFeRQj3hxtmqNvjnwL96fjPLUXlo,4469
863
880
  teradataml/data/jsons/sqle/17.20/StringSimilarity.json,sha256=P486-VfDkV06SPPKHR62Q2PpOEyJGbAuR9sGD_aU168,7142
864
881
  teradataml/data/jsons/sqle/17.20/TD_ANOVA.json,sha256=_tONpTLLmul5MP5t5PhLvebgtjoN5mLX61BMZPJD7rY,5268
882
+ teradataml/data/jsons/sqle/17.20/TD_Apriori.json,sha256=7oay9Azl2BuG6eI4yeJn3wr7KFZa3WxMReT92i3u7L0,6280
865
883
  teradataml/data/jsons/sqle/17.20/TD_BinCodeFit.json,sha256=SXC2_jSQABC53QGQ3S9gox8j4DTq65WpNBkHwP6F7SE,9292
866
884
  teradataml/data/jsons/sqle/17.20/TD_BinCodeTransform.json,sha256=SG1Dz-m9B37B5nK-aubz52QulWgzZq_O_nUllVWUaqo,2468
867
885
  teradataml/data/jsons/sqle/17.20/TD_CFilter.json,sha256=GmljbjUsiPrinKRjgU29BFvndoo060T_tA8KSSHI2S0,4200
@@ -888,6 +906,7 @@ teradataml/data/jsons/sqle/17.20/TD_Histogram.json,sha256=maRiTySFqhKcfzcH0VWigc
888
906
  teradataml/data/jsons/sqle/17.20/TD_KMeans.json,sha256=1l_vfCZtGRgzlKMuNDIy-H9gjC0sZNC5thzwEIIc930,8297
889
907
  teradataml/data/jsons/sqle/17.20/TD_KMeansPredict.json,sha256=qvKPOK-wOMyd05JWA7RmvkogjObHqiVZr4b5M3XkcBI,2976
890
908
  teradataml/data/jsons/sqle/17.20/TD_KNN.json,sha256=0pF8hgOXtR4i16dkHoK5DxDarkp_OT0vi62sv3VA27k,10439
909
+ teradataml/data/jsons/sqle/17.20/TD_NERExtractor.json,sha256=80UIWn_VsBAWAOU8ZauqNkq-NqN2kv5WCgYRURahHBM,5126
891
910
  teradataml/data/jsons/sqle/17.20/TD_NaiveBayes.json,sha256=aKa9bh7TVCavRYfE-uA4j3ckLkoNvNolE3q68ajcU30,6391
892
911
  teradataml/data/jsons/sqle/17.20/TD_NaiveBayesPredict.json,sha256=rG9eLlNyWNpIZSWNhj-9e5eltM7JH-sbabwXi564IP8,6938
893
912
  teradataml/data/jsons/sqle/17.20/TD_NaiveBayesTextClassifierTrainer.json,sha256=2Ri0K7ZpVsQIJCa1f8Rjpy97oKigxrN-v1AAYMb3ofQ,4385
@@ -914,6 +933,7 @@ teradataml/data/jsons/sqle/17.20/TD_RegressionEvaluator.json,sha256=EppbRKRD9hzL
914
933
  teradataml/data/jsons/sqle/17.20/TD_RoundColumns.json,sha256=AgbGYCGOvhl_iUSCjzi1KcNtTQ6hS5MfMnh3joZRJYQ,3546
915
934
  teradataml/data/jsons/sqle/17.20/TD_RowNormalizeFit.json,sha256=ghnwqbuiTPMsKyFivDswALVGLg18AFYYDHVDPv2aZ2s,4211
916
935
  teradataml/data/jsons/sqle/17.20/TD_RowNormalizeTransform.json,sha256=JZh2R6fYJcSqqV_QKXdBseajYxwgWt31joUfQpasGbU,2480
936
+ teradataml/data/jsons/sqle/17.20/TD_SMOTE.json,sha256=9V6rvcFYO9n-2o0c_nNkaTnCLto9l9R9HhowITfwaC8,9944
917
937
  teradataml/data/jsons/sqle/17.20/TD_SVM.json,sha256=Ao620whcupTfdOaATFSQRiJtvWLosVJW0yg-pRZTQpg,17763
918
938
  teradataml/data/jsons/sqle/17.20/TD_SVMPredict.json,sha256=aZlJBekP4uxc2XJUwIeV5h1ToDWvswdSBI_qW0ndQpo,5142
919
939
  teradataml/data/jsons/sqle/17.20/TD_ScaleFit.json,sha256=V9N4WysObAauTR0X3wSBJDpRMvPRQxKr8m-ztGLcnXg,13586
@@ -927,7 +947,8 @@ teradataml/data/jsons/sqle/17.20/TD_StrApply.json,sha256=5DsnIIeb1BJqa12lh74mzHe
927
947
  teradataml/data/jsons/sqle/17.20/TD_TFIDF.json,sha256=IDQ7Dq9jVS8d64s02ero2-2hHvWd0qsCqqJ5sB0cNFM,5744
928
948
  teradataml/data/jsons/sqle/17.20/TD_TargetEncodingFit.json,sha256=SWIiQ5RNcNNkAL-VTUys-ymUf8ftHv4_S4AItnLvf_E,9314
929
949
  teradataml/data/jsons/sqle/17.20/TD_TargetEncodingTransform.json,sha256=v26bCdOLPKZR-oNwp6jXSge-Mi3sT9ktUnQF46tiIFg,2765
930
- teradataml/data/jsons/sqle/17.20/TD_TextParser.json,sha256=SadLzx_KuhRFUSkZl3xuNLgbMFKz-MnTjc8OsVSoiVc,5926
950
+ teradataml/data/jsons/sqle/17.20/TD_TextMorph.json,sha256=eL9eVSBBS0_Pouhqqxm1ZUJQWI5W9yzxxKnd0SqBo7Y,4707
951
+ teradataml/data/jsons/sqle/17.20/TD_TextParser.json,sha256=8Y3PSVX3Mag6boWiQFEVyZPpmmkYoLfHnjWqaASE1kU,9344
931
952
  teradataml/data/jsons/sqle/17.20/TD_TrainTestSplit.json,sha256=-iTh6laaD6gf7WWEyz6lQFoDBGR2kwvaeTsavZsyW9Y,5744
932
953
  teradataml/data/jsons/sqle/17.20/TD_UnivariateStatistics.json,sha256=nMK_V8EAw01qjsuZP5uhyprw_Mh5G9ZimQt8TfPSsYw,4807
933
954
  teradataml/data/jsons/sqle/17.20/TD_Unpivoting.json,sha256=JYjxIZCXHDipqcuSNH9O0o9hoUD674WZ2ke5IL4ZA8w,8680
@@ -940,12 +961,23 @@ teradataml/data/jsons/sqle/17.20/TD_XGBoostPredict.json,sha256=vePCDT17Ho9H1b1cx
940
961
  teradataml/data/jsons/sqle/17.20/TD_ZTest.json,sha256=vDxIYCnmgPTnxJnfrivB8AkOKNrJXY_s84_moFFjsLE,8202
941
962
  teradataml/data/jsons/sqle/17.20/Unpack.json,sha256=XoTH6HH8cQ-WWMkhx4gIH-hkn0q4G8StVxNMcUIM3SY,13420
942
963
  teradataml/data/jsons/sqle/17.20/nPath.json,sha256=_x0_7ZVAZ23JNd3Xy-xfBFfXD-VWpgDKzhpnUmt5GAs,14122
964
+ teradataml/data/jsons/sqle/20.00/AI_AnalyzeSentiment.json,sha256=8yVLR2aIQNNVew_MExBE8H7tvEqSG7eTgEUPWRZYanM,11453
965
+ teradataml/data/jsons/sqle/20.00/AI_AskLLM.json,sha256=D84RdVhoWqEiZ52ZPisguBkIFbXKeqU8HOb1UlGRG7g,14542
966
+ teradataml/data/jsons/sqle/20.00/AI_DetectLanguage.json,sha256=KX-2B8c_HTN2PLI5nn7TJ41AfZDnBxU10c3cqaaA3BU,12048
967
+ teradataml/data/jsons/sqle/20.00/AI_ExtractKeyPhrases.json,sha256=5eE8_J1i784ScBQhxtrivOEYPodWlIwd7M2m8c_NqIU,11452
968
+ teradataml/data/jsons/sqle/20.00/AI_MaskPII.json,sha256=k9NNxnzHhAPId1AoxdaJ_dfVSnCghyODuCcYuUd7yFY,11744
969
+ teradataml/data/jsons/sqle/20.00/AI_RecognizeEntities.json,sha256=ib6UBvEmv-jTGu4j1L5Oi8jKJ7MS0sRGq1mJDcN2Vjo,11644
970
+ teradataml/data/jsons/sqle/20.00/AI_RecognizePIIEntities.json,sha256=oMsDxZo5qcnN12TkRPWplKv8i_5zj_cEFdOa7vsquII,11765
971
+ teradataml/data/jsons/sqle/20.00/AI_TextClassifier.json,sha256=7KQY14C_2TqZocRYVQy8srVO1Kz9XXbprtsvV1-QRgA,12475
972
+ teradataml/data/jsons/sqle/20.00/AI_TextEmbeddings.json,sha256=iQoImkHb3_P9RHpma3pF1G3fDSmUOLpRcg0n3xAoF7g,12341
973
+ teradataml/data/jsons/sqle/20.00/AI_TextSummarize.json,sha256=3u1K9VK9dKGKdnARjgXC5CPuIP0SRVqftFH3__sy15U,12126
974
+ teradataml/data/jsons/sqle/20.00/AI_TextTranslate.json,sha256=66wVJwkjnuNSyqP5Ac6UMbxPQuMnB0RGRg8Jmf3M42s,12110
943
975
  teradataml/data/jsons/sqle/20.00/TD_HNSW.json,sha256=yaIasMPo3m0fGkA1IJWWZKeQqMnknGf9i9neaRHrh7A,10031
944
976
  teradataml/data/jsons/sqle/20.00/TD_HNSWPredict.json,sha256=m7_9216qzwrgnpubaD-0Jnx260KfxBb8Fz6faullUn4,7040
945
977
  teradataml/data/jsons/sqle/20.00/TD_HNSWSummary.json,sha256=PPYYKEFZpYjNIBpBkA4kyeqVpdlGdl260Qm0lRB8ivw,1229
946
978
  teradataml/data/jsons/sqle/20.00/TD_KMeans.json,sha256=ogqYrW0lAbq2mSa0HJURwYohYFd1XA0UDPqUA23oAfM,8882
947
- teradataml/data/jsons/sqle/20.00/TD_SMOTE.json,sha256=RYIIzOT2W-CEJWahKnMXtSn9RQC93xb3KManph_QIpo,9927
948
- teradataml/data/jsons/sqle/20.00/TD_VectorDistance.json,sha256=V0PDu905-_CN7t8uY8Di85Vebxvz5PH4nfNckZkDOfI,9835
979
+ teradataml/data/jsons/sqle/20.00/TD_SMOTE.json,sha256=my0rqPxKP6YM4tT5YO2lReAWYr_SY5EPySeCqgXCVrc,9928
980
+ teradataml/data/jsons/sqle/20.00/TD_VectorDistance.json,sha256=F_P5WO-vMnKFLRai5ubyKzk7NHBEifbz55zkBVCavAc,9836
949
981
  teradataml/data/jsons/storedprocedure/17.20/TD_COPYART.json,sha256=vp0hpBDk8JmyLE-htYchk-JGZQd3oaNNKegwKYI87C4,2241
950
982
  teradataml/data/jsons/storedprocedure/17.20/TD_FILTERFACTORY1D.json,sha256=x5bzoY38TzDHaLztMBmf6qMie4gykuQN__rN65NgaKo,7756
951
983
  teradataml/data/jsons/tableoperator/17.00/read_nos.json,sha256=AU0xz-LTu-evaZfWR1TATJN7XKQUSvCCRiagLZYU_Og,25804
@@ -1054,26 +1086,27 @@ teradataml/data/scripts/sklearn/sklearn_model_selection_split.py,sha256=SKdueW62
1054
1086
  teradataml/data/scripts/sklearn/sklearn_neighbors.py,sha256=Uqyn6blWs2epKUlZtdhpCWpWT_vMa5ZRkMaT6g-u9Z0,5938
1055
1087
  teradataml/data/scripts/sklearn/sklearn_score.py,sha256=VtEP3sGJUasWWDHKWZau08vwShECy15vQ9OFINt9N4A,4754
1056
1088
  teradataml/data/scripts/sklearn/sklearn_transform.py,sha256=EgrVc5_Uw0AMdhy2GBDhGA0WNMA2A9DkQUC5n2MXsCI,14613
1089
+ teradataml/data/sdk/modelops/modelops_spec.json,sha256=HRF5rpVdaivyUVTGagaiHASbV9aLq7TrlQ77JaHIpDQ,5329976
1057
1090
  teradataml/data/templates/open_source_ml.json,sha256=dLbP86NVftkR8eoQRLQr_vFpJYszhnPvWNcSF1LRG78,308
1058
1091
  teradataml/dataframe/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
1059
- teradataml/dataframe/copy_to.py,sha256=-8LTxPc-3uRcrSAghp55B8GK6rUTXc_-l5UZw27wwGA,76785
1060
- teradataml/dataframe/data_transfer.py,sha256=dZW0NmzZJ5QDSGY3BcDoQtuTINwjFf1jK_ZMDowSh8Y,124413
1061
- teradataml/dataframe/dataframe.py,sha256=A7zQjszbHZmhGrWRAmPNjlK_Wp1tqhCnGCuZgRV89Xw,995741
1062
- teradataml/dataframe/dataframe_utils.py,sha256=-L7Hq35Fd1WHJTe1wvEIPhC0eu1v2ZiOwnlNqIr-yXo,94226
1092
+ teradataml/dataframe/copy_to.py,sha256=dL1evyK-lXxM-MQjBIPPXJo3_Gp5TKgE9gVGodys3lw,77304
1093
+ teradataml/dataframe/data_transfer.py,sha256=AgSb7OMzVgBQQ8vvhs-joO0i62JAueLJ5IzwWHG3OHw,125128
1094
+ teradataml/dataframe/dataframe.py,sha256=BtLPSDYIYVELTkytENJgwka2hXbt-9HUK8ZyTHOlo4I,1045652
1095
+ teradataml/dataframe/dataframe_utils.py,sha256=UAtmXgWD6tTiPiItLws9Bxntf0FfxXlcXU-vWltCp6M,96882
1063
1096
  teradataml/dataframe/fastload.py,sha256=Qyq4xEzS9E5NRDvEUlmv3hoAQy5nhTDEfW1QiVg3e9U,42032
1064
- teradataml/dataframe/functions.py,sha256=t-ua7_PNe_X2jNo2p2FGMvbp2DlC4CLuV_PQPq4N04Q,39954
1097
+ teradataml/dataframe/functions.py,sha256=BxHJQYtFQ5vMaMIpvp6N7xMETWVNJq2_nqOFQScR7e0,148370
1065
1098
  teradataml/dataframe/indexer.py,sha256=xDLYMuUy77VpVo1rO0RHrM-fpexr1Mm3o1hF_I3PsdQ,19787
1066
1099
  teradataml/dataframe/row.py,sha256=zgt4G-05ZE8QOfC0aCJVpK3WwC9_ExIgpMV7ZD3wKu0,4622
1067
1100
  teradataml/dataframe/setop.py,sha256=lgXCXZ8ACAAHIzf0YDws31Ydzdl9b9xcZYLeziSRPu0,57203
1068
- teradataml/dataframe/sql.py,sha256=1a6KNHJ8K8JSnWpN5Xb8VhOyGaj7ZDUF3aFYEDPUfYQ,645455
1101
+ teradataml/dataframe/sql.py,sha256=IbRl_5Fv2mYFbNFv4XFp85v8btpVbnMniy99_d8ISms,584258
1069
1102
  teradataml/dataframe/sql_function_parameters.py,sha256=BVuHGJ78TjxbrwMdytXfUVKrMZb4Ge20taVwcj0E8gU,22241
1070
1103
  teradataml/dataframe/sql_functions.py,sha256=-v5Gx8x_Tr-Ru9YrmjrM-JfIDhguk8HcO2G1xMcg0Wo,29482
1071
1104
  teradataml/dataframe/sql_interfaces.py,sha256=WzM-jq7JyRmEMs7yZTgX6W3nnD7YjxXwdTHauI4BQPA,3812
1072
1105
  teradataml/dataframe/vantage_function_types.py,sha256=4p4EX3ZtbqYBqcdQ7l_Vx0UW8sEIeEVnpRghcGpyFNY,28381
1073
1106
  teradataml/dataframe/window.py,sha256=YkrBcLPrvebZ4Ekylkv3JO8kMedAQ80pnOapMaarJNI,32755
1074
1107
  teradataml/dbutils/__init__.py,sha256=qnquQDBxYoHuaLb3VzM0Mb08Ooc-sDVO6JQCcPhSYlE,221
1075
- teradataml/dbutils/dbutils.py,sha256=yG1pdoKV33vklTBICElPuHmnwCxDqnnu4IVh-q8bgzQ,97027
1076
- teradataml/dbutils/filemgr.py,sha256=vvrKLk_TGJcRnEqNlnf-WG8fSKXeyngobChKwUJysd8,14252
1108
+ teradataml/dbutils/dbutils.py,sha256=kJJldHGiD-SnZz3KZcUHgFYKUsteOscEOvYrvCc9HFc,98471
1109
+ teradataml/dbutils/filemgr.py,sha256=oJmI99H_CEpX_-xwr-ZdtnL_ky-KDfZGSNfxJcxL9lE,14381
1077
1110
  teradataml/gen_ai/__init__.py,sha256=kYGvNpZOR_E2VDcf3-LOfvFGox1YRpPeblwa5mqDvAM,91
1078
1111
  teradataml/gen_ai/convAI.py,sha256=HN_Rm38FY5Nr2Pq5nMmuT9gH9XsTwtE47NaQIaFyiFg,16473
1079
1112
  teradataml/geospatial/__init__.py,sha256=DZZNBHBYN1EDYSXz-7C_Ic_W2ZsVuak69hw_nWTcto8,292
@@ -1082,20 +1115,20 @@ teradataml/geospatial/geodataframecolumn.py,sha256=znNHkjpbOoS3a8xrYS2Q0ou4-hhm0
1082
1115
  teradataml/geospatial/geometry_types.py,sha256=hUKAUluD8ufvXaLY1-cwnsB3RsFkHR8Wr7eVE4YCtoU,38518
1083
1116
  teradataml/hyperparameter_tuner/__init__.py,sha256=RQvotxJqh80M8Du-5IWdjdJvKYHDiGlepkgm5oyKqpY,80
1084
1117
  teradataml/hyperparameter_tuner/optimizer.py,sha256=TOm7bTFuHoLz5yRDxFw5FJvuFpiCdrRxMmcTq-QBzks,198688
1085
- teradataml/hyperparameter_tuner/utils.py,sha256=Bu0A_mP1WPyWtoBGz9NTkNhWOz_nZUkc5gsqcPrYfnk,11727
1118
+ teradataml/hyperparameter_tuner/utils.py,sha256=du8Xy2JVKvnW8Vk06xI7VZA7499nRPVBxVkvqm6sVyE,11877
1086
1119
  teradataml/lib/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
1087
- teradataml/lib/aed_0_1.dll,sha256=VKZZxFY8RVQdVN_uBXuiU1dwNcgun0w4cpbsgVKKFc8,3928816
1120
+ teradataml/lib/aed_0_1.dll,sha256=AgsH4Zd7G546nljFZIDR2ESakpXJmLlPXGLT3EiJTZ4,3735757
1088
1121
  teradataml/lib/libaed_0_1.dylib,sha256=nKlbPxiSJw-kCw6NktpqMy-UDfq4zYq7gLy6S2N2Ppg,1806401
1089
1122
  teradataml/lib/libaed_0_1.so,sha256=xi4gwYQtbbdUlRTXsTEJSf0J0e9jt-cguTzdPQdrsEU,1040824
1090
1123
  teradataml/opensource/__init__.py,sha256=-EOpCOiaaHWuCFP1vDCOlHkqyPNid4CrnkQnQ0BOzKo,66
1091
- teradataml/opensource/_base.py,sha256=G1HKMrqAl7hMRJFLm675nartG6g9V7u-zKtbYRx4yfE,71935
1124
+ teradataml/opensource/_base.py,sha256=TcY6vHt8oc31Mka4MkF8t0x9Y4AsB7GlAmLjvEpOkf4,64347
1092
1125
  teradataml/opensource/_class.py,sha256=6Qo0pu2_Y0SK8RN9PistIFRCP1_q3fEsXRL0ZJSYo6I,18463
1093
1126
  teradataml/opensource/_constants.py,sha256=pAqYmkh6dQD9DXr4pdlZ5FOk78wXLUdyGaupL-oumCE,3083
1094
1127
  teradataml/opensource/_lightgbm.py,sha256=CkQqy3dkORIFPH_qKP3LiMBvJ9MvUIcDJP_ut-PhRSE,49321
1095
1128
  teradataml/opensource/_sklearn.py,sha256=UAV3A8xL8aDkiqPP6IMfRN0AmH3i6m1T3xxNShlpS_s,50537
1096
1129
  teradataml/opensource/_wrapper_utils.py,sha256=7xsCNjy7flVvxpyhp7vMzBUXJdkdPWj5TnpPjtkVXeY,12122
1097
1130
  teradataml/options/__init__.py,sha256=avSPE90damRcMHIRUxbarQ3CdFO8Vs8Jcon3EG8R32k,6587
1098
- teradataml/options/configure.py,sha256=F-QeLJxeImUCZEkRw1WQN38S5Yh2a5aim4w7bx52ggE,25782
1131
+ teradataml/options/configure.py,sha256=RYNRWjg3VII0dsvUPqyO7chYXzqmdrHBvMHwLAS7gKM,26798
1099
1132
  teradataml/options/display.py,sha256=vLEHfN7ZvqqTUrGuRXnEjy6a7pgtSmU-dcnu5jXMCJc,8482
1100
1133
  teradataml/plot/__init__.py,sha256=pKzD81TdmCSnrHtWsR2Gt_nyDQzXqAdxydepUQvKl6g,126
1101
1134
  teradataml/plot/axis.py,sha256=atxWOVq1ebSBTHz2QPwh5fqq9EFEJeMl2VR-rXSq_G4,55486
@@ -1104,25 +1137,39 @@ teradataml/plot/figure.py,sha256=aWqABKdtdJ0awymC0i4fa310mrs6dnTG2ofKGLI-E8E,132
1104
1137
  teradataml/plot/plot.py,sha256=3gnC6rtrLxhV9wY5Tfejqx-DvxDFzPW3m8_bYTmcFdg,32450
1105
1138
  teradataml/plot/query_generator.py,sha256=so8_w73Qday0b5hGUvJNrx9ELkYgXFpwjTUsbjNZvJg,3552
1106
1139
  teradataml/plot/subplot.py,sha256=c-Npnr5LWb4TUHwfdwzMsZBiti6FunzdFC5EtcuOWjY,10246
1107
- teradataml/scriptmgmt/UserEnv.py,sha256=DqUI_YwjucCMV-OkzOkBJ85XpbvW5nBw29f0UFcnmGo,177051
1140
+ teradataml/scriptmgmt/UserEnv.py,sha256=02aW3NXcecAUOHgloADEzozB9LxUYjJim6oW_3FjCRU,192350
1108
1141
  teradataml/scriptmgmt/__init__.py,sha256=dG0Yef5V3gLu1KasRhBLd6OgdC2NAFqjzJC8BDhark8,185
1109
- teradataml/scriptmgmt/lls_utils.py,sha256=m5RMdUblfzLJK6wKNXCce0S-r2o8Lfzal8xlK37KKo4,79557
1142
+ teradataml/scriptmgmt/lls_utils.py,sha256=KzhCMUOmdvIecjOQmkRC1WY2kjBUuP1ahMnzhO6woWg,96662
1143
+ teradataml/sdk/README.md,sha256=VGfz2dKiH0pA8iJqfsbDU_rh43fsn7xYK2oam_K0590,5355
1144
+ teradataml/sdk/__init__.py,sha256=aKiN-rFiaGECXKhgRpgDrSRHSLYReZ34ddaiuC_2w-g,233
1145
+ teradataml/sdk/_auth_modes.py,sha256=4O8W5LLceD4xp2F1xe--DgnTl6uhha6H0D57YGG1nCk,15183
1146
+ teradataml/sdk/_func_params.py,sha256=mzyvuB4MoXlHJU9fNuj0fqdrIw1bEmgoguEGrBsghN4,21110
1147
+ teradataml/sdk/_json_parser.py,sha256=sQwiNLgk-f5VvVTUHwyq2u_sr_HCxy7K4ydhy8g1Ges,22135
1148
+ teradataml/sdk/_openapi_spec_constants.py,sha256=osIt-Z0DZKAqiF_7CUhiV87VhK8GKKWIYCZH29dYJa0,6850
1149
+ teradataml/sdk/_utils.py,sha256=cmCFjQgjTJdCaP-xoaNZysmiTBx_qCCmxNfsIk3D8Ko,10717
1150
+ teradataml/sdk/api_client.py,sha256=olvhphWyyhS-TaKi18YCanIuRpVTnteOk0sg5zr6VvU,37271
1151
+ teradataml/sdk/constants.py,sha256=uzohRFJTk6Y3IqEjd1cDwrprPzIEuSlYWlN06k0mTI4,1751
1152
+ teradataml/sdk/spinner.py,sha256=dF4aOGpNQWBWeczgkvWIVN6t8rr-vf1IGRlhl6jowPo,2979
1153
+ teradataml/sdk/modelops/__init__.py,sha256=LC4W2Ytq8bAVccBp_UX4mieeN0kQoNrV8sow2wM_Cxs,3690
1154
+ teradataml/sdk/modelops/_client.py,sha256=OAqE4e3RJDrO6Inf7UyUuqc5HGlncVf3B6oX6o3T3So,16969
1155
+ teradataml/sdk/modelops/_constants.py,sha256=FR2Mwr6JEW2QRUfcqFESeV72t0wJ8CtnLivnUxDQow8,9383
1156
+ teradataml/sdk/modelops/models.py,sha256=6jMB5E7qPy2E_DfAw352LgFNcr6ogHDw_ucunkaf4Ws,72632
1110
1157
  teradataml/series/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
1111
1158
  teradataml/series/series.py,sha256=nJF6tJmF_rsPHH1kboGrWdTvEUZZFu_JunKSoKnN3tI,17724
1112
1159
  teradataml/series/series_utils.py,sha256=ufuY8Z5oVB6K3ro23AXaxg6aAjjjEYg4jbAf1_W8aDU,2681
1113
- teradataml/store/__init__.py,sha256=S68oRuSjcJz9oWqd12UMGJ0BMd4XkIdHcWPRMWFVwdw,413
1160
+ teradataml/store/__init__.py,sha256=ZpAk6_ccnFm6VjBKooLZigHAKVjjNeccyMb52NbWZJA,396
1114
1161
  teradataml/store/feature_store/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
1115
1162
  teradataml/store/feature_store/constants.py,sha256=KliwCsQyd65XG1ERW2GIHjy47rGEUC2CA3zBs97wh8s,8918
1116
1163
  teradataml/store/feature_store/feature_store.py,sha256=XD4kJoVkYTNgk46-jzA344rRJjhdJcMIV182MQC00JQ,91058
1117
1164
  teradataml/store/feature_store/models.py,sha256=c9jXQ9eDrcFREkrmwy_fL5ULVZ7eNEBnwvETH5e2Jh0,57741
1118
- teradataml/table_operators/Apply.py,sha256=F_QxGwbU2flfc--UdjQVDeOHDUm0SCVh5p_XzhOMnrw,43520
1119
- teradataml/table_operators/Script.py,sha256=D74DFLq7wgQ-156oMMrO2oKS8N0tjzIMQQTCdk0MdsI,77374
1165
+ teradataml/table_operators/Apply.py,sha256=ABtXaR42SYymw6sHtAN9YvwxLpn5kudxIkAeNfH_piM,44487
1166
+ teradataml/table_operators/Script.py,sha256=Quh9_GngNHbNnIEd3xrw5R8hR1EBSWddbxZBU4FIhm0,78495
1120
1167
  teradataml/table_operators/TableOperator.py,sha256=yKn0XLtQwhjs1cdDG0IM4ZLEZBO9sRn_vBE_RTIIoKg,77099
1121
1168
  teradataml/table_operators/__init__.py,sha256=MTuTiCyGt7Le4MQ5XEfTyp_9Za-vAIreZhfz9GEAzrU,106
1122
1169
  teradataml/table_operators/apply_query_generator.py,sha256=41ah294SyyG0tl88h8og7AXOWDzT1Lb1J1GjO0M1swA,12207
1123
- teradataml/table_operators/query_generator.py,sha256=984JEgcnrz63ala-Mm8y5NqGAlqltfMpUn-OhPEoeLQ,23201
1170
+ teradataml/table_operators/query_generator.py,sha256=odqpOTD2IzNg2TB6YgZBwWYY3nDK8rLv5VhqdjpDBYE,22291
1124
1171
  teradataml/table_operators/table_operator_query_generator.py,sha256=luATy6uVS8-ixvObaxmPvNro76BNCiVwytYIHOnAnK8,22456
1125
- teradataml/table_operators/table_operator_util.py,sha256=9z6tEIsO_e8nnGS2bpmrlyZ04HmlkEIcpdnZ0EnfJ6M,31961
1172
+ teradataml/table_operators/table_operator_util.py,sha256=jR5fYekNG7Bjo-eLLMUaDIETolWYack0MqSKJ2l7lks,33870
1126
1173
  teradataml/table_operators/templates/dataframe_apply.template,sha256=3FiK_nivSf343xlYHfCJA2pn0dycvX_pB0daKBXg64M,8054
1127
1174
  teradataml/table_operators/templates/dataframe_map.template,sha256=KrTTYj0HFco0Z_mV6FcLvkw-kzngCDw-zhmmTSX0J7k,7683
1128
1175
  teradataml/table_operators/templates/dataframe_register.template,sha256=VfBq8Pay_GZuaAY566vVNsk2LVPywJZ_pM3RGb3UJTw,2836
@@ -1131,13 +1178,13 @@ teradataml/table_operators/templates/script_executor.template,sha256=dLqU8z2WXi1
1131
1178
  teradataml/telemetry_utils/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
1132
1179
  teradataml/telemetry_utils/queryband.py,sha256=yMq-hY81elmNoFpHNsMBxOMv--jMB81d9QFxDUppV4g,2354
1133
1180
  teradataml/utils/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
1134
- teradataml/utils/dtypes.py,sha256=KMza-R4l-BO-kwGBkUmpr6mc3ndAYQyxDzFttq1c3mA,27928
1135
- teradataml/utils/internal_buffer.py,sha256=1_8PT_PDX2UHl_Sv1jKX9uPaAJG_qku65glPqjjhBWI,2490
1181
+ teradataml/utils/dtypes.py,sha256=J9fWcQBOG8CVW7ctMrywcUo-Sn4_oSwzQyh4sVzXx2M,28009
1182
+ teradataml/utils/internal_buffer.py,sha256=Amjji6Dmosc0zWjIHBMUxLVj3eO-UbknohYkIOreLPQ,3042
1136
1183
  teradataml/utils/print_versions.py,sha256=m-ByrRZEQkiCmDyaBNknwpE8UhYY1bPPlW3YYHDTrlc,6535
1137
- teradataml/utils/utils.py,sha256=RDSUXNHNyG4bkgFSa6nGaGRc3W0mHjqX_mx_2vGvizw,17254
1138
- teradataml/utils/validators.py,sha256=f904i2BGSv28tBbM_npJGBGfkCUrcB9BhyjAmEwcXAU,95769
1139
- teradataml-20.0.0.4.dist-info/METADATA,sha256=eWOaQPAiVrnU0KoJGqPsVhbsIN7nT2JKesxCmM3kQCs,129861
1140
- teradataml-20.0.0.4.dist-info/WHEEL,sha256=G16H4A3IeoQmnOrYV4ueZGKSjhipXx8zc8nu9FGlvMA,92
1141
- teradataml-20.0.0.4.dist-info/top_level.txt,sha256=j0jkK8Hmxb5acGSNrbbEePXSgqTQEItdFZXhyJT7qUM,11
1142
- teradataml-20.0.0.4.dist-info/zip-safe,sha256=frcCV1k9oG9oKj3dpUqdJg1PxRT2RSN_XKdLCPjaYaY,2
1143
- teradataml-20.0.0.4.dist-info/RECORD,,
1184
+ teradataml/utils/utils.py,sha256=cgxkL7wOe2PZsEbmF4AyKWGXDFZiHCVFrU97EYdURGI,17252
1185
+ teradataml/utils/validators.py,sha256=mwMYsCoQ24preyF50KvnGmTh91AWzoIYPVnutNrrtLU,109020
1186
+ teradataml-20.0.0.6.dist-info/METADATA,sha256=ppB-Ksd_3kjy9qnvnxCCw2oGVNqM2OwqnsVy3VYoGG4,140232
1187
+ teradataml-20.0.0.6.dist-info/WHEEL,sha256=G16H4A3IeoQmnOrYV4ueZGKSjhipXx8zc8nu9FGlvMA,92
1188
+ teradataml-20.0.0.6.dist-info/top_level.txt,sha256=j0jkK8Hmxb5acGSNrbbEePXSgqTQEItdFZXhyJT7qUM,11
1189
+ teradataml-20.0.0.6.dist-info/zip-safe,sha256=frcCV1k9oG9oKj3dpUqdJg1PxRT2RSN_XKdLCPjaYaY,2
1190
+ teradataml-20.0.0.6.dist-info/RECORD,,